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NEDDS, in plants and yeasts also known as RELATED TO UBIQUITIN (RUB), is an
evolutionarily conserved 76 amino acid protein highly related to ubiquitin. Like ubiquitin,
NEDDS can be conjugated to and deconjugated from target proteins, but unlike ubiquitin,
NEDDS8 has not been reported to form chains similar to the different polymeric ubiquitin
chains that have a role in a diverse set of cellular processes. NEDD8-modification is
best known as a post-translational modification of the cullin subunits of cullin-RING E3
ubiquitin ligases. In this context, structural analyses have revealed that neddylation induces
a conformation change of the cullin that brings the ubiquitylation substrates into proximity
of the interacting E2 conjugating enzyme. In turn, NEDDS8 deconjugation destabilizes the
cullin RING ligase complex allowing for the exchange of substrate recognition subunits via
the exchange factor CAND1. In plants, components of the neddylation and deneddylation
pathway were identified based on mutants with defects in auxin and light responses
and the characterization of these mutants has been instrumental for the elucidation of
the neddylation pathway. More recently, there has been evidence from animal and plant
systems that NEDDS8 conjugation may also regulate the behavior or fate of non-cullin
substrates in a number of ways. Here, the current knowledge on NEDDS8 processing,
conjugation and deconjugation is presented, where applicable, in the context of specific
signaling pathways from plants.
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NEDD8 IS AN EVOLUTIONARILY CONSERVED REGULATOR
NEDDS (neural precursor cell expressed, developmentally down-
regulated8), in plants and yeasts also known as RELATED TO
UBIQUITIN (RUB, hitherto referred to as NEDD8), is a 76 amino
acid protein that was originally identified as a highly expressed
gene from embryonic mouse brains (Kumar et al., 1993). Amongst
all ubiquitin-like modifiers (UBLs), NEDD8 and ubiquitin are
most closely related to each other and NEDDS8 proteins, like other
UBLs, display remarkable sequence conservation across species
(Vierstra, 2012). Like ubiquitin, NEDD8 is conjugated to its
substrate protein through the formation of an isopeptide bond
between its C-terminal glycine and a lysine residue of the target
protein (neddylation) but there is no known biological function
for free NEDDS.

NEDDS orthologs can be identified in all eukaryotic species
that have sequenced genomes. While NEDDS is a single gene in
humans, mouse, and fruit fly, several copies of NEDD8are encoded
by the genomes of the plant species Arabidopsis (Arabidopsis
thaliana; Rao-Naik et al., 1998), rice (Oryza sativa), Brachypodium
(Brachypodium distachyon), and the moss Physcomitrella patens
(Figure 1). All NEDDS proteins require proteolytic processing
of their C-termini to generate mature NEDD8 with a C-terminal
glycine required for NEDD8 conjugation (Figure 1). An additional
unique feature of plant NEDDS is the existence of ubiquitin-
NEDDS gene fusions. While gene fusions of ubiquitin to ubiquitin
itself or other genes have been reported in other species, NEDD8
is an unfused gene in animals and yeasts but not in plants. This
ubiquitin-NEDDS fusion structure is found in Arabidopsis RUB1

and RUB2 and seems to be conserved among plants, mosses
and algae (Figure 1; Rao-Naik etal., 1998; Vierstra and Callis,
1999; Shin etal., 2011). In RUB1 and RUB2, a single ubiqui-
tin is fused head-to-tail to the N-terminus of NEDD8 and both
ubiquitin-NEDDS fusions then require post-translational pro-
cessing to release monomeric ubiquitin and NEDD8 (Figure 1).
Furthermore, plant genomes contain an unfused monomeric form
of NEDDS8, RUB3 in Arabidopsis, that can additionally be dis-
tinguished from the other RUB genes because it lacks an intron
that is present at a conserved position in other RUBs, e.g., in
Arabidopsis RUBI and RUB2 (Figure 1). The absence of an
intron suggests that this less complex RUB3 may be more ancient
than the intron-containing RUBI or RUB2 or that RUB3 origi-
nated from an mRNA intermediate and a retrotransposition event
(Huang etal., 2012).

Similarly to the high sequence conservation observed between
human and Arabidopsis ubiquitin (96% amino acid sequence
identity), also NEDD8 proteins are highly conserved between
species (83% identity between human and Arabidopsis). This
high level conservation is suggestive for an important function
of NEDD8 conjugation (neddylation) in eukaryotic cells and
a highly conserved neddylation and deneddylation machinery.
Indeed, loss-of-NEDDS function causes lethality at an early devel-
opmental stage in most model organisms and also in plants,
with the notable exception of Saccharomyces cerevisiae (Lammer
etal., 1998; Liakopoulos etal., 1999; Jones and Candido, 2000;
Osaka etal., 2000; Tateishi etal., 2001; Ou etal., 2002; Dhar-
masiri etal., 2003; Maytal-Kivity etal., 2003; Bostick etal., 2004).
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Species Name Gene ID Domain architecture
A 4 v
A. thaliana RUB1 AT1G31340 RLRGG
v
RUB2 AT2G35635 @RLRGG
RUB3 AT1G11980
v v
0. sativa RUBT LOC_0S09G25320 RLRGG
v
RUB2 LOC_0S06G44080 @RLRGG
RUB3 LOC_OS01G45400 RLRGG
- LOC_OS10G39590
A4 A4
B. distachyon RUB1-like  BRADI4G30470 (§]=]] RLRGG_
v
RUB2-ike BRADI1G30940 @RLRGG,
RUB2-like = BRADI4G28550 d .RLRG(_L
A 4
P. patens - PP1S127_93V6 @RLRGG,
v
- PP1S129_28V6 @RLRGG,
h 4 v v v
C. rheinhardti - RUB1 CR09G02120 UBlI RLRGG
w v
Human NEDD8 ENSG00000129559
w v
Mouse NEDD8 ENSMUSG00000010376
v v
D. melanogaster Nedd8 FBgn0032725
v
S. cerevisiae Rub1 YDR139C
v v
S. pombe ned8 SPBC12D12.08¢c
FIGURE 1 | Protein domain organization of NEDD8 proteins from several triangle. The light gray area in BRADI4G28550 highlights an apparent 22
representative species. Gene identification numbers (Gene IDs) are as listed ~ amino acid deletion in the ubiquitin part of the protein. A. thaliana
in www.ensemblgenomes.org. Specifically indicated are the last five amino (Arabidopsis thaliana), O. sativa (Oryza sativa, rice), B. distachyon
acids of the respective proteins before the proteolytic cleave sites, the first (Brachypodium distachyon), P patens (Physcomitrella patens, moss), C.
amino acid of NEDDS8 and the proteins’ C-terminal amino acids. Proteolytic reinhardtii (Chlamydomonas reinhardtii, algae), D. melanogaster (Drosophila
processing occurs after the C-terminal RGG residues and is indicated by an melanogaster, fruit fly), S. cerevisiae (Saccharomyces cerevisiae, baker's
underscore. Positions of introns in the respective genes are indicated by a yeast), S. pombe (Schizosaccharomyces pombe, fission yeast).

In Arabidopsis, not the single but the combined knockout of the
genes RUBI and RUB?2 leads to a developmental arrest at the
embryonic two-cell stage (Bostick etal., 2004). Thus, NEDD8
genes and neddylation are essential for growth and development in
plants. Plants with reduced NEDDS gene expression are dwarfed,
partially insensitive to root growth inhibitory concentrations of
the plant hormone auxin and also partially defective in auxin-
induced lateral root formation (Bostick etal., 2004). As will be
outlined below, auxin insensitivity phenotypes are reliable and at

the same time the most obvious readouts of neddylation pathway
mutants.

NEDD8 PROCESSING

NEDDS is conjugated to the protein substrates via an isopeptide
bond between its C-terminal glycine and a lysine of the target
protein (Figure 2). NEDDS, like ubiquitin and most UBLs, is
expressed as an inactive precursor with a short C-terminal exten-
sion that consists of one or several amino acids that need to be

Frontiers in Plant Science | Plant Genetics and Genomics

March 2014 | Volume 5 | Article 103 | 2


http://www.frontiersin.org/Plant_Genetics_and_Genomics/
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive
www.ensemblgenomes.org

Mergner and Schwechheimer

Neddylation in plants

2 1<
- . UBI E1
NAE Y3 UAE
E2 : Bl E2
UBC/RCE1 S UBC
CULLIN | Sy © &‘ cuLLn
Adaptor, Adaptor
Receptor T Receptor Receptor E
E3
CRL

l

Degradation

FIGURE 2 | Neddylation and ubiquitin modification are biochemically
related processes. Ubiquitin c-terminal hydrolases (UCHs) belong to the
family of DUBs that process ubiquitin (UBI)-NEDDS fusion proteins. UBI
and NEDDS8 are activated by their conjugation to E1 ubiquitin/NAEs. UBI or
NEDDS from the E1 are then passed via a transthiolation reaction to a
protein of the family of E2 ubiquitin-conjugating enzymes, RUB1
CONJUGATING ENZYME1 (RCE1) in Arabidopsis. The ubiquitin-charged E2
can then form a complex with an E3 ubiquitin ligase, and ultimately,
ubiquitin and NEDDS are transferred to a lysine residue on the cullin of the
E3 and the substrate, respectively. UBI but not NEDDS8 can form chains.
RBX1 and other proteins not shown here are the proposed NEDDS ligases.
Cullin-RING ligases (CRLs) are the superfamily of E3 ubiquitin ligases that
are regulated by neddylation. CRLs are generally composed of a cullin
subunit, RBX1, as well as a substrate (SUB) recognition module composed
of an adaptor and a substrate receptor protein. C, cysteine; K, lysine.

cleaved off to allow for NEDDS8 conjugation (Figures 1 and 2;
Jentsch and Pyrowolakis, 2000). It has been proposed that the
C-terminal extension of ubiquitin, NEDDS, and other UBLs serves
to prevent unprocessed proteins to enter into the conjugation
pathway but there is, in fact, no experimental evidence supporting
this hypothesis (Callis et al., 1995; Rao-Naik et al., 1998). The plant
ubiquitin-NEDDS fusion proteins additionally require removal of
the N-terminal ubiquitin by proteolytic cleavage.

NEDDS8 processing is carried out by ubiquitin C-terminal
hydrolases (UCH) from the family of deubiquitinating enzymes
(DUBs). In S. cerevisiae and humans, NEDD8 precursor C-
terminal processing is facilitated by a dual specificity UCH of
the C12 family peptidases, Yuhl (yeast) or UCHL3 (human,
mouse), which also processes the C-terminal extensions of ubiqui-
tin (Figure 3; Wada etal., 1998; Johnston etal., 1999; Linghu et al.,
2002; Hemelaar etal., 2004; Frickel etal., 2007; Yu etal., 2007).
To date, the only isopeptidase known to function exclusively in
NEDDS processing and deconjugation is the C48 family peptidase
DEN1/NEDP1/SENP8 from Drosophila, and human (Figure 3;
Gan-Erdene et al., 2003; Mendoza et al., 2003; Wu et al., 2003; Shen
etal., 2005; Chan etal., 2008; Shin etal., 2011). However, mouse
knockouts of UCHL3 or Drosophila and Aspergillus knockouts of

DEN] are viable although NEDD8 and neddylation are essential in
the respective organisms (Kurihara etal., 2000; Chan etal., 2008;
Christmann etal.,, 2013). These findings suggest that mutants of
these processing enzymes cannot be fully impaired in NEDD8
processing.

In non-plant species where NEDDS is expressed as an unfused
gene, examining NEDD8 precursor processing in vivo is not trivial
because NEDD8 has only a short C-terminal extension. Therefore,
conjugation of processed NEDDS to cullins is used as an indirect
indication for proper processing. Since cullin neddylation was not
impaired in any of the UCH gene mutants examined to date, it
can be inferred that also NEDD8 processing and conjugation are
at least partially functional in these mutants (Kurihara et al., 2000;
Chan etal., 2008; Christmann etal.,, 2013). In the fission yeast
Schizosaccharomyces pombe, even a Anepl Anep2 Auchl Auch2
quadruple mutant lacking the two C48 peptidases orthologous to
DEN1 (NEPI and NEP2) as well as the two C12 peptidases orthol-
ogous to yeast Yuh1 (UCHI and UCH2) shows efficient cullin ned-
dylation (O’Donoghue etal., 2013). Only the additional knockout
of the cullin deneddylating enzyme COP9 SIGNALOSOME SUB-
UNITS5 (CSN5) hinted to a reduced efficiency of NEDD8 precursor
processing in this complex mutant because it revealed the absence
of cullinl hyperneddylation that can be observed in the Acsn5
deletion strain (O’Donoghue etal., 2013). Taken together, these
various findings suggest that there is a functionally redundant
family of NEDDS8 processing enzymes and that there may be
other as yet unknown peptidases that also participate in NEDD8
processing. Furthermore, it is possible that there is no strict
specificity among the ubiquitin and NEDD8 processing enzymes
in vivo.

NEDD8 PROCESSING IN PLANTS

NEDDS processing hydrolases from plants remain to be identified.
In Arabidopsis, several peptidases can be classified as C12 and
C48 family peptidases based on their homology to UCHs from
other species (Figure 3). To date, only the C12 peptidases UCH1
and UCH2 have been analyzed at the biological level (Yang etal.,
2007). Based on their homology to C12 peptidases, these UCHs
would be predicted to have a role in ubiquitin processing. How-
ever, although both UCH proteins showed the predicted ubiquitin
processing activity in vitro, neither the uchl uch2 double mutant
nor UCH] overexpressing lines had apparent changes in the pat-
tern of ubiquitin conjugate formation or in the abundance of free
monomeric ubiquitin. At the phenotypic level, mutants or over-
expression lines display impaired shoot and flower development
and changes in the rate of leaf formation. Altering the abundance
of the two UCH genes also affects auxin and cytokinin responsive-
ness. These phenotypes may be explained by defects in selective
rather than general protein degradation and this hypothesis is sup-
ported by the observation that the degradation of the auxin-labile
AUX/IAA AUXIN RESISTANT3 (AXR3) but not that of the light-
labile phytochrome A or ELONGATED HYPOCOTYL5 (HY5)
proteins appeared to be affected in the uch mutants. In summary,
these findings suggest that UCH1 and UCH2 may not only act at
the level of ubiquitin processing but may also act by selectively
regulating the proteasomal degradation of proteins by antagoniz-
ing substrate ubiquitylation. Whether UCH1 and UCH2 have a
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UCHL1 Group
Peptidase C12 family

FIGURE 3 | NEDDS processing is mediated by at least three different
classes of peptidases. Unrooted phylogenetic tree of representative
members of the UCH and DEN1/NEDP1/SENP8 protein families from
Arabidopsis thaliana (At), rice (Oryza sativa, Os), algae (Chlamydomonas
reinhardtii, Cr), baker's yeast (Saccharomyces cerevisiae, Sc), fission yeast
(Schizosaccharomyces pombe, Sp), fruit fly (Drosophila melanogaster, Dm),
mouse (Mus musculus, Mm), and human (Homo sapiens, Hs). Molecular
phylogenetic analysis was performed based on the Maximum Likelihood
method and the JTT matrix-based model (Jones etal., 1992) using
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CLUSTALW algorithm at the EMBL-EBI website (http://www.ebi.ac.uk/Tools/
msa/clustalw?2/). The tree with the highest log likelihood (—5916.8263) is
shown. Initial tree(s) for the heuristic search were obtained automatically

by applying the Maximum Parsimony method. The tree is drawn to scale,
with branch lengths measured in the number of substitutions per site. The
analysis involved 24 protein sequences. All positions containing gaps and
missing data were eliminated. There were a total of 145 positions in the final
dataset. Evolutionary analyses were conducted in MEGA5 (Tamura etal.,
2011).

role in NEDDS8 processing remains to be examined but the com-
paratively weak morphological phenotype as well as the absence
of an apparent cullin neddylation phenotype already suggests that
the two UCH proteins may not have a major function in this
process.

NEDDYLATION

NEDDS is conjugated to target proteins in a manner that is highly
similar to ubiquitin conjugation (Figure 2). NEDDS is activated
by an E1 NEDD8 activating enzyme (NAE) and then passed on to
an E2 NEDD8 conjugating enzyme of the ubiquitin-conjugating
(UBC) enzyme family from where the protein is ultimately trans-
ferred to its substrate protein. The best-studied NEDD8 conjugates
are the cullin subunits of cullin-RING-type E3 ubiquitin ligases
(CRLs; Hua and Vierstra, 2011). CRLs are a family of evolution-
arily conserved E3 ligases that are composed of a core complex,
comprised of a cullin subunit and the RING BOX PROTEIN1
(RBX1), as well as a ubiquitylation substrate recognition module.
In plants, three different types of CRL complexes can be distin-
guished based on the identity of the cullin subunits CULLIN1,
CULLINS3, or CULLIN4 and the identity of their respective sub-
strate recognition module (Lammer etal., 1998; Ruegger etal,
1998; Dieterle etal., 2005; Figueroa etal., 2005; Gingerich etal.,

2005; Bernhardt etal., 2006; Chen etal., 2006). The CRL subunit
RBX1 is common to all CRLs and serves to promote NEDD8
conjugation.

Structural analyses of cullin neddylation revealed that NEDD8
conjugation causes a conformational change in subdomains of the
cullin and RBX1 subunits (Duda etal., 2008; Boh etal., 2011).
Neddylation also eliminates the binding of the exchange fac-
tor CULLIN-ASSOCIATED-NEDD8-DISSOCIATED1 (CANDI)
and locks the CRL in an active state. Thus, neddylation controls
CRL activity by promoting conformational changes that favor
substrate ubiquitylation. CRL neddylation can then also lead to
the recruitment of additional regulatory factors (den Besten et al.,
2012).

THE NEDDYLATION PATHWAY AND AUXIN INSENSITIVITY

As will be discussed in more detail below, loss of cullin neddy-
lation or cullin deneddylation affect CRL function by promoting
or, respectively, preventing interactions with the substrate recep-
tor exchange factor CANDI. In the plant and neddylation biology
context, the Arabidopsis CULLIN1-containing E3 ligase SCFTIR!
with the substrate recognition module composed of the F-box
protein (FBP) TRANSPORT INHIBITOR RESISTANT1 (TIRI)
and its adaptor subunit ARABIDOPSIS SKP1 (ASK) is highly
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relevant (Ruegger etal., 1998; del Pozo and Estelle, 1999). TIR1,
functioning at the same time also as an auxin receptor, binds
AUX/IAA transcriptional repressors in an auxin-dependent man-
ner and targets AUX/IAAs for ubiquitylation and degradation
by the 26S proteasome (Gray etal, 2001; Tan etal, 2007).
AUX/IAAs and auxin-induced AUX/IAA degradation regulate a
number of important developmental and morphological processes
throughout plant development: bodenlos (bdl) mutants express-
ing a stabilized (non-degradable) variant of the AUX/IAA protein
bodenlos/iaal4 (bdl/iaal4) are deficient in embryonic root dif-
ferentiation and are consequently rootless (Hamann etal., 1999;
Weijers et al., 2005). axr3 mutants express the stabilized axr3/iaal7
protein and this mutation allows for root elongation in the pres-
ence of root growth-inhibiting auxin concentrations (Gray etal.,
2001). The link between auxin insensitivity (auxin resistance),
AUX/IAA degradation and CULLIN1 could be established because
the CULLINT1 alleles axr6-1 and axr6-2 were identified based on
their auxin insensitivity (Hobbie etal., 2000; Shen etal., 2002;
Hellmann etal., 2003; Quint etal.,, 2005; Esteve-Bruna etal.,
2013). While homozygous axr6-1 and axr6-2 loss-of-function
mutants arrest development during embryogenesis, the heterozy-
gous mutants display the auxin-insensitive root growth elongation
phenotype. Furthermore, double mutants of axr6-1 or axr6-2
with other mutants of the auxin and neddylation pathway are
defective in root differentiation and thereby mimic the char-
acteristic phenotype of the bdl mutant (Hobbie etal., 2000;
Hellmann etal., 2003; Quint etal.,, 2005; Esteve-Bruna etal.,
2013).

NEDD8 ACTIVATION

Both, defects in root differentiation as well as auxin-insensitive
root elongation have been used extensively as phenotypes for
the identification and characterization of Arabidopsis neddylation
mutants. auxin resistant] (axrl) is a mutant of the NAE enzyme
AXRI1 and was identified due to its defects in auxin response
that could later be explained by impairment in the degradation
of the AUX/TAA protein AXR3 (Lincoln etal., 1990; Leyser etal.,
1993; del Pozo etal., 1998). In Arabidopsis, axrl mutants display
an auxin-insensitive root growth phenotype but to fully impair
NEDDS conjugation the function of the AXR1-paralog AXRI-
LIKE (AXL) also needs to be deleted (Dharmasiri etal., 2007).
axrl axll double mutants have a more severe phenotype than
axr]l mutants in that they are defective in embryonic root dif-
ferentiation and mimic the bdl mutant phenotype (Dharmasiri
etal., 2007). Arabidopsis AXR1 and AXL proteins appear to be
equivalent at the biochemical level but interestingly have a dif-
ferential ability to complement the axr] mutant phenotype when
expressed from the AXRI promoter (Dharmasiri et al., 2007; Hot-
ton etal., 2011). While NEDDS activation is carried out by a
single protein in animals and yeasts, NAE is a heterodimer in
plants of AXR1/AXL and E1 C-TERMINAL RELATED1 (ECR1)
corresponding to the protein’s N- and C-termini, respectively
(Figure 2; del Pozo etal, 1998; Hotton etal., 2011). An ecrl-1
mutant was identified in a screen for mutants with differ-
ential auxin sensitivity and axrl/ax] mutants as well as ecrl
mutants are defective in cullin neddylation (Woodward etal.,
2007).

NEDD8 CONJUGATION

RUB1 CONJUGATING ENZYMEL (RCE1l) was identified in
Arabidopsis based on its homology to human UBCI12 (del Pozo
and Estelle, 1999). An rcel-1 insertion mutant with significantly
reduced RCEI expression levels was subsequently isolated and
found to be strongly impaired in cullin neddylation (Dharmasiri
etal., 2003). rcel-1 mutants display auxin insensitive root growth
phenotypes and fail to differentiate a primary root when com-
bined with axrl. Two additional rcel alleles were recently found
in a suppressor screen of the auxin overproducing sur2 mutant
(Pacurar etal., 2012). Interestingly, both of these rcel alleles would
be expected to interfere significantly with the biochemical activity
of RCE1 since they carry a nonsense and splice site mutation in
exon 4, respectively. Analyzing the extent to which RCE1 func-
tion is affected in these alleles is certainly interesting because the
unexpectedly weak phenotype of these supposedly strong alleles
could be considered indicative for the existence of functionally
redundant NEDD8 conjugating enzymes.

NEDDS LIGATION

The CRL core subunit RING BOX1 (RBX1) is one candidate
for an E3 NEDDS8 ligase (Morimoto etal,, 2003). RBX1 is
encoded by two genes in Arabidopsis and its function as CRL
subunit and as NEDDS8 ligase was addressed in mutants, anti-
sense and overexpression lines (Gray etal., 2002; Lechner etal.,
2002; Schwechheimer etal., 2002). RBX1 interacts with RCE1 and
while cullin neddylation is decreased in the absence of RBX1 it is
increased when RBX1 is overexpressed (Gray etal., 2002).

The protein DEFECTIVE IN CULLIN NEDDYLATIONI1
(DCN1) has also been described as an E3 NEDDS ligase (Kurz
etal., 2005; Kurz et al., 2008; Meyer-Schaller et al., 2009). Based on
yeast studies, it has recently been proposed that DCN1 increases
the substrate specificity of RBX1 by directing the RBX1-bound
NEDDS-E2 toward the cullin (Scott etal., 2010). Additionally, it
was shown that the interaction between DCN1 and UBCI2 is reg-
ulated by the N-terminal acetylation of the UBC12 E2 enzyme
(Scottetal.,2011). The analysis of DCN1-LIKE proteins, of which
there are five in humans, has also revealed that at least one member
of the protein family, DCNL3, is bound to the plasma membrane
(Meyer-Schaller etal., 2009). Studies of a mammalian CULLIN2-
containing CRL further revealed that DCN1-LIKE] can engage
in interactions between the cullin and the respective substrate
receptor subunit, and more importantly, that this interaction is
strengthened when the substrate receptor is loaded with cargo
(Heir etal., 2013). Atleast in this case, DCN1-LIKE1 may function
as a sensor for degradation substrate availability and consequently
promote neddylation. Thus, DCN1 proteins may contribute to
the regulation of E3 ligase activity by targeting E3 ligases to or by
activating them in specific subcellular locations.

As yet, DCN1 or DCNI1-LIKE proteins have not been ana-
lyzed in plants but AT3G12760 is a candidate for a direct
DCNI ortholog from Arabidopsis. A second DCN1-LIKE pro-
tein, less closely related to DCN1 than AT3G12760, was identified
as anti-auxin resistant3 (AAR3) in a screen for mutants that
showed resistance to the anti-auxin p-chlorophenoxyisobutylic
acid. The same screen also identified mutant alleles of TIRI and
CULLINI and, based on the shared phenotype of these mutants,
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AAR3/DNCI-LIKE would qualify as a candidate regulator of
NEDDS ligation and SCF™! function (Biswas et al.,2007). Unfor-
tunately, the biochemical function of AAR3/DNCI1-LIKE in the
context of cullin neddylation has not been examined as yet. There
is also one further Arabidopsis gene that may encode for an addi-
tional DCN1-LIKE protein. Thus, the biochemical and biological
functions of DCNI-LIKE genes from Arabidopsis remain to be
investigated.

In yeast, also TFB3, a RING domain subunit of the general
transcription factor TFIIH was found to promote neddylation in
addition to RBX1 and DCNI1 (Rabut etal., 2011). The identifica-
tion of TFB3 was based on initial observations that CULLIN4
neddylation in yeast was independent from RBX1 and DCNI.
The analysis of RING domain protein mutants from yeast then
led to the subsequent discovery of Tfb3 as a RING domain pro-
tein responsible for the neddylation of CULLIN3 and CULLIN4.
A clear homolog of TFB3 is not easily discernable in the plant
genomes but the identification of TFB3 from yeast per se indicates
that it cannot be ruled out that besides RBX1 and DCNT1 also other
NEDDS ligases exist in plants.

MLN4924 — A NEDDYLATION INHIBITOR

The importance of the NEDD8-modification pathway in the
control of plant development has recently been elucidated in a
study with the neddylation inhibitor MLN4924 (Hakenjos etal.,
2011). MLN4924 was initially described as an inhibitor of the
human NAE El enzyme but was subsequently found to also
inhibit the NAE E1 subunit ECRI from predictably all plant
species (Soucy etal., 2009; Brownell etal., 2010; Hakenjos etal.,
2011). MLN4924 inhibits neddylation in plants and the impair-
ment of CRL function results in the degradation of a number
of CRL substrates such as the AUX/IAAs of the auxin pathway,
DELLA proteins of the gibberellin pathway and the cell cycle
regulator KRP1 (Hakenjos etal., 2011). While the severe phe-
notypes of strong NEDD8 pathway mutants in Arabidopsis and
the absence of neddylation mutants in other plant species has as
yet hampered studying the role of neddylation in all stages of
plant development or in non-Arabidopsis species, the availabil-
ity of MLN4924 now overcomes this limitation (Hakenjos etal.,
2011).

NEDDYLATION MUTANTS ARE IMPAIRED IN MANY DIFFERENT CRL
FUNCTIONS

As outlined above, AUX/IAA degradation is partially or fully
impaired in all mutants of the NEDD8 conjugation pathway and
auxin responses are partially or fully blocked in these mutant back-
grounds. However, the phenotype of the NEDD8 conjugation
mutants is much more complex and not only the consequence
of defects in the auxin response pathway. In this regard, it is
important to realize that plants predictably have many hundreds
of CRLs and that all these CRLs should be impaired in neddyla-
tion mutants (Xu etal., 2009). Among these CRLs, SCFTIRI and
closely related complexes implicated in auxin responses have a
very prominent role because defects in the auxin-regulatory CRLs
lead to morphological defects that can easily be examined (Dhar-
masiri etal., 2005a,b). However, while malfunction of SCEFTR!
and closely related complexes is the most visible phenotype of
neddylation mutants, all CRL functions should be affected in
axr]l mutants in a manner similar to the defects observed in the
auxin pathway. This fact is sometimes overlooked and particu-
larly axrl mutants that were amongst the first auxin response
mutants to be identified (Lincoln etal., 1990; Leyser etal., 1993)
are often being used as auxin pathway-specific mutants. The
knowledge about the existence of many other CRL-dependent
pathways, also CRL pathways that affect plant growth and
morphology clearly argue against using axr! mutants or other
neddylation mutants as auxin pathway-specific mutations for
morphological analyses or genetic interaction studies (Dill etal.,
2004; Shen etal., 2007; Stirnberg etal., 2007; Nelson etal., 2011;
Waters and Smith, 2013).

CSN PROMOTES CULLIN DENEDDYLATION

NEDDS8 can be deconjugated from CRLs through the activity
of the COPY signalosome (CSN; Figure 4). CSN is evolu-
tionarily conserved and in most species including plant and
mammalian species composed of eight subunits (Chamovitz
etal., 1996; Seeger etal., 1998; Wei and Deng, 1998). CSN was
originally identified in plants based on mutants that display a
constitutively photomorphogenic (cop) phenotype and named
following the identification of the causative mutation in the cop9
mutant (Wei and Deng, 1992; Wei etal.,, 1994). Similarly to

Deneddylation

[ csn )

CULLINt < CULLIN® <
ASK i ASK i
FBP1 FBP1
ASK

FBP1

FIGURE 4 | CAND1 regulates the cells CRL repertoire by promoting the
exchange of substrate receptor subunits. Schematic representation of the
exchange of a hypothetical FBOX PROTEIN1 (FBP1) of the CRL SCFFBF1
against FBP2 following CULLIN1 deneddylation. ARABIDOPSIS SKP1 (ASK)
proteins are adaptor subunits that link FBPs with CULLIN1. CULLIN1T, ASK,

Substrate receptor exchange

ASK
FBP2

Neddylation

CULLINT <

ASK
FBP2

RBX1 and FBP form an SCFtype CRL. COP9 SIGNALOSOME (CSN)
promotes CULLIN deneddylation. CULLIN-ASSOCIATED-NEDD8-
DISSOCIATED1 (CAND1) is an exchange factor that can only associate with
deneddylated cullins and promotes substrate receptor exchange. C, cysteine;
K, lysine.
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light-grown seedlings, cop mutants have a short hypocotyl, open
cotyledons, and express light-regulated genes when grown in the

dark.

CSN REPRESSES PHOTOMORPHOGENESIS IN ARABIDOPSIS

In Arabidopsis, loss-of-function of the eight CSN subunits results
in most cases in the destabilization of the entire CSN complex
and in a phenotypically indistinguishable cop phenotype, marking
constitutive photomorphogenesis as a hallmark phenotype for loss
of CSN function (Serino etal., 1999, 2003; Dohmann et al., 2005;
Gusmaroli etal., 2007). The cop phenotype of ¢sn mutants can be
explained by their inability to degrade photomorphogenesis regu-
latory transcription factors such as HY5 in dark-grown seedlings
through the activity of the E3 ligase COP1 (Osterlund et al., 20005
Chenetal.,2006; Lau and Deng, 2012). COP1 function is impaired
in csn mutants leading to a stabilization of the COP1 targets also in
the dark. In the wildtype, photomorphogenic development dur-
ing germination is seemingly controlled by the light-controlled
nucleocytoplasmic shuttling of COP1 (von Arnim and Deng,
1994; Osterlund etal., 2000; Pacin etal., 2013). In contrast to
the strong photomorphogenesis phenotype of csnloss-of-function
mutants, mutants with partially impaired CSN function display a
number of phenotypes, also including auxin insensitive root elon-
gation (Schwechheimer etal., 2001, 2002; Dohmann et al., 2005,
2008b; Stuttmann et al., 2009; Huang etal., 2013b). This pheno-
typic similarity was indicative for a connection between CSN, the
neddylation pathway, and SCF™®! -dependent plant growth regu-
lation when knowledge about the biochemical interplay of these
components was still unclear (Schwechheimer etal., 2001).

CULLIN DENEDDYLATION IS A FUNCTION OF THE MPN+ DOMAIN
SUBUNIT CSN5

COP9 signalosome is closely related to the “lid” of the 26S pro-
teasome. In plants and animals, both protein complexes are com-
posed of six so-called PCI domain subunits and two MPN-domain
subunits and they share a set of subunit—subunit interactions
within the respective complexes (Glickman etal., 1998; Wei etal.,
1998; Fuetal.,2001; Enchev et al., 2010; Kotiguda et al., 2012). The
relatedness of the two complexes and their in part shared biochem-
ical function are nicely reflected by the fact that a proteasomal “lid”
subunit functionally replaces a “missing” CSN subunit in Saccha-
romyces cerevisiae (Yu et al.,2011). CSN as well as the “lid” have two
MPN-domain proteins, which can be further subdivided into an
MPN+ domain protein with a catalytically active metalloprotease
site, and a catalytically inactive MPN-domain protein that must
be derived from the MPN+-domain counterpart (Maytal-Kivity
etal., 2002). The MPN+ domain subunits CSN5 and RPN11
confer deneddylation and deubiquitylation activity to the CSN
and proteasome “lid” complexes, respectively (Cope etal., 2002;
Ambroggio etal., 2004). ¢sn mutants from Arabidopsis are fully
impaired in cullin deneddylation and only traces of, presumably
de novo synthesized, unneddylated cullin can be detected in csn
mutants. Interestingly, CSN5 is only functional as a cullin dened-
dylase when associated with CSN. CSN physically interacts with
the cullin and RBX1 subunits of CRLs through its subunits CSN2
and CSN6 and it is thought that these interactions provide CSN
with the affinity for its CRL targets (Schwechheimer etal., 2001).

Interesting is also the recently identified csn3-3 allele, which car-
ries a missense mutation in the CSN3 gene. This mutation strongly
impairs auxin responses in the mutant but does neither obviously
affect cullin deneddylation nor CSN protein complex integrity
(Huang etal., 2013a). Thus, the affected domain of CSN3 may be
required for an as yet unknown essential CSN function such as
CRL subunit interactions or for the ability of the protein or pro-
tein complex to engage in other interactions required for normal
auxin responses. This is supported by biochemical analyses com-
bined with structural electron microscopy that suggest that CSN2
and CSN5 interact with the cullin E3 ligase subunit whereas F-box
substrate receptors interact with CSN1 and CSN3 (Enchev etal,,
2012).

Since c¢sn mutants are impaired in the function of presum-
ably hundreds of E3 ligases, it is not surprising that additional
physiological defects have been identified in these mutants that
can be explained by defects in other CRLs and include defects
in SCFYO!_mediated jasmonate signaling (Schwechheimer etal.,
2002; Hind etal.,2011), SCFY!.-mediated gibberellin signal-
ing (Dohmann etal.,, 2010) as well as defects in cold response
(Schwechheimer etal., 2002), cell cycle progression (Dohmann
etal., 2008a), and the control of ascorbic acid synthesis (Wang
etal., 2013).

CSN REGULATION AND CSN REGULATORS

In view of the large number of CRLs that exist in eukaryotic
cells and the importance of CSN-dependent cullin deneddylation
for CRL function, it has to be asked how CRL neddylation and
CSN-dependent deneddylation are regulated. In this context, it
was shown for different CRLs that the availability of ubiquityla-
tion substrate receptor and ubiquitylation substrate promotes CRL
formation and cullin neddylation (Bornstein etal., 2006; Ember-
ley etal., 2012). The association of FBP-SKP1 dimers can inhibit
CSN function on selected SCF-complexes several fold (Emberley
etal., 2012). Thus, in the case of SCF-complexes cullin neddyla-
tion and deneddylation are regulated by the presence of FBP-SKP1
dimers and particularly by the presence of a given FBP, assum-
ing that there is no regulation on the level of the SKP1 adaptor
subunit, which does not confer substrate specificity to the SCF
complexes. CSN is even more strongly inhibited in the pres-
ence of degradation substrate and thus degradation substrate
and degradation substrate receptor availability negatively regulate
CSN activity (Emberley etal., 2012). Furthermore, CSN asso-
ciates tightly with deneddylated SCF and CSN thereby keeps the
CRL complex in a state of low activity after substrate degrada-
tion (Emberley etal., 2012). Through this interaction, CSN also
prevents cullin neddylation, unless binding of a ubiquitylation
substrate triggers its dissociation and allows for cullin neddylation
(Enchev etal., 2012).

In addition to the regulation of CSN by CRLs, their subunits
and their substrates, there are also other candidate regulators
whose function remains to be determined. The 7 kDa pro-
tein SMALL ACIDIC PROTEIN1 (SMAPI) is an interesting
CSN-interaction partner (Nakasone etal., 2012). smapl mutants
were identified as anti-auxin resistantl (aarl) in a mutant screen
that also identified mutants of TIRI, CULLINI, and DCN1-LIKE.
Thus the aarl/smap1 phenotype may well be explained by a defect
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in the E3 ligase SCFTR! or its neddylation or deneddylation.
Importantly, immunoprecipitates of SMAP1 are very strongly
enriched in at least six CSN subunits, indicating that SMAP1 is
a CSN interactor and may regulate CSN function. As yet, the anal-
ysis of CULLIN neddylation patterns did not reveal any apparent
defects in its neddylation or deneddylation but the aar3/smapl
mutant phenotype together with the SMAP1-CSN interaction
strongly suggests that SMAP1 is linked to CSN function. Since
there is not apparent homolog of SMAPI1 outside of the plant
kingdom, this function should be plant specific.

The analysis of the CSN-interacting Rig-G protein, a pro-
tein related to the Arabidopsis protein SPINDLY, provided some
insights into how interaction partners could interfere with CSN
activity. In the case of Rig-G it is proposed that the protein recruits
CSN subunits to the cytoplasm and thereby interferes with CSN
assembly in the nucleus (Xu etal., 2013).

CAND1 - A SUBSTRATE RECEPTOR EXCHANGE FACTOR FOR
CRLs

Important progress has been achieved in the understanding of the
role of neddylation and deneddylation of cullins in the context
of CRL assembly and function through analysis of the protein
Cullin-associated-Nedd8-dissociated-1 (CANDI). As its name
already reveals, CAND1 was identified as an interactor of non-
neddylated cullins (Liu etal., 2002; Zheng etal., 2002; Oshikawa
etal., 2003). Through a series of elegant experiments from at
least three independent laboratories it was recently shown that
CANDI1 functions as a novel type of exchange factor for CRLs
(Pierce etal., 2013; Wu etal., 2013; Zemla etal., 2013). In a highly
quantitative and not only therefore remarkable analysis of the
diverse protein—protein interactions that can take place between
the subunits of SCF-type CRL complexes and CANDI, it could
be shown that CAND1 can promote the disassembly of SCF com-
plexes and that FBPs can remove CANDI1 from CULLINI (Pierce
etal., 2013; Figure 4). When testing 21 different FBPs it was
found that 20 of these could be exchanged using CANDI as an
exchange factor. Thus, in the case of SCF-type CRLs and most
likely also in the case of CRLs that are formed with the other
cullins, CAND1 can modulate the CRL-complex repertoire of the
cell.

CAND1 is unable to interact with neddylated cullins and cullin
neddylation stabilizes specific CRLs to prevent substrate recep-
tor exchange (Emberley etal., 2012). Upon cullin deneddylation,
CANDI can become active and modulate the CRL repertoire to
optimally match substrate receptor demand. Thus, there must be
mechanisms to control CRL deneddylation. Indeed, cullin ned-
dylation and deneddylation are controlled by the presence and
absence of degradation substrates or their interactions with sub-
strate receptors (Bornstein etal., 2006; Chew and Hagen, 2007;
Emberley etal., 2012). Furthermore, CSN binds preferentially to
neddylated CRLs, which may also recruit CSN-associated pro-
teins important for CRL regulation (den Besten etal., 2012). CSN
can bind deneddylated cullins but is dissociated in the presence of
degradation substrate receptors and degradation substrates (Choo
etal, 2011). Consequently, it can be inferred that csn as well as
candl mutants are deficient in releasing specific substrate recep-
tors. This hypothesis could be experimentally confirmed and it

could be shown that substrate receptor activation and substrate
degradation are delayed in such mutant backgrounds (Zemla et al.,
2013).

CAND1 IN PLANTS

In plants, candl mutants were identified and analyzed in reverse
and forward genetic screens. Mutants deficient in CAND1 were
isolated as auxin-resistant mutants and the mutant spectrum
of candl mutants was recognized as being highly similar to,
but also to exceed that of axrl mutants (Cheng etal.,, 2004;
Chuang etal., 2004; Feng etal., 2004). Three further candl alle-
les were identified based on mutants with severe defects in
leaf vein patterning (Alonso-Peral etal., 2006). In rice, CANDI
is required for the formation of crown roots and defects in
crown root formation are associated with a cessation in the
G2/M phase progression in these mutants (Wang etal., 2011).
In this context it is interesting to note that also Arabidopsis csn
mutants are defective in G2/M phase progression (Dohmann et al.,
2008a).

Arabidopsis CANDI1 also preferentially binds to non-
neddylated cullins (Feng etal,, 2004). Importantly, two sets
of weak Arabidopsis mutants exist, the semi-dominant axr6-1
and axr6-2 on the one side and the recessive cull-6 on the
other, carrying missense mutations in almost adjacent posi-
tions of CULLIN1. Interestingly, the respective mutant proteins
interact differentially with CAND1. While the cull-6 protein
is deficient in CANDI interaction, axr6-1 and axr6-2 bind
more strongly to CANDI (Feng etal., 2004; Moon etal., 2007).
The availability of mutants with weak and strong defects in
cullin function, cullin deneddylation, and CAND1 interaction
has already permitted to assay the biochemical interactions
of the various components at the genetic level (Zhang etal,
2008).

NEDDYLATION SUBSTRATES

EVIDENCE FOR NON-CULLIN NEDDYLATION SUBSTRATES

Despite extensive research, the role and importance of neddyla-
tion in cellular processes besides the regulation of CRL activity
remains poorly understood. Contrary to the expanding knowl-
edge about ubiquitylated proteins in eukaryotes including plants
(Kim etal., 2013) similar studies for NEDDS8 have so far not suc-
ceeded in consistently identifying non-cullin neddylated proteins
(Li etal., 2006; Norman and Shiekhattar, 2006; Jones et al., 2008;
Xirodimas, 2008; Bennett et al., 2010; Hakenjos etal., 2011; Hot-
ton etal., 2012). However, there is evidence for the existence of a
broad range of neddylated proteins and several non-cullin ned-
dylated proteins have already been identified as summarized in
Table 1. Loss of function mutants of DEN1/NEDP1/SENP8 from
three different species, namely fruit fly, Schizosaccharomyces pombe
and Aspergillus nidulans accumulate neddylated proteins over a
broad range of molecular weights. At the same time, these mutants
do generally not accumulate neddylated cullins suggesting that
DEN1/NEDP1/SENPS8 is an important deneddylating enzyme of
these non-cullin neddylation substrates (Zhou and Watts, 2005;
Chan etal.,, 2008; Christmann etal., 2013). Also overexpression
of NEDDBS leads to the apparent enrichment of many neddylated
proteins and this neddylation can be blocked with the inhibitor
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Table 1 | Neddylation substrates.

Neddylated protein Proposed function of neddylation Species Reference
E3 ubiquitin ligases
Cullins, Cul7 and PARC Increases activity Eukaryotes Hori etal. (1999), Sarikas etal. (2011), Calabrese etal. (2011)
Mdm2 Decreases activity Human Xirodimas etal. (2004)
Parkin increases activity Human Um etal. (2012), Choo etal. (2012)
BRAP2 - Human Takashima etal. (2013)
pVHL Changes pVHL protein interaction Human Stickle etal. (2004), Russell and Ohh (2008)
DIAP1/XIAP - Fruit fly/human Broemer etal. (2010)
DDB1 - Arabidopsis Hotton etal. (2012)
Transcription factors
p53 Inhibits transcriptional activity Human Xirodimas etal. (2004), Abida etal. (2007)
p73 Inhibits transcriptional activity by sequestering Human Watson etal. (2006)
Tap73 to the cytoplasm
AICD Inhibits transcriptional activity Human Lee etal. (2008)
E2F1 Inhibits transcriptional activity by blocking Human Aoki etal. (2012), Loftus etal. (2012)
protein interaction
HIFTa Stabilizes protein Human Ryu etal. (2011)
Transcriptional inhibitors
BCA3 Activates by promoting protein interaction Human Gao etal. (2006)
RCAN1 Stabilizes by inhibiting proteasomal Human Noh etal. (2012)
degradation
Receptors
EGFR Promotes receptor ubiquitylation and ligand Mammals (Oved etal., 2006)
induced degradation
TBRII Stabilizes protein Human (Zuo etal., 2013)
Kinases
PINK1 Stabilizes the cytosolic protein form Human Choo etal. (2012)
CKla - Human Huart etal. (2012)
Other
L11, S14, and other Stabilizes the protein Human Xirodimas etal. (2008), Zhang etal. (2012)
ribosomal proteins
SHC - Human Jin etal. (2013)
HUR Stabilizes the protein Human Embade etal. (2012)
Histone H4 Induces complex formation and amplifies Ubi ~ Human Ma etal. (2013)

drICE/caspase 7
Lag2
ML3

cascade

Reduces catalytic activity

Fruit fly/human
Yeast

Arabidopsis

Broemer etal. (2010)
Siergiejuk etal. (2009)
Hakenjos etal. (2013)

PARK, Parkin-like cytoplasmic protein, MdmZ2, murine double minute 2, Parkin, Parkinson juvenile disease protein 2, BRAP2, BRCAT-associated protein; DIAPT,
Drosophila inhibitor of apoptosis 1; XIAR X-linked inhibitor of apoptosis protein, DDB1, damaged DNA binding protein1; VHL, Von Hippel-Lindau disease tumor
suppressor; p53, cellular tumor antigen p53, p73, tumor protein p73; AICD, amyloid beta A4 protein; E2F1, transcription factor E2F1; HIF 1a, hypoxia-inducible factor
3-alpha; BCA3, breast cancerassociated gene 3, RCAN1, regulator of calcineurin 1; EGFR, epidermal growth factor receptor; TBRII, transforming growth factorbeta
receptor type Il; PINK1, PTEN-induced putative kinase protein 1, CK1a, casein kinase 1 alpha; L11, ribosomal protein L11; S14, ribosomal protein S14; SHC, Src
homology 2 domain-containing-transforming protein C1; HUR, Hu-antigen R, DrICE, Drosophila interleukin-18-converting enzyme, Lag2, longevity-assurance protein
2; ML3, myeloid differentiation factor-2-related lipid-recognition domain protein 3.
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MLN4924 (Hakenjos etal., 2011). Thus, there is evidence that
NEDDS8-modified proteins other than the cullins can exist but may
be low in abundance or only transiently modified under normal
conditions.

At the functional level, genetic experiments in Schizosaccha-
romyces pombe showed that the introduction of a specific cullinl
mutant, which constitutively activates CRLs and therefore renders
these CRLs independent from the neddylation machinery, was
unable to rescue the phenotype of NEDD8 conjugation mutant
uba3-10 (Girdwood etal., 2011, 2012). This finding may suggest
additional biological functions for neddylation that are impaired
in uba3-10 besides the neddylation defect of cullins.

IDENTIFICATION OF NEDDYLATION SUBSTRATES - A DIFFICULT ISSUE
A major problem for the identification of new neddylation sub-
strates is the high sequence similarity between NEDDS8 and
ubiquitin. Both proteins are sequence identical at their C-termini
just downstream of a trypsin cleavage site resulting in an identical
di-glycine footprint on a modified protein after trypsin digestion
for proteomic analyses (Figure 1). Therefore, a di-glycine mod-
ification on a lysine of a given peptide cannot unanimously be
attributed to either ubiquitin or NEDD8 conjugation.

Ubiquitin and NEDDS also show a remarkable similarity in
their three-dimensional structure and key residues are conserved
between the two proteins, most prominently three amino acids
(L8, 144, and V70) in the hydrophobic patch that are involved in
mediating ubiquitin-protein interactions (Rao-Naik etal., 1998;
Whitby etal., 1998; Choi etal., 2009; Girdwood etal., 2011).
Thus, a high substrate specificity is required to avoid leakage
of ubiquitin or NEDDS into the respective other modification
pathway. Indeed, it has become apparent in the last years that
there is a crosstalk between the NEDD8 and ubiquitin conju-
gation machineries (Hjerpe etal., 2012b; Leidecker etal., 2012;
Singh etal., 2012). NEDD8 can be activated by the ubiquitin E1
UBA1 and once activated is conjugated to substrates in a man-
ner similar to ubiquitin (Singh etal., 2012). Inversely, however,
NAE specifically activates NEDD8 and does not use ubiquitin as
a substrate (Singh etal., 2012). NEDDS8 is incorporated in the
ubiquitin pathway by UBAI when the ratio of free NEDDS to
free ubiquitin, which under normal conditions is close to one,
shifts toward NEDDS8 (Hjerpe etal., 2012a; Leidecker et al., 2012).
The leakage of NEDDS8 into the ubiquitin pathway leads to the
formation of mixed chains with NEDDS8 possibly functioning
as chain terminator. This mechanism is likely the explanation
for the identification of NEDD8 chains in a proteomic study
by Jones etal. (2008) using overexpression of a tagged NEDDS8
construct. The ability of NEDDS8 to form chain linkages is not
essential in vivo as demonstrated by the viability of a Schizosac-
charomyces pombe strain carrying a Ned8p mutant construct
where all lysine residues that could potentially engage in chain
formation were mutated to alanine (Girdwood et al.,2011). Deple-
tion of cellular ubiquitin levels can be caused by knockdown or
inhibition of the 26S proteasome but can also have physiologi-
cal causes such as temperature or oxidative stress (Hjerpe etal.,
2012a; Leidecker etal., 2012). While this atypical neddylation has
been proposed to act as a stress response to ubiquitin deple-
tion, it is still unclear whether this type of atypical neddylation is

biologically relevant in vivo (Hjerpe etal., 2012a; Leidecker etal.,
2012).

NOVEL NEDDYLATION SUBSTRATES

As outlined above, various studies have led to the identification of
novel NEDD8-modified proteins. At the biochemical level, these
proteins belong to different protein families including E3 ubiquitin
ligases or transcription factors and neddylation has been shown
to positively or negatively interfere with their activity (Table 1).
Neddylation changes the biochemical properties of its target pro-
teins by inducing conformational changes as well as allowing or
precluding protein-protein interactions. Apart from its pleiotropic
effects on protein degradation through CRL neddylation, neddy-
lation has a prominent role in cell cycle regulation and cellular
stress response pathways in human cells and has also been linked
to Alzheimer and Parkinson disease (Table 1). In plants, the only
known non-cullin neddylation substrates are DAMAGED DNA
BINDING PROTEIN1 (DDB1) and ML3 from Arabidopsis. DDB1
is a subunit of a cullin4 E3 ubiquitin ligase and therefore biochemi-
cally close to the cells neddylation machinery (Hotton etal., 2012).
ML3 is a protein with intriguing cell biological features that plays
a role in pathogen responses (Hakenjos etal., 2013). Interestingly,
there is also evidence that ML3 has the ability to bind neddylated
proteins in a non-covalent manner. Since the precise biochemical
function of ML3 remains to be determined, it is at present unclear
what role neddylation has in the control of ML3 function.

Given the very recently acquired understanding of the close
interplay between ubiquitylation and neddylation, new and old
neddylation targets should undergo close scrutiny to ensure that
they are genuine targets for NEDD8 modification (Hjerpe etal.,
2012b). A catalog of appropriate characterization criteria has been
published (Rabut and Peter, 2008).

CONCLUSION

In this review, we have summarized the current knowledge of
the neddylation pathway in eukaryotes with an emphasis on the
role of neddylation in plants. While the enzyme pathway for the
conjugation and deconjugation of NEDD8 has been elucidated
in plants, findings from other eukaryotic model organisms sug-
gest that there are more, unknown players in this pathway that
need to be identified to gain a full understanding of the process
and its regulation. Particularly the areas of NEDD8 processing,
NEDDS ligases and the identification of non-cullin NEDD8 sub-
strates will require further detailed investigations in the future.
Also the presence of ubiquitin-NEDDS fusion proteins is unique
to plants. The analysis of their processing could bear information
that may allow understanding how the highly homologous ubig-
uitin and NEDDS8 proteins were derived from each other during
evolution.
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