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The movement of potexviruses through the cytoplasm to plasmodesmata (PD) and through
PD to adjacent cells depends on the viral and host cellular proteins. Potexviruses encode
three movement proteins [referred to as the triple gene block (TGB1–3)]. TGB1 protein
moves cell-to-cell through PD and requires TGB2 and TGB3, which are endoplasmic
reticulum (ER)-located proteins. TGB3 protein directs the movement of the ER-derived
vesicles induced by TGB2 protein from the perinuclear ER to the cortical ER. TGB2 protein
physically interacts with TGB3 protein in a membrane-associated form and also interacts
with either coat protein (CP) or TGB1 protein at the ER network. Recent studies indicate
that potexvirus movement involves the interaction between TGB proteins and CP with
host proteins including membrane rafts. A group of host cellular membrane raft proteins,
remorins, can serve as a counteracting membrane platform for viral ribonucleoprotein (RNP)
docking and can thereby inhibit viral movement. The CP, which is a component of the
RNP movement complex, is also critical for viral cell-to-cell movement through the PD.
Interactions betweenTGB1 protein and/or the CP subunit with the 5′-terminus of genomic
RNA [viral RNA (vRNA)] form RNP movement complexes and direct the movement of
vRNAs through the PD. Recent studies show that tobacco proteins such as NbMPB2C
or NbDnaJ-like proteins interact with the stem-loop 1 RNA located at the 5′-terminus of
Potato virus X vRNA and regulate intracellular as well as intercellular movement. Although
several host proteins that interact with vRNAs or viral proteins and that are crucial for
vRNA transport have been screened and characterized, additional host proteins and details
of viral movement remain to be characterized. In this review, we describe recent progress
in understanding potexvirus movement within and between cells and how such movement
is affected by interactions between vRNA/proteins and host proteins.
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INTRODUCTION
The infection cycle of plant RNA viruses includes the invasion
of the host plant, RNA replication, cell-to-cell and long-distance
movement in the host, and release from the host. Because their
genomes are small and encode only a few genes, plant RNA viruses
utilize many host factors during the infection cycle. The replication
of viral RNAs (vRNAs) in host plants has been frequently studied
but virus movement and other aspects of the viral infection cycle
have received less attention (Mackenzie, 2005; Nagy and Pogany,
2010).

Potexviruses have been extensively studied and belong to the
Alphaflexiviridae, a new family of plant RNA viruses, among
which the genomes of the genus Potexvirus contain five open
reading frames (ORFs) encoding an RNA-dependent RNA poly-
merase (RdRp; replicase), three overlapping movement proteins
(MPs) [called the triple gene block (TGB1–3)], and the coat
protein (CP; Adams et al., 2004; King et al., 2009; Figure 1A).
All five of the virus-encoded proteins are used either in viral

replication or in movement in infected host plants (Verchot-
Lubicz, 2005; Verchot-Lubicz et al., 2010; Solovyev et al., 2012;
Park et al., 2013). At the initial stage of infection, potexviruses,
which have a plus (+)-stranded RNA genome, release vRNA from
the virion and produce the virus-encoded replicase using host
translation machinery. Replicase then forms a viral replication
complex (VRC) along with several host factors and subsequently
synthesizes (i) minus (−)-stranded vRNA from (+) vRNA and
(ii) (+) vRNA or (+) subgenomic (sg) RNA from synthesized (−)
vRNA. CP and TGB1–3 proteins are translated from the synthe-
sized (+) sgRNAs and are used for encapsidation and movement of
their progeny (+) vRNAs, which were produced from (−) vRNA
as template, into neighboring uninfected cells through the plas-
modesmata (PD). The movement of plant viruses is by definition
essential if the progeny (+) vRNAs or virions are to spread into
neighboring uninfected cells. In moving the progeny (+) vRNAs
or virions via PD into adjacent cells, most plant viruses use their
own MP(s). For potexviruses, substantial research has determined
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that viral cell-to-cell movement requires TGB proteins and CP
(Chapman et al., 1992; Forster et al., 1992; Baulcombe et al., 1995;
Morozov and Solovyev, 2003; Verchot-Lubicz et al., 2010; Niehl
and Heinlein, 2011; Schoelz et al., 2011; Solovyev et al., 2012).

Most TGB-encoding plant RNA viruses belong to either the
Virgaviridae or the Flexiviridae of the Alphaflexiviridae and
Betaflexiviridae (Verchot-Lubicz et al., 2010). Recently, Solovyev
et al. (2012) summarized information concerning TGB proteins
and TGB-mediated plant viruses. The TGB proteins have been
classified into two major groups, i.e., potex- and hordei-like
TGBs, based on phylogeny and on differences in the viral move-
ment mechanism (Morozov and Solovyev, 2003; Verchot-Lubicz
et al., 2010). The potex-like viruses form filamentous virions
containing a monopartite RNA genome and require the CP
for cell-to-cell movement, whereas hordei-like viruses are rod-
shaped, have multipartite RNA genomes, and do not require
the CP for cell-to-cell movement (Morozov and Solovyev, 2003;
Adams et al., 2004; Martelli et al., 2007; Verchot-Lubicz et al.,
2010). Verchot-Lubicz et al. (2010) summarized and compared
the movement strategies employed by TGB proteins in potex-
like viruses and hordei-like viruses. In the current review, we
supplement these earlier reviews by considering more recent
findings on cell-to-cell movement of potexvirus vRNA and/or
virions through the PD including the intracellular traffick-
ing and intercellular transport of vRNA. We also describe the
unique function of potexvirus RNA elements during intracellular
trafficking.

THREE TGB PROTEINS (TGB1, TGB2, AND TGB3)
First, we summarize the general information concerning
potexvirus TGB proteins, which are required for vRNA traffick-
ing through PD in host cells. Most potex-like viruses belonging
to the genera Potexvirus, Allexivirus, and Mandarivirus of the
family Alphaflexiviridae and the genera Carlavirus and Foveav-
irus of the family Betaflexiviridae encode three TGB proteins
(Adams et al., 2004; King et al., 2009). The other TGB protein-
containing viruses belong to the genera Hordeivirus, Pomovirus,
Pecluvirus, and Benyvirus (Morozov and Solovyev, 2003; Adams
et al., 2004). Among these nine genera, three partially overlap-
ping ORFs encode TGB1–3 proteins and are usually expressed
from two sgRNAs (Zhou and Jackson, 1996; Verchot et al., 1998;
Figure 1A). In the TGB-containing potexviruses, TGB1 protein is
translated from sgRNA1, whereas TGB2 and TGB3 proteins are co-
translated from sgRNA2 (Verchot et al., 1998). Barley stripe mosaic
virus (BSMV), in the genus Hordeivirus, temporally controls the
level of TGB proteins accumulation so that the estimated ratio
is 100:10:1 (TGB1:TGB2:TGB3) during replication in plant cells
(Johnson et al., 2003; Jackson et al., 2009). Although the ratio of
TGB proteins for potexviruses has not been reported, according
to the evidence from BSMV, it seems that TGB-encoding plant
viruses control the expression level of TGB proteins by controlling
the synthesis of sgRNAs.

Potexvirus TGB1 protein is encoded by the first TGB ORF
and contains a helicase-like domain (HELD) that has seven con-
served typical motifs (I, Ia, II, III, IV, V, and VI) in superfamily
1 (SF1) among three SFs (SF1, SF2, and SF3) of RNA heli-
cases (Gorbalenya and Koonin, 1993; Liou et al., 2000; Kalinina

FIGURE 1 |The organization of the potexvirus genome. (A) The
RNA-dependent RNA polymerase (RdRp, replicase) gene contains a
methyltransferase domain (MET), a helicase domain (HEL), and an
RNA polymerase domain (POL). The three genes of the triple gene
block (TGB) are partially overlapped. Arrows indicate subgenomic (sg)
RNAs for expression of TGBs. (B) The organization of the three TGB
genes. TGB1: The first TGB ORF encodes the TGB1 protein and has a
helicase-like domain (HELD), which contains seven typical motifs of a
general helicase (I, Ia, II, III, IV, V, and VI; dark boxes). TGB2: the
TGB2 protein is encoded in the second TGB ORF and has two
transmembrane domains (dark boxes). The GDx6GGxYxDG sequence
is conserved in TGB2-encoding viruses. TGB3: The TGB3 protein is
encoded by the third TGB ORF and contains a transmembrane
domain (dark box). Among the TGB3-encoding potexviruses, the TGB3
gene has a conserved C(x5)G(x6−9)C sequence. (C) 3-D structural
models of TGB2 and TGB3 protein in the endoplasmic reticulum (ER).
Potexvirus TGB2 protein integrates into ER membranes to form a
U-like structure (with the central loop exposed to the ER lumen and
with both the N- and C-terminus located in the ER cytoplasm) and
has two conserved cysteine residues (Cys109 and Cys112) in the
C-terminal region, which has a positive net charge (TGB2). Potexvirus
TGB3 has an N-terminus that has a negative net charge and is
exposed to the ER lumen and a C-terminus that is exposed to the
ER cytoplasm (Morozov and Solovyev, 2003).
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et al., 2002; Lin et al., 2004; Leshchiner et al., 2006; Han et al.,
2007). Motif I has conserved GKS/T tripeptides in potexviruses,
and motif II is responsible for binding ATP and Mg2+ to corre-
sponding sites (“Walker A” and “Walker B”) found in numerous
ATP-binding proteins (Gorbalenya and Koonin, 1993; Kadare
and Haenni, 1997). Potexvirus TGB1 protein also functions as
a suppressor of RNA silencing (Wung et al., 1999; Voinnet et al.,
2000; Bayne et al., 2005; Lim et al., 2010b) and as a translational
activator (Atabekov et al., 2000; Figure 1B; TGB1). Especially,
a previous study suggested that TGB1 of Bamboo mosaic virus
(BaMV) has RNA-binding activity, which might be associated
with RNA silencing (Wung et al., 1999). In Potato virus X (PVX),
it was shown that TGB1 mutants that lack ability to suppress
RNA silencing are not able to contribute to viral movement,
whereas some PVX TGB1 mutants that are movement defec-
tive still function as RNA silencing suppressor, indicating that
these mechanisms of potexvirus TGB1 are integrated (Bayne et al.,
2005). Interestingly, Senshu et al. (2009) showed different lev-
els of the RNA silencing suppression by TGB1 in potexviruses
including PVX, Plantago asiatica mosaic virus, Asparagus virus 3,
White clover mosaic virus (WClMV), and Tulip virus X. These
results indicate that potexvirus TGB1s contribute various lev-
els in suppressing RNA silencing. In contrast, another study
has shown that a single mutation in TGB1 from Alternanthera
mosaic virus (AltMV) that showed a dramatic reduction of RNA
silencing suppression activity still supports full cell-to-cell move-
ment, indicating that potexvirus TGB1 protein appears to be
uncoupled in silencing suppression and movement functions (Lim
et al., 2010c). By using green fluorescent protein (GFP) fusion
TGB1 of PVX, researchers have shown that, in addition to hav-
ing RNA-binding and helicase activities, TGB1 protein increases
the PD size-exclusion limits (SELs) for viral cell-to-cell movement
(Angell et al., 1996; Tamai and Meshi, 2001).

Triple gene block 1-mediated X-body reorganization con-
tributes to the compartmentalization of the viral gene products
during viral infection (Tilsner et al., 2012; Yan et al., 2012).
A TGB1 mutant that lost the movement function could not
form rod-like structures, whereas those mutants that still sup-
ported cell-to-cell movement formed rod-like structures, indi-
cating that TGB1’s movement function is closely associated
with its function in the formation of rod-like structures (Yan
et al., 2012). In addition, Tilsner et al. (2012) showed that the
PVX TGB1 protein reorganizes actin and endomembranes (the
endoplasmic reticulum [ER] and golgi) into the X-body as a
VRC.

Potexvirus TGB2 protein is encoded by the second ORF of
the TGB gene cluster and is an integral membrane protein that
has two predicted transmembrane domains that interact with ER
membranes (Mitra et al., 2003; Morozov and Solovyev, 2003). A
topological study with BaMV showed that potexvirus TGB2 pro-
tein integrates into the ER membranes in a U-like structure with
the central loop exposed to the ER lumen and with both the N- and
C-terminus located on the cytoplasmic side of the ER (Hsu et al.,
2008; Figure 1C; TGB2). Cysteine-to-alanine substitution analysis
indicated that two conserved cysteine residues (Cys109 and Cys112)
in the C-terminal region of potexvirus TGB2 protein are critical
for both cell-to-cell and systemic movement of BaMV (Hsu et al.,

2008; Tseng et al., 2009). In addition, potexvirus TGB2 protein has
sequence-independent RNA-binding activity (Cowan et al., 2002;
Hsu et al., 2009).

Like TGB2, potexvirus TGB3 protein, which is encoded by
the third TGB ORF, is also an integral protein in ER mem-
branes (Krishnamurthy et al., 2003; Figure 1C; TGB3). TGB3
protein has a conserved C(x5)G(x6−9)C sequence and a predicted
transmembrane domain (Figure 1B; TGB3). The N-terminus
of the TGB3 protein has a negative net charge and is exposed
to the ER lumen, while the C-terminus is exposed to the
cytoplasmic side of the ER (Krishnamurthy et al., 2003; Moro-
zov and Solovyev, 2003; Figure 1C; TGB3). The cytoplasmic
tail (C-terminus) of TGB3 protein contains a sorting signal
that is necessary for TGB3 oligomerization and for the tar-
geting of integral membrane proteins to cortical ER tubules
(Wu et al., 2011). The TGB3 sorting signal is highly con-
served among potexviruses, and a TGB3 mutant defective in
the sorting signal showed impaired cell-to-cell viral movement
(Wu et al., 2011).

Mutational analyses have shown that localization of TGB2 and
TGB3 proteins into the ER is critical for viral cell-to-cell move-
ment (Krishnamurthy et al., 2003; Mitra et al., 2003). Both TGB2
and TGB3 proteins enhanced cell-to-cell diffusion of free GFP or
GFP–sporamin fusion proteins through the PD (Tamai and Meshi,
2001; Haupt et al., 2005), suggesting that TGB2 and TGB3 proteins
are capable of gating the PD.

INTRACELLULAR TRAFFICKING OF POTEXVIRUS vRNA FROM
THE CYTOPLASM TO PD
As mentioned earlier, potexvirus TGB1 protein has RNA-binding
and helicase activities (Kalinina et al., 2002). Potexviruses form
VRC containing (−) vRNA as templates, viral replicase, and host
protein(s) at the host cellular membranes (Figure 2A). Following
the replication of (+) vRNA by replicase, (+) vRNA is converted to
the PD-transportable potexvirus vRNA form by TGB1 protein for
the cell-to-cell movement through the PD. Two models have been
proposed for the formation of PD-transportable potexvirus vRNA
(intact virion or a ribonucleoprotein [RNP] movement complex
containing vRNA, TGB1 protein, and CP) during the cell-to-cell
movement of vRNA through the PD. Lough et al. (2000) provided
experimental evidence that vRNAs of potexviruses including PVX
and WClMV were transported by the formation of RNP move-
ment complex involving vRNA, TGB1 protein, and CP rather
than intact virion alone. Recently, however, Verchot-Lubicz et al.
(2010) and Tilsner et al. (2013) have provided evidence that
the PD-transportable potexvirus vRNA form is partially or fully
encapsidated by the CP subunit and that the TGB1 protein is asso-
ciated with the 5′ end of the CP-coated vRNA. Therefore, the
formation of the RNP movement complex involves the associa-
tion of the TGB1 protein with the 5′ end of the CP-coated vRNA
(Verchot-Lubicz et al., 2010; Tilsner et al., 2013; Figure 2B).

As mentioned earlier, cell-to-cell movement of potexvirus
vRNA through the PD requires the three TGB proteins and the
CP. Several host proteins might also be required for the formation
of the RNP movement complex, but how host proteins coop-
erate with the RNP movement complex is unclear. The RNP
movement complex containing TGB1 protein, CP, and vRNA

www.frontiersin.org March 2014 | Volume 5 | Article 60 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive


Park et al. The intracellular trafficking and intercellular transport of potexviruses

FIGURE 2 | Virus replication complex (VRC) and RNP movement

complex in the ER tubule. (A) Potexvirus constructs the VRC, which
consists of vRNA, replicase, and host proteins (i.e., ribosomes) for
replication of vRNA. Replicase (brown circles) produces progeny (+) vRNA
from (−) vRNA as a template in the ER structure, and host ribosomes (dark
blue) translate viral proteins (yellow chain) from progeny (+) vRNA. (B) The
two kinds of RNP movement complexes in potexviruses. In one case, the
PD-transportable form of potexvirus vRNA is partially encapsidated by the
CP subunit, and TGB1 protein is associated with the 5′ end of the partially
CP-coated vRNA (TGB1-CP-vRNA). In the second case, TGB1 protein binds
to the CP-encapsidated virion (TGB1-virion). The blue circles indicate CP in
the first case, and the thick blue line indicates CP and virion in the second
case.

subsequently binds to other viral proteins (TGB2 and TGB3 pro-
teins) and possibly with several host proteins in the ER tubule
(Figure 3).

Potexvirus TGB1 protein is a component in the RNP move-
ment complex (TGB1-CP-vRNA or TGB1-virion) and is able to
transport vRNA into the PD as well as provide RNA helicase
activity probably near the PD. However, plant expression experi-
ments using GFP–PVX TGB1 to determine the movement of TGB1
protein within and between cells indicated that GFP–TGB1 was
diffused throughout the cytoplasm, nucleoplasm, and rod-shape
structure (Howard et al., 2004; Samuels et al., 2007). These find-
ings indicate that potexvirus TGB1 protein requires viral CP in the

FIGURE 3 | Intercellular transport of potexvirus vRNA to PD at the late

stage of viral infection. The PD-transportable potexvirus vRNA (blue line)
is released from the intermediate double-stranded RNA form by TGB1
protein acting as an RNA helicase (1). The PD-transportable potexvirus
vRNA is partially or fully encapsidated by CP subunits, and then TGB1
protein associates with the 5′ end of the partially or fully CP-coated vRNA
for the formation of the RNP movement complex at PD “cap” structures
that consist of TGB2, TGB3 proteins, and VRC at the ER adjacent to the PD
orifice (2). Then, the TGB1-driven RNP movement complex directs the
nascent virions into the PD pore (3, Tilsner et al., 2013).

RNP movement complex to move together with their vRNA into
PD.

In addition, Rodionova et al. (2003) have shown that PVX
TGB1 protein, which is translated from sgRNA at an early stage
of viral infection, binds to polar CP subunits located at the end
of PVX virion, resulting in the disassembling of the CP par-
ticles of the virion. This creates a translatable form of PVX
vRNA in host plants. It seems that potexvirus TGB1 protein
directly binds to CP but not to vRNA for disassembly of the
PVX virion and thereby enables the release of a translatable
form of vRNA. In the case of Plantago asiatica mosaic virus,
the TGB1 protein directly interacts with CP and binds with the
5′ non-translated region (NTR) of vRNA for virion formation
or for formation of the RNP movement complex (Ozeki et al.,
2009).
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Taken together, these findings suggest that potexvirus TGB1
protein may have at least two functions during the virus infection
cycle. First, TGB1 protein might convert non-translatable vRNA
into a translatable form. To accomplish this first function, TBG1
protein early in infection in uninfected adjacent cells binds to the
end of CP subunits on the virion (Figures 4A,B), leading to the
disassembling of the CP from vRNA and the releasing of a translat-
able form of vRNA (Figure 4C). Finally, replicase transcribes (−)
vRNA for incoming (+) RNA (Figure 4D). Second, TGB1 protein
might facilitate the transport of vRNA to the PD. To accomplish
this second function, TGB1 protein binds to the transportable
form (virion form or partial CP-encapsidated vRNA) of progeny
vRNA, which is generated after vRNA accumulates early in infec-
tion, and along with other viral proteins becomes part of the RNP
movement complex (Figures 3 and 5).

Potexvirus CP, which is another component in the RNP move-
ment complex, is required for viral movement as well as for
genome encapsidation in plants. Potexvirus CP mutants that were
defective for interaction with TGB1 protein were able to form virus
particles in vitro but were unable to move from cell-to-cell (Zayak-
ina et al., 2008; Ozeki et al., 2009; Tilsner et al., 2012). This result
suggests that the interaction between TGB1 protein and CP medi-
ates the movement of the potexvirus RNP movement complex to
the PD.

As mentioned earlier, research with GFP–TGB2 and GFP–TGB3
fusion proteins has demonstrated that both TGB2 and TGB3 pro-
teins are integral membrane proteins in the ER or ER-associated
vesicles located at actin filaments (Morozov and Solovyev, 2003;
Hsu et al., 2008). In relation to the role of TGB2 and TGB3 pro-
teins for potexvirus vRNA trafficking to PD, two models have been
proposed (Verchot-Lubicz et al., 2010; Chou et al., 2013). Verchot-
Lubicz et al. (2010) summarized the first model suggesting two
pathways of potexvirus vRNA trafficking to PD based on the inter-
actions between TGB2 and TGB3 proteins (Figure 5A, PATH 1 and
PATH 2). One pathway suggests that the potexvirus RNP move-
ment complex is transported by TGB2-induced granular vesicles
as directed by TGB3 protein (TGB2/3 granular vesicles) to PD
(Figure 5A, PATH 1). In support of this pathway, TGB2 protein is
able to induce the formation of granular vesicles derived from the
ER membranes that associate with actin filaments (Ju et al., 2005).
Mutational analyses have shown that these TGB2-induced granu-
lar vesicles are necessary for cell-to-cell movement of PVX (Ju et al.,
2007). Although subcellular localization assays have shown that
PVX TGB3 protein is localized to the ER tubules when expressed
alone in tobacco plant cells (Ju et al., 2005), other studies have
shown that TGB3 protein is co-localized at the TGB2-induced
granular vesicles in PVX-infected plant cells, suggesting that TGB2
protein is responsible for the localization of TGB3 protein at the
ER membrane-associated granular vesicles (Schepetilnikov et al.,
2005). TGB3 protein directs the movement of the TGB2-induced
granular vesicles from the perinuclear ER to the cortical ER in both
yeast and plant systems (Lee et al., 2010; Wu et al., 2011). These
results indicate that potexvirus TGB3 protein serves as a driving
factor for movement of vRNA to PD via TGB2-induced granular
vesicles (Figure 5A, PATH 1).

PVX vRNA mainly associates with membrane-bound bod-
ies (MBB) from the perinuclear ER that contain replicase and

FIGURE 4 |The conversion of potexvirus virions into translatable

vRNA. PVX TGB1 protein binds to polar CP subunits located at the end of
PVX virion (A,B). Then, binding of TGB1 protein causes the CP to separate
from the PVX virion (C) early in infection after movement of virion into
uninfected adjacent cells, such that the virion become translatable.
Replicase then replicates (−) vRNA from the translatable form of PVX (+)
vRNA (D), replicase transcribed (−) vRNA from (+) vRNA, and finally (not
shown), ribosomes bind to the (+) vRNA.

TGB1 protein (Tilsner et al., 2009), and TGB3 protein also
associates with the cortical ER network and MBB (Krishna-
murthy et al., 2003; Samuels et al., 2007; Bamunusinghe et al.,
2009). Given these findings, the first pathway would indicate
that the potexvirus RNP movement complex is released from
MBB by TGB3 protein and that the released RNP movement
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FIGURE 5 |Two models for intracellular trafficking of potexviruses.

These two models were partially adapted from Chou et al. (2013) and
Verchot-Lubicz et al. (2010). (A) The first model proposed by Verchot-Lubicz
et al. (2010). (PATH 1) Potexvirus RNP movement complex is trafficked by
TGB2-induced granular vesicles with TGB3 protein (TGB2/3 granular
vesicles) to the PD. TGB2 protein is able to induce the formation of granular
vesicles derived from the ER membranes (1) and colocalizes with TGB3
protein (2). TGB3 protein directs movement of the TGB2-induced granular
vesicles from the perinuclear ER to the cortical ER (3). vRNA or virion form
of potexvirus mainly associates with membrane-bound bodies (MBB)
derived the perinuclear ER that contains replicase and TGB3 protein.
TGB1-bound vRNA or virion form (RNP movement complex released from
MBB by TGB3 protein (4) and binds to TGB2/3 granular vesicles in the ER

tubule for trafficking vRNA through the PD (5). (PATH 2) TGB2 protein
localizes in the ER tubules with TGB3 protein, which can alone localize in
membrane bodies at the cell periphery (I), and then RNP movement
complex binds to TGB2 and TGB3 protein for vRNA trafficking to the PD (II).
(B) The second model for TGB3-based intracellular trafficking of vRNA in
BaMV (Chou et al., 2013). (PATH 1) Virion is associated by TGB2/3 granular
vesicles (I) from ER-derived MBB or viral replication complex (VRC).
Cytosolic TGB1 (II) or TGB1 protein (i) interacts with TGB2 protein into
virion-TGB2/3 granular vesicles in cytosol and MBB or VCR, respectively and
leads vRNA toward the PD (III and ii). (PATH 2) Virion interacts with TGB3
protein of TGB2/3 complex (1) and cytosolic TGB1 protein (2) interacts with
TGB2 protein in virion-TGB2/3 complex. TBG1 protein drives virion-TGB1/2/3
complex toward the PD (3).
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complex then binds to the TGB2/3 granular vesicles in the
ER tubule and moves to the PD (Verchot-Lubicz et al., 2010;
Figure 5A, PATH 1).

The second pathway for the vRNA trafficking of potexvirus to
PD by TGB3 protein is supported by interaction and localization
assays between TGB2 and TGB3 proteins (Figure 5A, PATH 2).
BaMV TGB2 protein localizes in the ER structures when expressed
in the absence of TGB3 protein, whereas TGB3 protein expressed
alone localizes in membrane bodies at the cell periphery (Lee et al.,
2010). Bimolecular fluorescence complementation assay has indi-
cated that BaMV TGB2 protein physically interacts with TGB3
protein in a membrane-associated form (Wu et al., 2011). The
latter study also reported an interaction between TGB2 protein
and either CP or TGB1 protein. The interactions of TGB1–TGB2
and TGB2–CP were associated with the ER network, which is
consistent with the localization of TGB2 protein, and these interac-
tion complexes were translocated to the TGB3-containing punctae
within ER tubules by co-expression of TGB3 protein (Wu et al.,
2011). In another study, which involved the mutation of the
C-terminal domain of BaMV CP, the BaMV CP mutant did not
interact with the HELD of BaMV replicase, and the mutation
severely delayed the virus cell-to-cell movement independent of
encapsidation (Lee et al., 2011). Thus, the authors suggested that
movement of BaMV from an infected cell to a non-infected cell
involves the RNP movement complex containing the replicase,
TGB1 protein, CP, and vRNA. In PVX, the replicase is associated
with ER membranes and co-localizes with the ER-derived TGB2/3
granular vesicles (Doronin and Hemenway, 1996; Bamunusinghe
et al., 2009), indicating that the RNP movement complex contain-
ing replicase may be an intermediate form between the VRC and
the final RNP movement complex.

Recently, the second model suggesting the stable association
of the virion cargo with the TGB2- and TGB3-based membrane
complex and recruitment of TGB1 protein to the PD by this
complex for cell-to-cell movement of BaMV has been proposed
(Chou et al., 2013; Figure 5B). The authors suggested that TGB3
protein assists the targeting of the TGB2-induced vesicles or the
ER-localized TGB2 protein to the cell periphery (Ju et al., 2005,
2007; Lee et al., 2010) and the movement of virus across cells
(Verchot-Lubicz et al., 2010; Wu et al., 2011). TGB3 protein asso-
ciates with TGB2 protein as a complex and this TGB3-based
complex containing TGB2 protein (TGB2/TGB3 complex) sta-
bly associates with CP-encapsidated vRNA (virion form) but not
partially CP-encapsidated vRNA containing TGB1 protein (non-
virion form of RNP movement complex; Chou et al., 2013). They
also showed that the stable TGB2–TGB3–virion complex asso-
ciates with TGB1 protein for targeting to the PD and proposed the
refined model for potexvirus vRNA trafficking to PD (Chou et al.,
2013). These authors also suggested two pathways in the refined
model (Figure 5B, PATH 1 and PATH 2) and speculated that TGB2
protein in the membrane-associated TGB2–TGB3–virion complex
of BaMV cooperatively interacts with TGB1 protein for efficient
PD-localization, while TGB3 protein in the same complex drives
the whole movement complex to the cortical ER of cell periphery
(Chou et al., 2013).

Interestingly, AltMV TGB3 protein was localized at the chloro-
plast membrane which may be the main site of AltMV replication

and accumulated preferentially in mesophyll cells, whereas PVX
TGB3 is localized to the ER and accumulates primarily in the epi-
dermis (Lim et al., 2010a). The AltMV TGB3 interacts with Photo-
system II (PSII) oxygen-evolving complex (OEC) protein (PsbO),
a nuclear-encoded major component of the chloroplast-localized
OEC of PS II, surrounding chloroplast in mesophyll cells. The find-
ing raised the possibility that the interaction possibly draws the
chloroplasts together and induces symptom development (Jang
et al., 2013). Comparative sequence analyses revealed that AtlMV
TGB3 has limited similarity to the TGB3 protein homologs of other
potexviruses. Mutational analyses showed that AltMV TGB3 pro-
tein contains a novel signal for chloroplast membrane localization.
The mutations of the chloroplast-targeting signal in AltMV TGB3
protein resulted in very limited cell-to-cell movement, suggesting
that this signal is required for the systemic movement of AltMV
(Lim et al., 2010a). Together, these data indicate that the mech-
anisms for viral movement may differ among potexviruses (Lin
et al., 2006).

INTERCELLULAR TRANSPORT OF POTEXVIRUS vRNA
THROUGH THE PD
For transport of vRNA to the adjacent cell, most plant viruses
must increase the PD SEL and exit through the PD. As mentioned
earlier, potexvirus and plant viruses in general move their vRNA
through the PD as its RNP movement complex or virion form.
Lough et al. (1998, 2000) showed that TGB1 protein is essential
for plasmodesmal gating rather than CP which is involved in RNP
movement complex.

In a new model for intercellular transport of PVX vRNA at
the entrances of PD at the late stage of infection that was recently
proposed by Tilsner et al. (2013), vRNA processing and traffick-
ing are highly compartmentalized at PD, i.e., replication occurs
at the PD so that vRNA is rapidly moved through PD and to
adjacent cells soon after replication. The authors, who termed the
model coreplicational insertion, reported that fluorescent protein–
TGB1 and –CP fusions (FP–TGB1 and FP–CP) co-localize in the
PD channel with the intercellular wall space, but that FP–TGB2
and FP–TGB3 fusion proteins localize in punctate “caps” at the
cytoplasmic orifices of the PD; these punctate caps harbor the
replicase and vRNA, such that the CP aligns with the vRNA inside
the pores, whereas CP without the vRNA localizes inside the PD
(Tilsner et al., 2013). The caps at the PD orifices during PVX
infection have been reported to be replication sites containing non-
encapsidated vRNA whorls like those observed in VRC (Tilsner
et al., 2009, 2013; Tilsner and Oparka, 2012). At 2–3 days post
infiltration (dpi), TGB2 protein localizes in the ER tubule or ER-
derived granular vesicles (Ju et al., 2005). However, at 1–2 dpi,
when expression levels are still low, TGB2 protein is concentrated
in punctae along the lateral walls where PD are present rather than
in the ER (Tilsner et al., 2013). This finding suggests that TGB2
protein first targets PD and localizes at the ER or ER-associated
granules. TGB3 protein also localizes at PD caps with TGB2 pro-
tein (Schepetilnikov et al., 2005; Tilsner et al., 2013), and TGB2
protein increases PD-located TGB3 protein (Tilsner et al., 2013).
These results support the inference that TGB2 and TGB3 pro-
teins act as a complex (Lee et al., 2010). Thus, Tilsner et al. (2013)
have provided convincing evidence that although the three TGB
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proteins are localized to PD during PVX infection, TGB1 pro-
tein is localized inside the pores together with CP while TGB2/3
complexes are localized in caps at the PD orifices (Figure 3). In
contrast to earlier models, the new model indicates that virus
replication and movement are not spatially separated within
the cell. However, some questions concerning the interactions
between TBG proteins have yet to be experimentally confirmed,
i.e., how three TGB proteins cooperate to facilitate vRNA trans-
port (Tilsner et al., 2013) and whether other factors including
host protein(s) are required for these interactions and for vRNA
transport.

With respect to vRNA transport through the PD at the late
stage of infection, the new model indicates that the TGB1 pro-
tein at the PD caps first functions as a RNA helicase and diverts
progeny vRNA away from replication/translation and toward the
assembly of the RNP movement complex (Tilsner et al., 2012,
2013; Figure 3). Next, in the presence of locally translated CP,
the nascent progeny RNA is encapsidated in cis, and TGB1 pro-
tein binds specifically to the 5′ terminal CP subunits of partially
or fully encapsidated virions (Karpova et al., 2006; Zayakina et al.,
2008). Finally, TGB1 protein directs the CP-encapsidated nascent
virions as a RNP movement complex into the gated PD pore
(Figure 3).

HOST CELLULAR FACTORS INVOLVED IN CELL-TO-CELL
MOVEMENT OF POTEXVIRUS
The viral RNP movement complex interacts with host cellular
factors at the orifice of the PD, which allows cell-to-cell move-
ment (Morozov and Solovyev, 2003; Verchot-Lubicz, 2005; Lucas,
2006). However, the interactions between the viral RNP movement
complex and host cellular factor(s) remain unclear.

In addition to documenting that TGB proteins and CP have
crucial roles in potexvirus cell-to-cell movement, recent research
has identified and characterized cellular host proteins that might
be involved in intercellular movement of potexvirus. The casein
kinase 2 family (CK2) phosphorylates PVX TGB1 protein as well
as the Tomato mosaic virus (ToMV) P30 MP (Matsushita et al.,
2003; Modena et al., 2008). Modena et al. (2008) showed that
recombinant and native PVX TGB1 protein is phosphorylated
by N. tabacum extracts from PVX-infected leaves and that PVX
TGB1 protein is efficiently phosphorylated by the recombinant
tobacco CK2 subunit. Using a phosphopeptide mass mapping
approach, they also found that TGB1 protein is phosphorylated at
Ser-165 within a CK2 consensus sequence (Modena et al., 2008).
Few studies concerning the phosphorylation of plant viral MPs
have been reported. Most studies have been performed with the
tobamoviruses Tobacco mosaic virus (TMV) and ToMV (Citovsky
et al., 1993; Kawakami et al., 1999; Waigmann et al., 2000). TMV
MP is phosphorylated by a kinase in cell wall-enriched extracts
(Waigmann et al., 2000), and the kinase is associated with PD and
belongs to the CK1 family (CK1; Lee et al., 2005). Experiments
with phosphorylation mutants have shown that phosphoryla-
tion of TMV MP negatively regulates viral transport through PD
in a host-dependent manner (Waigmann et al., 2000). A recent
study showed that tobacco Serine/threonine kinase-like protein
NbSTKL, which is a membrane-associated protein, is involved
in the cell-to-cell movement of the potexvirus BaMV (Cheng

et al., 2013); that finding suggests the possibility that membrane-
associated host proteins interact with the TGB1-containing RNP
movement complex and aid cell-to-cell trafficking of potexviruses.
However, how host kinase proteins directly or indirectly affect the
assembly of the RNP movement complex and/or PD gating has
not been studied.

A yeast two-hybrid screening assay has also identified three host
proteins (TIP1, TIP2, and TIP3) that interact with PVX TGB2
protein (Fridborg et al., 2003). These proteins interact with β-1,3-
glucanase to regulate the degradation of PD-accumulated callose
and to increase the PD SEL (Fridborg et al., 2003). PVX TGB1
protein interacts with remorin (REM), a protein located in the
cytosolic leaflet of plasma membrane microdomains (lipid rafts)
and in clusters at PD. REM can be phosphorylated in the presence
of oligogalacturonides and can serve as a counteracting mem-
brane platform for docking of the viral RNP movement complex
(Raffaele et al., 2009). In addition, when REM was overexpressed
in plants, it inhibited the movement of PVX through PD. This
finding suggests that membrane rafts might have a critical role in
virus intercellular trafficking.

A recent study suggested that several host cellular heat shock
proteins (Hsps), which function as chaperones and folding
enzymes, are also related to potexvirus movement (Verchot,
2012). Hsps are conserved molecular polypeptide chaperones
that primarily ensure protein quality. Potexviruses rely on chap-
erone systems in the ER to support cell-to-cell movement.
TGB3 protein induces the expression of ER-resident chaper-
ones via the bZIP60 transcription factor (Verchot, 2012). The
CP of another potexvirus, Pepino mosaic virus, interacts with
Hsp cognate 70 (Hsc70), which has APTase activity, and it
seems to take the translocation ability of CP-Hsc70 interac-
tion to facilitate viral cell-to-cell movement through the PD
(Mathioudakis et al., 2012). In addition, another host cellu-
lar protein, named NbPCIP1, was characterized from a Nico-
tiana benthamiana cDNA library as a PVX CP-interacting
protein based on the yeast two-hybrid system. NbPCIP1
enhanced PVX replication and movement in N. benthamiana
(Park et al., 2009).

Overall, it is quite clear that the identified host cellular pro-
teins play important roles in potexvirus replication and cell-to-cell
movement. However, many of them still remain unclear and need
to be elucidated in regard to identifying and functionally charac-
terizing host cellular proteins associated with the infection cycles
of potexviruses.

HOST CELLULAR FACTORS INTERACTING WITH VIRAL RNA
ELEMENTS IN POTEXVIRUS MOVEMENT
The (+) SL1 RNA or (−) SL1 RNA of PVX behaves as a cis-
acting element and can affect cell-to-cell movement of PVX
(Lough et al., 2006). As noted earlier, many host proteins that
interact with viral proteins and that might affect intra-/inter-
cellular trafficking of potexviruses have been identified. Little is
known, however, about how host proteins interact with vRNAs
because functional studies of plant host proteins usually con-
cern interactions between viral protein and host protein rather
than between vRNA and host protein. In this regard, PVX SL1
RNAs can efficiently bind to proteins extracted from tobacco
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protoplasts, as confirmed by a systematic evolution of ligands
by exponential enrichment in vitro (Kwon and Kim, 2006).
Northwestern blot analysis and matrix-assisted laser desorption
ionization time-of-flight mass spectrometry have been recently
used to identify tobacco proteins that bind to PVX SL1 RNAs
(Cho et al., 2012a).

The host protein NbDnaJ (or Hsp40) binds to SL1 (−) RNA
of PVX and also interacts with PVX CP. As indicated by dele-
tion assay, the C-terminal region of NbDnaJ is essential for
the interaction with PVX CP (Cho et al., 2012c). According to
the latter study, when NbDnaJ is overexpressed in transient
assay, PVX movement is suppressed. This study showed that
NbDnaJ plays a role in the early stages of viral infection by sup-
pressing PVX replication and movement. A previous study had
identified another host protein, NbMPB2Cb, that binds with
both SL1 (−) and SL1 (+) RNAs of PVX (Cho et al., 2012b).
NbMPB2Cb localizes at microtubules in the ER and suppresses
PVX movement (Cho et al., 2012b). Although it is not immedi-
ately relevant to the intra-/intercellular movement of potexviruses,
SL1 (+) RNA binds to the N. tabacum WRKY1 transcription
factor (NtWRKY1; Kim et al., 2002; Park and Kim, 2012). By
increasing PVX accumulation, silencing of NtWRKY1 in N. ben-
thamiana caused plants to exhibit lethal apical necrosis, suggesting
that NtWRKY1 regulates multiple defense response genes (Park
and Kim, 2012). Together, these results suggest that a plant
vRNA element greatly affect viral movement and replication, pos-
sibly by interacting with several host factors. The latter study
might be the first to report that the interaction between a plant
vRNA element and a host cellular protein is required for viral
movement.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES
Substantial information has been obtained concerning the cellu-
lar mechanisms underlying intra- and intercellular movement of
plant RNA viruses. Here, we have summarized the intracellular
and intercellular movement of vRNA in potexviruses based on
recent studies. As indicated, intracellular and intercellular vRNA
movement is mediated by viral MPs and host proteins, indicating
that the plasmodesmal transport of vRNA is a highly regulated pro-
cess. Here, we have tried to summarize the cell-to-cell movement
of potexvirus vRNA with intracellular trafficking and intercellular
transport of vRNA in plant cells. Although we have provided two
general models that describe how potexvirus vRNA is trafficked to
PD (Figure 5; Verchot-Lubicz et al., 2010; Chou et al., 2013), TGB
protein interactions and many other aspects of intra- and intercel-
lular potexvirus movement remain unclear. To further investigate
the interactions between TGBs in relation to potexvirus move-
ment, additional experimental evidence clarifying whether each
TGB directly binds to the other TGBs or requires other factors at
each step during the movement process(es) is necessary. As for
the possible involvement of the SL1 of PVX and other cis-acting
elements for potexvirus movement, we should determine whether
viral and host cellular proteins compete for binding to the viral
element and how viral elements regulate the viral movement.

The viral RNP movement complex interacts with host cellular
factors at the orifice of the PD,which enables cell-to-cell movement
(Morozov and Solovyev, 2003; Verchot-Lubicz, 2005; Lucas, 2006).

Although it is well-known that host proteins interacting with
PVX TGB2 protein (TIP1, TIP2, and TIP3) interact with β-1,3-
glucanase to regulate the degradation of PD callose and to increase
the PD SEL (Fridborg et al., 2003), the interactions between the
viral RNP movement complex and host cellular factor(s) remain
unclear. Little is also known about how potexviruses interact with
host cellular proteins to mediate virus movement. Identifying new
host cellular proteins required for cell-to-cell movement should
be facilitated by the use of microarrays and/or RNA-Seq with
high-throughput gene silencing and other new methods.

It also appears that potexviruses do not always have the same
movement mechanisms even if all have TGB proteins (Lim et al.,
2010a). Thus, research is needed on different viruses in the same
genus. Research is also needed regarding the functions of PD
that mediate vRNA movement and how PD-associated proteins
regulate vRNA movement through PD. In addition to increasing
our understanding of the virus infection cycle, understanding the
details of virus movement is valuable because it provides insight
into fundamental aspects of the cellular machinery. We suspect
that potexviruses will continue to be useful models for studying
intra- and inter-cellular vRNA movement in plants.
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