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Chloroplasts are semiautonomous organelles which possess their own genome and gene
expression system. However, extant chloroplasts contain only limited coding information,
and are dependent on a large number of nucleus-encoded proteins. During plant evolution,
chloroplasts have lost most of the prokaryotic DNA-binding proteins and transcription
regulators that were present in the original endosymbiont.Thus, chloroplasts have a unique
hybrid transcription system composed of the remaining prokaryotic components, such
as a prokaryotic RNA polymerase as well as nucleus-encoded eukaryotic components.
Recent proteomic and transcriptomic analyses have provided insights into chloroplast
transcription systems and their evolution. Here, we review chloroplast-specific transcription
systems, focusing on the multiple RNA polymerases, eukaryotic transcription regulators
in chloroplasts, chloroplast promoters, and the dynamics of chloroplast nucleoids.
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INTRODUCTION
Chloroplasts are believed to have arisen from an endosymbiotic
event between a photosynthetic cyanobacterium and the ances-
tral eukaryotic cell. Although chloroplasts of modern plants
and algae have retained the genome of the symbiont, that
genome has markedly shrunk over endosymbiotic evolution.
Many chloroplast-encoded genes were lost or transferred to the
nucleus soon after endosymbiosis. Thus, chloroplast genomes of
extant land plants have only 50 protein-coding genes involved
in photosynthesis, gene expression, lipid metabolism and other
processes, 30 tRNA genes and full sets of rRNA genes. In spite
of their small genomes (0.15 Mbp in land plant chloroplasts
versus 3 Mbp in cyanobacteria), chloroplast gene expression
is regulated by more complex systems compared to the sim-
ple prokaryotic regulatory system. Chloroplast gene expression
is mediated by two distinct types of RNA polymerase (RNAP)
and is highly dependent on post-transcriptional regulation, such
as the processing of polycistronic transcripts, intron splicing
and RNA editing. Moreover, recent RNA-seq analyses of chloro-
plast transcripts identified unexpected diversifications of RNA
molecules, such as non-coding and antisense RNAs (Hotto et al.,
2011; Zhelyazkova et al., 2012). However, the genes encoded in
chloroplast genomes are insufficient to regulate their compli-
cated gene expression, and so the chloroplast gene expression
machinery includes various nucleus-encoded regulatory compo-
nents.

Although basic chloroplast gene expression is mediated by
prokaryotic machineries derived from the ancestral cyanobac-
terium, chloroplasts lost their homologs of bacterial regulatory
elements such as transcription factors (TFs) and nucleoid pro-
teins at an early stage of their evolution. Genomics and pro-
teomics analyses of chloroplast proteins in Arabidopsis thaliana
have suggested that 60% of the chloroplast proteome may have

been newly acquired from the nuclear genome of host cells
after the endosymbiotic event (Abdallah et al., 2000). Indeed,
recent analyses of the chloroplast nucleoid proteins identified
many non-bacterial components that play critical roles in chloro-
plast gene expression including transcription, post-transcriptional
RNA processing, and translation. Here, we summarize the current
knowledge regarding the chloroplast gene expression system.

TWO BASIC CHLOROPLAST TRANSCRIPTION MACHINERIES
WITH DIFFERENT EVOLUTIONARY ORIGIN
Chloroplast gene expression is largely dependent on prokaryotic
machineries derived from the ancestral cyanobacterium. The bac-
terial multi-subunit RNAP is composed of a core Rpo complex,
which has the catalytic enzyme activity, and a sigma factor, which
recognizes promoter sequences (Ishihama, 2000). Chloroplasts
contain the bacterial-type RNAP, called plastid-encoded plastid
RNAP (PEP), which shares functional similarity with the bac-
terial RNAP (Igloi and Kossel, 1992; Figure 1A) However, all
genes for chloroplast sigma factors have been transferred to the
nuclear genome, whereas genes for core subunits are typically
retained in the chloroplast genome as rpoA, rpoB, rpoC1, and
rpoC2.

Early work demonstrated that almost all photosynthesis-related
transcripts are significantly reduced in PEP-deficient plants, such
as ribosome-deficient mutants of barley (Hordeum vulgare), iojap
mutants of maize and tobacco mutants with disrupted rpo genes
generated by gene targeting using chloroplast transformation
(Han et al., 1992; Hess et al., 1993, 1994; Allison et al., 1996; De
Santis-MacIossek et al., 1999), whereas a set of housekeeping
genes are still active in these mutants. The inhibitor sensitiv-
ity of this transcription activity is similar to that of phage T7
RNAP, but not to that of bacterial RNAP (Kapoor et al., 1997;
Sakai et al., 1998). In Arabidopsis, three phage-type RNAP genes
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FIGURE 1 | Overview of chloroplast transcription. (A) Basic transcriptional
machinery in higher plants. Higher plants have two distinct types of chloroplast
RNA polymerase: plastid-encoded plastid RNA polymerase (PEP; left panel) and
nucleus-encoded plastid RNA polymerase (NEP; right panel). PEP is a
bacterial-type multi-subunit RNA polymerase composed of the core enzymatic
subunits α, β, β′, β′ ′ (blue) and a sigma subunit (red) that is responsible for
promoter recognition. Plastid sigma factors are divided into six subgroups,
SIG1–SIG6, and selectively recognize bacterial-type promoters in the plastid.
NEP (right panel) is a monomeric enzyme that resembles mitochondrialT7-type
RNA polymerases. NEP is involved in the transcription of housekeeping genes
such as rpo genes for PEP core subunits, and ribosomal protein-coding genes.

Positioned upstream of genes transcribed by NEP are three distinct types of
promoter structures (Type-Ia,Type-Ib, andType-II). (B)The chloroplast nucleoid
subdomain and its components. Chloroplast nucleoids are attached to the
membrane (envelope or thylakoid) by anchor proteins (PEND and MFP1).The
plastid transcription active chromosome (pTAC) is one of the nucleoid
subdomains, which contains the transcription factory. Chloroplast genomic
DNA is packed by chloroplast-specific nucleoid-associated proteins (NAPs;
orange circle).The mature chloroplast contains a large PEP complex with
several PEP associate proteins (PAPs; red circles). Recent proteome analysis
suggested that chloroplast nucleoids contain additional subdomains, which
regulate post-transcriptional RNA maturation and translation.

were identified and their subcellular localization was determined
(RpoTp: chloroplasts, RpoTm: mitochondria, RpoTmp: chloroplast
and mitochondria; Hedtke et al., 1997, 2000; Weihe and Borner,
1999; Figure 1A). RpoTmp and RpoTp likely represent nuclear
encoded RNAP (NEP) enzyme in chloroplasts [reviewed in (Liere
et al., 2011)], while RpoTmp has been identified in dicotyledonous
plants such as Arabidopsis and tobacco but not in monocotyle-
donous plant genomes (Chang et al., 1999; Ikeda and Gray, 1999;
Emanuel et al., 2004).

Only one RpoT gene has been identified in green algae, such as
Chlamydomonas reinhardtii, Ostreococcus tauri, and Thalassiosira
pseudonana, which likely encodes mitochondrial RNAP (Maier
et al., 2008). Similarly, the genome of the lycophyte Selaginella
moellendorffii contains only one RpoT gene, the product of which
has been shown to target mitochondria (Yin et al., 2009). On
the other hand, the moss Physcomitrella patens has three RpoT

genes. However, all GFP-fused moss RpoTs were detected exclu-
sively in mitochondria, suggesting that the moss RpoT genes
also encode mitochondrial RNAP (Kabeya et al., 2002; Richter
et al., 2002, 2013). Moreover, phylogenetic analysis of plant RpoT
genes suggests that NEP appeared through the gene duplication
of mitochondrial RNAP after the separation of angiosperms from
gymnosperms (Yin et al., 2010).

SELECTIVE CHLOROPLAST TRANSCRIPTION BY PEP AND
NEP
Chloroplast genes can be categorized into three subgroups, classes
I–III: class I photosynthesis-related genes are mainly transcribed
by PEP; Class II includes many housekeeping genes (clpP and the
rrn operon) that are transcribed by both PEP and NEP; class III
genes (accD and the rpoB operon) are exclusively transcribed by
NEP (Allison et al., 1996; Hajdukiewicz et al., 1997).
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PEP recognizes standard chloroplast promoters resembling
the bacterial σ70 type promoters with −10 and −35 consen-
sus elements (Gatenby et al., 1981; Gruissem and Zurawski,
1985; Strittmatter et al., 1985; Shiina et al., 2005; Figure 1A). A
genome-wide mapping of transcription start sites (TSSs) by RNA
sequencing in barley green chloroplasts demonstrated that 89%
of the mapped TSSs have a conserved −10 element (TAtaaT)
at three to nine nucleotides upstream, while the −35 element
was mapped upstream of the −10 element in only 70% of the
TSSs (Zhelyazkova et al., 2012). These results suggest that most
genes are transcribed from σ70-type promoters by PEP in green
leaves.

Higher plants have multiple sigma factors that are expected
to confer promoter specificity upon the PEP core complex
(Shiina et al., 2005; Lerbs-Mache, 2011). Molecular genetic anal-
yses revealed that SIG2 is responsible for the transcription of a
group of tRNA genes, but not photosynthesis genes (Kanamaru
et al., 2001), while SIG6 is essential for the transcription of a wide
range of photosynthesis-related genes at an early stage of chloro-
plast development (Ishizaki et al., 2005). It seems likely that SIG2
and SIG6 work in cooperation during light-dependent chloroplast
development (Hanaoka et al., 2003; Ishizaki et al., 2005). In addi-
tion, SIG3 and SIG4 have been shown to specifically target psbN
and ndhF genes in Arabidopsis (Favory et al., 2005; Zghidi et al.,
2007). Recently, ChIP analysis of SIG1 revealed the target genes
(psaAB, psbBT, psbEFLJ, rbcL, and clpP; Hanaoka et al., 2012). SIG5
is a unique sigma factor whose expression is rapidly induced by
various environmental stresses such as a high osmolarity, or salin-
ity, a low temperature as well as high-light stress (Tsunoyama et al.,
2002; Nagashima et al., 2004). SIG5 likely recognizes specific pro-
moters, including the psbD light-responsive promoter (LRP), and
mediates stress-induced transcription in chloroplasts (Nagashima
et al., 2004; Tsunoyama et al., 2004). Taken together, it is likely that
each chloroplasts sigma factor is responsible for the transcription
of a distinct set of genes, and plays specific roles in transcriptional
regulation in response to developmental and/or environmental
cues.

Phylogenetic analysis revealed that chloroplast sigma factors
are related to essential group 1 and non-essential group 2 sigma
factors in bacteria. Chlamydomonas, a single-celled green alga, pos-
sesses a single sigma factor that is related to SIG2 in land plants,
suggesting the absence of multiple sigma factor-mediated tran-
scriptional regulation in chloroplasts. Endosymbiosis of ancestral
cyanobacteria in plant cells may have reduced the need for tran-
scriptional regulation in chloroplasts and caused the reduction of
the number of sigma factors in green algae. On the other hand,
in liverwort (M. polymorpha L.) and moss (P. patens), three sigma
factors related to SIG1, SIG2, and SIG5 are encoded in the nucleus
(Shiina et al., 2009; Ueda et al., 2013). The multiple sigma fac-
tors in bryophytes may show a promoter preference and play roles
in tissue-specific and stress-responsive transcriptional regulation
in chloroplasts (Hara et al., 2001; Ichikawa et al., 2004; Kanazawa
et al., 2013; Ueda et al., 2013).

Most NEP promoters (rpoB, rpoA, and accD) share a core
sequence, the YRTA motif (type-Ia; Liere and Maliga, 1999; Weihe
and Borner, 1999; Hirata et al., 2004; Figure 1A). The YRTA motif
is similar to motifs found in promoters of plant mitochondria

(Binder and Brennicke, 2003; Kuhn et al., 2005). In addition, GAA-
box has been identified upstream of the YRTA motif in a subclass
of NEP promoters (type-Ib; Kapoor and Sugiura, 1999). In con-
trast to these standard NEP promoters, type-II NEP promoters
mapped upstream of the dicot clpP gene lack the YRTA motif and
are dependent on downstream sequences of the TSS (Weihe and
Borner, 1999). Furthermore, it has been shown that the rrn operon
and certain tRNAs are transcribed from other non-consensus-type
NEP promoters [Reviewed by (Liere et al., 2011)].

Although the class I genes have been clarified as being exclu-
sively transcribed by PEP, the genome-wide mapping of TSSs in
barley revealed that most genes including photosynthesis genes
have both PEP and NEP promoters. It seems likely that NEP sup-
ports transcription of photosynthesis genes at the early stage of
seedling greening (Zhelyazkova et al., 2012). Interestingly, 73% of
NEP-dependent TSSs possess the YRTA motif typical for type-
Ia and -Ib NEP promoters, whereas GAA-boxes have been barely
mapped upstream of the barley NEP promoters. These results sug-
gest that type-Ia, but not type-Ib NEP promoters play a major role
in transcription by NEP in barley chloroplasts. In contrast, type-II
NEP promoters, which are dependent on downstream sequences
of the TSSs, were identified in barley as well as tobacco.

THE LARGE TRANSCRIPTION COMPLEX IN HIGHER PLANT
CHLOROPLASTS
Two types of PEP-containing preparation have been biochemi-
cally isolated in mustard and Arabidopsis: soluble RNAP (sRNAP)
and plastid transcriptionally active chromosome (pTAC) attached
to chloroplast membranes (Hess and Borner, 1999). Transcrip-
tion by sRNAP is dependent on exogenously added template
DNA, whereas the pTAC can initiate transcription from the
endogenous chloroplast DNA (Igloi and Kossel, 1992; Krause
et al., 2000). Interestingly, protein compositions of highly puri-
fied sRNAP fractions are dependent on chloroplast development
(Pfannschmidt and Link, 1994). The sRNAP of etioplasts in
dark-grown leaves is a naked RNAP without additional subunits
similar to the E. coli RNAP core complex. Etioplasts convert to
photosynthetically active chloroplasts in the presence of light.
During chloroplast development in mustard, the RNAP develops
a more complex form that contains 13 additional polypeptides
(Pfannschmidt and Link, 1994). It seems likely that the simple
sRNAP in etioplasts converts to a more complex sRNAP in chloro-
plasts by recruiting additional components during chloroplast
development.

Proteomic analyses of pTAC fractions isolated from
mature chloroplasts of Arabidopsis and mustard have iden-
tified 35 polypeptides including 18 novel proteins termed
pTAC1–pTAC18, in addition to PEP core subunits, DNA poly-
merase, DNA gyrase, Fe-dependent superoxide dismutases (FeS-
ODs), phosphofructokinase–B type enzymes (PFKB1 and PFKB2),
thioredoxin, and three ribosomal proteins (Pfalz et al., 2006).
DNA- and/or RNA-binding domains, protein–protein interac-
tion domains, or epitopes with other reported cellular functions
have been identified in some of pTAC proteins. Most Arabidop-
sis knockout mutants of pTAC proteins exhibit seedling-lethal
symptoms or chlorophyll-deficient phenotypes. PEP-dependent
transcription is significantly impaired in the pTAC mutants,
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whereas NEP-dependent transcription is up-regulated. These
phenotypes and chloroplast gene expression patterns are remi-
niscent of those of rpo mutants (Allison et al., 1996; Hajdukiewicz
et al., 1997), suggesting a critical role for pTAC proteins in PEP
transcription.

Affinity purification of the tobacco PEP (Suzuki et al., 2004)
and more recent analysis of subunits of the PEP complex in mus-
tard (Steiner et al., 2011) and tobacco complex identified at least
10 PEP-associated proteins (PAPs). Recently, chromatin immuno-
precipitation assays were performed with one of the typical PAPs,
pTAC3/PAP1. The results revealed that pTAC3/PAP1 associates
with the PEP complex in all three steps of the transcription cycle
including initiation, elongation and termination, suggesting that
pTAC3/PAP1 is an essential component of the chloroplast PEP
complex (Yagi et al., 2012). Several studies on protein–protein
interactions among PAPs have been reported [reviewed in (Pfalz
and Pfannschmidt, 2013)]. Almost all PAP genes, except for Trx-
z, are conserved among all land plants, but not in the green
alga Chlamydomonas. It seems likely that terrestrial plants may
have acquired non-cyanobacterial novel PEP components during
land plant evolution to regulate plastid transcription (Pfalz and
Pfannschmidt, 2013).

It has been suggested that a series of checkpoints control the
establishment of the chloroplast transcription machinery (Steiner
et al., 2011; Pfalz and Pfannschmidt, 2013). In imbibed seeds,
predominant NEP is responsible for transcription of housekeep-
ing genes. NEP also transcribes chloroplast-encoded rpo genes
for PEP core subunits to produce a basic PEP-B complex (NEP–
PEP cascade). PEP-B is responsible for the major activity in
etioplasts and in an early stage of greening. This step may be
the first checkpoint. Subsequently, PEP-B associates with PAPs
and converts them into a larger PEP complex (PEP-A) dur-
ing light-dependent chloroplast development. PEP-A formation
is strictly dependent on light. Indeed, it has been reported
that expression of the pTAC3/PAP1 gene is induced by light
during the greening process (Yagi et al., 2012). PAP mutants
mostly show the aberrant development of chloroplasts and tran-
scription of chloroplast-encoded genes, suggesting their essential
roles in PEP-A. Furthermore, recent genome-wide analysis of
the chloroplast transcriptome revealed reduced expressions of
numerous chloroplast tRNAs in several PAPs mutants (pTAC2,
pTAC12, MurE, PRIN2), suggesting that PAPs play a major role
in tRNA transcription in chloroplasts (Williams-Carrier et al.,
2014). Thus PAPs are also responsible for protein translation
in chloroplasts. Therefore, the assembly of PAPs in the PEP-A
complex may be the second checkpoint in the establishment of
the chloroplast transcription machinery. To prevent uncontrolled
chloroplast development under adverse conditions, these check
points likely play critical roles in the control of chloroplast gene
transcription.

THE PLASTID NUCLEOIDS: DYNAMICS AND UNIQUE
COMPONENTS
The plastid DNA exists as large protein-DNA complexes named
the plastid nucleoid. Plastid nucleoids contain an average of 10–20
copies of the plastid DNA (Kuroiwa, 1991), and their size, shape,
and distribution vary depending on the plastid type (Miyamura

et al., 1986; Sato et al., 1997). Each chloroplast contains ∼20
nucleoids that are randomly located on the thylakoid membranes.
Immature proplastids in seeds contain only one nucleoid that is
located at the center of the organelle. The plastid nucleoids divide
into a few small dots and redistribute to the inner envelope mem-
branes during early chloroplast development. At a later stage of
chloroplast development, nucleoids are relocated to the thylakoid
membranes. It has been suggested that plastid nucleoid orga-
nization and dynamics are involved in the regulation of plastid
function, gene expression and differentiation. Two DNA-binding
proteins, PEND and MFP1, are likely responsible for the associ-
ation of nucleoids with chloroplast membranes (Sato et al., 1998;
Jeong et al., 2003; Figure 1B).

In E. coli, chromosome DNA packaging patterns affect gene
expression, and are regulated by nucleoid-associated proteins
(NAPs) such as HU, H-NS, and FIS [reviewed by (Dillon and
Dorman, 2010)]. Among bacterial NAPs, HU is one of the major
DNA-binding proteins and is involved in chromosome DNA pack-
aging. HU-like proteins (HLPs) are conserved in cyanobacteria,
the red alga Cyanidioschyzon merolae (Kobayashi et al., 2002), and
the green alga Chlamydomonas (Karcher et al., 2009). The HLP
in Chlamydomonas has roles in nucleoid maintenance and gene
expression, indicating conserved roles of HU during chloroplast
evolution (Karcher et al., 2009). However, land plants including
mosses and flowering plants have not only lost the HU genes,
but also other prokaryotic DNA-binding proteins (Figure 2).
Nevertheless, atomic force microscopy observations revealed that
plastid nucleoids are highly organized and form a beads-on-a-
string structure similar to that observed in bacterial nucleoids,
suggesting that another host cell-derived DNA-binding protein
took over the functions of HU (Melonek et al., 2012). Recently,
eukaryotic SWIB (SWI/SNF complex B) domain containing pro-
teins have been identified from the proteome of a further-enriched
pTAC fraction (TAC-II) of spinach chloroplasts (Melonek et al.,
2012). SWIB4 that has a histone H1 motif, can functionally
complement an E. coli mutant lacking the histone-like nucleoid
structuring protein H-NS, indicating that SWIB4 is the most likely
counterpart of the bacterial NAPs in chloroplasts. EM observa-
tion of isolated pTAC identified chromatin-like beaded structures
with several protruding DNA loops, suggesting that pTACs rep-
resent a subdomain of the chloroplast nucleoid (Yoshida et al.,
1978; Briat et al., 1982). These findings suggest that pTAC forms
a central core of the plastid nucleoid and a transcription factory
(Figure 1B).

The proteomes of highly enriched nucleoid fractions have
been characterized in maize proplastids and mature chloroplasts
(Majeran et al., 2012). As expected, the chloroplast nucleoids
contain all PEP core Rpos and PAPs, and almost all other
pTAC proteins. Furthermore, additional proteins involved in
post-transcriptional processes, such as pentatricopeptide repeat
proteins (PPR proteins), mitochondrial transcription factor
(mTERF)-domain proteins, 70S ribosomes and ribosome assem-
bly factors have been identified in the proteome of the chloroplast
nucleoids, suggesting that several post-transcriptional events
including RNA processing, splicing and editing, and translation,
occur in nucleoids, and that these processes are co-regulated with
transcription (Figure 1B). Human mitochondrial nucleoids have
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FIGURE 2 | Evolution of components of the chloroplast transcription

machinery. Ancient cyanobacteria have a prototype of PEP including
Rpo subunits and several types of sigma factors, several transcription
factors (TFs), and various nucleoid-associated proteins (NAPs). After
endosymbiosis, the primary chloroplast lost its sigma factors, except the

σ70 type, and all TFs. During the evolution of land plants, chloroplasts
acquired more complicated transcription machinery with a variety of
pTACs. In higher plants, there are multiple RNA polymerases (PEP,
multiple sigma factors, PEP-pTAC complex, and NEP), and plant-specific
NAPs.

been shown to form layered structures, the central core involved
in replication and transcription, and the peripheral region where
translation and complex assembly may occur (Bogenhagen et al.,
2008). By analogy, the further characterization of plastid nucleoids
will provide insights into the structural specialization of plastid
nucleoids; DNA maintenance and transcription in a core domain
and various aspects of RNA metabolism in several subdomains.

PERSPECTIVE
Recent proteomic and transcriptomic researches and the devel-
opment of novel ChIP and imaging technologies have advanced
the understanding of the molecular basis of RNAP complexes
and nucleoid architecture. In land plants, neither the nuclear nor
chloroplast genome encodes prokaryotic transcription factors and
nucleoid proteins, whereas chloroplasts retain prokaryotic-type
RNAP (Figure 2). In fact, land plants have a number of novel host
cell-derived transcription regulators and DNA-binding proteins
that are involved in the regulation of chloroplast transcription.
Thus, it seems likely that chloroplast transcription is mediated
by a hybrid system of prokaryotic and eukaryotic origin. Fur-
ther molecular characterization of pTACs and plastid nucleoid
proteins would provide novel insights into the unique plastid
gene expression system and as yet known mechanisms of plastid
differentiation.
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