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Iron and copper are essential for plants and are important for the function of a number
of protein complexes involved in photosynthesis and respiration. As the molecular
mechanisms that control uptake, trafficking and storage of these nutrients emerge, the
importance of metalloreductase-catalyzed reactions in iron and copper metabolism has
become clear. This review focuses on the ferric reductase oxidase (FRO) family of
metalloreductases in plants and highlights new insights into the roles of FRO family
members in metal homeostasis. Arabidopsis FRO2 was first identified as the ferric chelate
reductase that reduces ferric iron-chelates at the root surface-rhizosphere interface. The
resulting ferrous iron is subsequently transported across the plasma membrane of root
epidermal cells by the ferrous iron transporter, IRT1. Recent work has shown that two
other members of the FRO family (FRO4 and FRO5) function redundantly to reduce
copper to facilitate its uptake from the soil. In addition, FROs appear to play important
roles in subcellular compartmentalization of iron as FRO7 is known to contribute to
delivery of iron to chloroplasts while mitochondrial family members FRO3 and FRO8 are
hypothesized to influence mitochondrial metal ion homeostasis. Finally, recent studies
have underscored the importance of plasma membrane-localized ferric reductase activity
in leaves for photosynthetic efficiency.Taken together, these studies highlight a number of
diverse roles for FROs in both iron and copper metabolism in plants.
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INTRODUCTION
Iron (Fe) is essential for plants and is required for the function
of a large number of enzymes involved in photosynthesis, respi-
ration and a number of other processes. Iron’s utility in myriad
biochemical processes stems from its ability to readily accept and
donate electrons. It is most often associated with protein com-
plexes either as a component of heme or Fe-S clusters. The ability
of Fe to participate in electron transfer reactions is nevertheless
problematic as well, since Fe3+ and Fe2+ are able to participate
in the generation of the highly reactive hydroxyl radical (Halliwell
and Gutteridge, 1992). As a result, it is critical that cells carefully
control cellular Fe metabolism.

Iron limits plant growth in many soil types despite the fact
that it is usually quite abundant. This is due to the fact that fer-
ric iron is very poorly soluble in aerobic soils at neutral to basic
pH. In the presence of oxygen, iron precipitates into insoluble
Fe(III)-oxyhydroxide complexes. Thus, the molecular mecha-
nisms utilized by plants for iron acquisition often include a first
step that solubilizes ferric iron followed by a second step in which
iron is transported from the soil and into root cells. Plants have
evolved two types of strategies to combat iron deficiency. Strategy
I is a reduction-based method used by all dicots and non-grass
monocots while strategy II is used by grass species and involves
chelation of ferric iron followed by uptake (Guerinot and Yi, 1994).

In response to iron deficiency, strategy I plants engage in
a three stage process to acquire iron. First, the surround-
ing rhizosphere is acidified via proton extrusion by a root

plasma membrane-localized proton ATPase, AHA2 (Arabidopsis
H+ATPase 2; Santi and Schmidt, 2009). This serves to increase
solubility of ferric iron complexes. Ferric iron chelates are then
reduced to ferrous iron by FRO2 (ferric reductase oxidase 2) and
Fe2+ ions are subsequently taken up into root cells by the divalent
metal transporter, IRT1 (iron regulated transporter 1; Eide et al.,
1996; Yi and Guerinot, 1996; Robinson et al., 1999; Vert et al.,
2002). In contrast, strategy II plants secrete phytosiderophores
(PSs), such as mugineic acid, which bind to ferric iron with high
affinity (Walker and Connolly, 2008). The resulting Fe(III)-PS
complexes are transported across the root plasma membrane via
the yellow stripe1 (YS1) iron transporter (Curie et al., 2001).

In this review, we focus on the roles of the FRO family of
metalloreductases in reduction of iron and copper in plants.
To this end, we briefly review what is known about reduc-
tion of iron at the root surface and highlight new work that
has demonstrated a role for FRO family members in reduc-
tion of copper for uptake by plants. In addition, we focus on
the emerging roles of FROs in trafficking of iron to subcellular
compartments.

THE FRO FAMILY OF METALLOREDUCTASES
The reduction of ferric iron to ferrous iron at the root surface is
a process that has been well documented and characterized across
several plant species including Arabidopsis (Yi and Guerinot,1996),
pea (Waters et al., 2002), and tomato (Li et al., 2004), as well as the
green alga Chlamydomonas reinhardtii (Eckhardt and Buckhout,
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1998). The first plant metalloreductase gene was cloned from Ara-
bidopsis (Robinson et al., 1999). FRO2 was identified based on its
sequence similarity to the yeast ferric reductase, FRE1, as well as
to a subunit of the human NADPH oxidase, gp91phox, which
is involved in the production of reactive oxygen species to pro-
tect against invading pathogens (Robinson et al., 1999; Vignais,
2002). FRO2 was shown to complement the phenotype of an Ara-
bidopsis ferric reductase defective-1 mutant (frd1), thus proving
that FRO2 encodes the root surface ferric chelate reductase. As
expected for an enzyme involved in iron acquisition from the soil,
FRO2 is expressed in the root epidermis and is strongly induced
by iron limitation (Connolly et al., 2003). Constitutive high-level
expression of FRO2 in soybean confers enhanced tolerance to iron
deficiency-induced chlorosis (Vasconcelos et al., 2006).

FRO2 belongs to a superfamily of flavocytochromes and is
involved in transfer of electrons from the cytosol across the
plasma membrane to reduce extracellular ferric iron to ferrous
iron. Studies of the topology of FRO2 show that the protein
contains eight transmembrane (TM) helices, four of which com-
prise the highly conserved core of the protein (Schagerlof et al.,
2006). This core is conserved throughout the flavocytochrome b
family. The large water-soluble domain of FRO2, which contains
NADPH, flavin adenine dinucleotide (FAD), and oxidoreductase
sequence motifs, is located in the cytosol. FRO2 also contains
four highly conserved histidine residues that likely coordinate
two intramembranous heme groups that are instrumental in
the electron transfer process (Robinson et al., 1999; Schagerlof
et al., 2006). Although FRO2 appears to be solely responsible for
reduction of ferric iron chelates in the rhizosphere, the Arabidop-
sis genome encodes a total of eight FRO family members. The
seven additional FRO proteins are believed to function as met-
alloreductases primarily involved in the reduction of iron and
possibly copper; here, we highlight new insight into the roles of
FRO family members in copper reduction and intracellular metal
trafficking.

PLASMA MEMBRANE-LOCALIZED ROOT COPPER
REDUCTASES
Studies of the yeast FRE family have uncovered roles for these pro-
teins in reduction of both iron and copper (Hassett and Kosman,
1995; Georgatsou et al., 1997; Martins et al., 1998). Consistent
with their roles in the high-affinity iron and copper uptake sys-
tems, their expression is regulated by both iron and copper status.
Like their FRE counterparts, Arabidopsis FRO genes are differen-
tially regulated by deficiencies of iron and/or copper (Mukherjee
et al., 2006). Studies of FRO2 have suggested that it may have a
role in the reduction of Cu2+ to Cu+ at the root surface, in addi-
tion to its role in iron reduction (Yi and Guerinot, 1996; Robinson
et al., 1999). Arabidopsis plants show an increase in root copper
reductase activity under iron limitation and frd1 mutants fail to
induce this activity in response to iron limitation (Robinson et al.,
1999). However, copper concentrations are not reduced in frd1
mutants, suggesting that reduction of copper by FRO2 is not
physiologically relevant; this result opens up the possibility that
other FROs function to reduce copper at the root surface. It is
possible that copper uptake may proceed without prior reduction
of Cu2+ to Cu+, perhaps via a ZRT, IRT-like protein (ZIP)-type

transporter. Interestingly, expression of ZIP2 and ZIP4 is upregu-
lated under copper limitation (Wintz et al., 2003). However, stable
isotope studies support a reduction-based pathway for copper
uptake (Jouvin et al., 2012). Indeed, recent studies have shown
that FRO4 and FRO5 act redundantly to reduce copper at the root
surface (Bernal et al., 2012)

The SPL7 (SQUAMOSA promoter binding-like7) transcrip-
tion factor functions as a master regulator of the copper deficiency
response in Arabidopsis (Yamasaki et al., 2009). Recently, RNA-
Seq revealed that FRO4 and FRO5 are strongly upregulated in
roots under copper limitation. In addition, induction of FRO4
and FRO5 in roots under copper limitation depends on SPL7
(Bernal et al., 2012). FRO4 and FRO5 lie in tandem on chro-
mosome 5 and share high sequence similarity at the amino acid
level (Mukherjee et al., 2006). SPL7 has been shown to bind to
a CuRE (Cu responsive element) in promoters of copper regu-
lated genes (Yamasaki et al., 2004; Yamasaki et al., 2009) similar
to its homolog in C. reinhardtii, CCR1 (COPPER RESPON-
SIVE REGULATOR1; Quinn and Merchant, 1995; Kropat et al.,
2005; Sommer et al., 2010). FRO4 and FRO5 each contain GTAC
motifs in their upstream promoter regions, suggesting that they
may be direct targets of SPL7 (Bernal et al., 2012). fro4, fro5,
and fro4fro5 double mutant lines display significant decreases in
copper deficiency-inducible copper reductase activity. In addi-
tion, use of a fluorescent dye [coppersensor-1 (CS1)] that binds
Cu+ showed that uptake of Cu+ in the fro4 and fro5 single
mutants was markedly lower than in wild type plants and fro4fro5
double mutant plants show hardly any detectable Cu+, demon-
strating that FRO4 and FRO5 function redundantly as copper
reductases in the high affinity copper uptake pathway (Bernal
et al., 2012). In addition, although spl7 plants lack expression
of FRO4 and FRO5 and corresponding Cu-deficiency inducible
root Cu reductase activity, spl7 does display elevated FRO2 tran-
script abundance and root ferric chelate reductase activity. These
results clearly establish that FRO4 and FRO5 (rather than FRO2)
are responsible for reduction of Cu at the root surface (Bernal
et al., 2012). It remains unclear whether FRO4 and FRO5 are
involved in Fe homeostasis, however, expression of FRO5 is
induced under iron deficiency (Wu et al., 2005; Mukherjee et al.,
2006).

PUTATIVE PLASMA MEMBRANE-LOCALIZED LEAF FERRIC
REDUCTASE
Following uptake from the soil, iron must be loaded into the
xylem, where it is found as a ferric-citrate complex (Rellan-
Alvarez et al., 2010). How iron is transported into leaf cells remains
unknown, but it is thought that Fe(III)-chelates may need to be
reduced prior to transport into leaf cells. FRO6 is expressed at
high levels in leaves (Mukherjee et al., 2006), and overexpression
of FRO6 in tobacco showed that FRO6 can facilitate the reduc-
tion of iron in leaves (Li et al., 2011). FRO6 expression is not
affected by iron status (Mukherjee et al., 2006). Instead, analysis
of FRO6-GUS lines has shown that FRO6 expression is controlled
in a light-dependent manner. Indeed, the FRO6 promoter con-
tains several light-responsive elements and etiolated FRO6-GUS
seedlings exhibit no FRO6 promoter activity (Feng et al., 2006).
Together, these data suggest that FRO6 may function to reduce iron
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in leaves when light is available, perhaps to enable the assembly of
new photosynthetic complexes.

INTRACELLULAR METALLOREDUCTASES
Chloroplasts and mitochondria represent significant sinks for Fe.
Indeed, the vast majority of Fe found within leaves is located within
chloroplasts. Essential cofactors such as heme and Fe–S clusters
are synthesized in chloroplasts and mitochondria. Despite this,
the molecular mechanisms by which iron is trafficked to these
two organelles are not well understood. Recent studies impli-
cate FRO family members in iron delivery to chloroplasts and
mitochondria. Intriguingly, although work in yeast has shown
that metalloreductases are important in vacuolar metal homeosta-
sis, to date there is no evidence to support an analogous role in
plants.

CHLOROPLASTIC FERRIC REDUCTASE
Although the precise mechanisms involved in chloroplast iron
acquisition are still somewhat murky (Landsberg, 1984; Terry
and Abadia, 1986; Bughio et al., 1997; Shikanai et al., 2003), it
seems likely that chloroplasts take up both Fe(II) and Fe(III)
via multiple pathways as observed in modern day cyanobacte-
ria. Free living cyanobacteria have been shown to acquire iron
through Fe2+ iron transporters from a pool of Fe(III)-dicitrate
complexes (Katoh et al., 2001) and it is thus clear that some
species of cyanobacteria are able to use a reduction-based mecha-
nism for iron uptake (Kranzler et al., 2014). Plant chloroplasts,
which are thought to have originated from ancient cyanobac-
teria, appear to utilize a similar strategy for iron uptake as
studies of Arabidopsis FRO7 demonstrate that chloroplasts employ
a reduction-based strategy for iron acquisition. FRO7 localizes
to chloroplasts and loss of FRO7 function results in a signifi-
cant reduction in chloroplast surface ferric reductase activity. In
addition, fro7 chloroplasts show a ∼30% reduction in chloro-
plast Fe content. fro7 grows poorly on medium lacking sucrose
and shows reduced photosynthetic efficiency, consistent with
the idea that FRO7 is critical for delivery of Fe for proper
assembly of photosynthetic complexes. When sown on alka-
line soil, fro7 seeds germinate but the resulting seedlings are
severely chlorotic and the plants fail to set seed unless supple-
mented with excess iron (Jeong et al., 2008). Recent work in
sugar beet further supports the existence of a reduction-based
mechanism for iron uptake by chloroplasts, as well (Solti et al.,
2012).

A presumptive Fe transporter, PIC1, has been identified that
localizes to the chloroplast envelope (Duy et al., 2007). Whether
FRO7 and PIC1 work together in chloroplast iron uptake cur-
rently remains unknown and it is not yet clear whether PIC1
transports ferric or ferrous iron. Other proteins that are presumed
to function in chloroplast Fe transport are MAR1 (a homolog
of ferroportin 1 and 2), which may transport an iron chela-
tor (Conte et al., 2009), MFL1/2 [which resemble mitoferrins
but function in chloroplasts; (Tarantino et al., 2011) and NAP14
(Shimoni-Shor et al., 2010)]. In addition, a chloroplast-and
mitochondria-localized NEET-type protein was recently identi-
fied which may be involved in Fe–S cluster transfer to apoproteins
(Nechushtai et al., 2012).

PUTATIVE MITOCHONDRIAL FERRIC REDUCTASES
Studies in Arabidopsis have identified a putative iron-chaperone
(Busi et al., 2006; Vazzola et al., 2007) and putative mitochon-
drial effluxer proteins involved in iron metabolism (Kushnir et al.,
2001; Chen et al., 2007). In addition, a recent report described the
identification of a mitochondrial Fe transporter in rice (MIT1)
which is essential for plant growth (Bashir et al., 2011). Despite
this, we are far from a comprehensive understanding of mito-
chondrial Fe homeostasis (Nouet et al., 2011; Vigani et al., 2013).
Although two Arabidopsis metalloreductases (FRO3 and FRO8)
have been predicted to localize to mitochondrial membranes, nei-
ther one has been functionally characterized. A mitochondrial
proteomics study has placed FRO8 at the mitochondrial mem-
brane (Heazlewood et al., 2004). The expression patterns of FRO3
and FRO8 are largely non-overlapping, suggesting that they do
not function redundantly (Jain and Connolly, 2013). Little infor-
mation is available for FRO8 but its expression is concentrated
in the vasculature of senescing leaves (Wu et al., 2005). FRO3 is
expressed most highly in the vasculature of young seedlings and
its expression is strongly induced under iron deficiency; for this
reason, FRO3 has been widely used as an iron deficiency marker
(Mukherjee et al., 2006; Tarantino et al., 2010). Interestingly, FRO3
expression is negatively regulated by the basic helix loop helix
(bHLH) transcription factor PYE (POPEYE); PYE appears to con-
trol a pericycle-specific Fe deficiency response in roots (Dinneny
et al., 2008; Long et al., 2010). FRO3 expression also is responsive
to copper status (Mukherjee et al., 2006; Yamasaki et al., 2009).
Despite this, the roles of FRO3 and FRO8 remain unclear. It is
interesting to note that although the yeast metalloreductase FRE5
localizes to mitochondria (Sickmann et al., 2003), there are no
reports to date that demonstrate a role for a metalloreductase in
mitochondria in any organism.

VACUOLAR IRON TRAFFICKING
Acidic compartments like vacuoles have a relatively oxidizing
atmosphere as compared to the cytosol. In yeast, iron in vacuoles
is largely present as ferric polyphosphate complexes (Raguzzi et al.,
1988). The remobilization of iron from the yeast vacuolar com-
partment is mediated by the FRE6 ferric chelate reductase (Singh
et al., 2007). FRE6 also plays a role in copper remobilization from
vacuoles; reduced copper is subsequently exported to the cytosol
via CTR2 (copper transporter 2; Rees and Thiele, 2007). Vacuolar
iron transporters have been reported in plants; Arabidopsis vac-
uolar iron transporter (VIT1), transports iron into the organelle
while NRAMP3 (natural resistance against microbial pathogens3)
and NRAMP4 mediate the export of iron (Lanquar et al., 2005;
Kim et al., 2006). However, no vacuolar metalloreductases have
been reported in plants, to date.

CONCLUSION
Plants require iron and copper for vital processes such as photosyn-
thesis, respiration, and nitrogen fixation. While it has been known
for some time that ferric chelate reductases play a vital role in iron
uptake from the soil by all plant species except for grasses, other
roles for FROs in metal homeostasis have only recently emerged.
Indeed, new studies have shown that FROs are important for
copper acquisition from the soil (Figure 1) and for intracellular
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FIGURE 1 | Mechanisms for iron and copper uptake by Arabidopsis roots.

Under iron-deficient conditions, expression of FRO2 and IRT1 is enhanced.
FRO2 serves to reduce solubilized Fe3+ to Fe2+, which is then transported

across the root plasma membrane via IRT1. Under copper-deficient
conditions, FRO4 and FRO5 are highly expressed in the roots and function to
reduce Cu2+ to Cu+ prior to uptake by COPT1.

FIGURE 2 | Arabidopsis ferric reductases and transporters that

contribute to cellular iron homeostasis. Evidence suggests that FRO6
functions to reduce Fe3+ to Fe2+ at the cell surface of leaf cells; Fe2+ is
subsequently transported across the membrane via an unknown
transporter(s), while other unknown transporters may be involved in the
uptake of Fe3+. Iron is then trafficked to a set of intracellular organelles.

Chloroplasts utilize a reduction-based mechanism for iron acquisition via
FRO7, whereas FRO3 and FRO8 may serve an analogous function in
mitochondria. PIC1 serves as a chloroplast iron transporter while rice MIT
mediates iron uptake by mitochondria. Although there is not yet any evidence
for vacuolar metalloreductases in plants, it is known that VIT1 is important for
iron uptake by vacuoles while NRAMP3/4 function in vacuolar Fe efflux.

Frontiers in Plant Science | Plant Nutrition March 2014 | Volume 5 | Article 100 | 4

http://www.frontiersin.org/Plant_Nutrition/
http://www.frontiersin.org/Plant_Nutrition/archive


Jain et al. Functions of plant metalloreductases

distribution of Fe (Figure 2). Together, these studies have shed
considerable light on the molecular mechanisms employed by
plants to maintain Fe and Cu homeostasis. In addition, this new
knowledge should facilitate novel strategies aimed at improving
crop yields on nutrient-poor soils and biofortification of plant
foods to help ameliorate nutrient deficiencies in humans. Future
studies will likely focus on the precise roles of mitochondrial FROs
in mitochondrial metal metabolism. Furthermore, our under-
standing of iron trafficking within cells is severely hampered by
our limited understanding of the various subcellular iron pools.
New tools that provide insight into the redox status and types of
iron species found in each of the various cellular compartments
will go a long way toward the development of a comprehensive
understanding of iron metabolism in plants.
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