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Plant nucleocytoplasmic transport beyond the nuclear envelope is important not only
for basic cellular functions but also for growth, development, hormonal signaling, and
responses to environmental stimuli. Key components of this transport system include
nuclear transport receptors and nucleoporins. The functional and physical interactions
between receptors and the nuclear pore in the nuclear membrane are indispensable for
nucleocytoplasmic transport. Recently, several groups have reported various plant mutants
that are deficient in factors involved in nucleocytoplasmic transport. Here, we summarize
the current state of knowledge about nucleocytoplasmic transport in plants, and we review
the plant-specific regulation and roles of this process in plants.
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INTRODUCTION
The nucleus is the most prominent organelle in eukaryotes and is
surrounded by the nuclear envelope, which provides a controlled
barrier between the nucleoplasm and the cytoplasm. The nuclear
envelope consists of a double membrane spanned by nuclear pore
complexes (NPCs), which form channels, allowing the passive dif-
fusion of small molecules. Macromolecules larger than ∼40 kDa
are transported actively across the nuclear envelope through the
NPC in a regulated manner (Grossman et al., 2012; Raices and
D’Angelo, 2012). How the rapid, bidirectional trafficking of thou-
sands of specific cargoes through the NPC is achieved has been
the subject of intense study (Mosammaparast and Pemberton,
2004). In addition to bulk transport of constitutive nuclear pro-
teins, changes in gene expression generally require the controlled
import/export of key signaling molecules to/from the nucleus
(Stewart, 2007; Merkle, 2011), indicating that nucleocytoplasmic
transport is a highly dynamic process.

The first step in nucleocytoplasmic transport is the recogni-
tion of cargo molecules by specific transport receptors, including
importins and exportins (Bednenko et al., 2003; Mosammaparast
and Pemberton, 2004; Stewart, 2007). Following formation of the
cargo–transport receptor complex, the NPC mediates transloca-
tion of this complex through the nuclear envelope. Such selective
transport of molecules across the nuclear envelope plays an impor-
tant role not only in basic cellular activity, but also in cellular
differentiation and responses to environmental signals (Raices and
D’Angelo, 2012; Parry, 2013). Recent investigations of nucleocy-
toplasmic transport have revealed unique roles and unexpected
layers of regulation of this process in plants (Meier and Somers,
2011). In this review, we summarize studies involving mutants
defective in nucleocytoplasmic transport factors, and we discuss
the key roles of the nucleocytoplasmic transport system in plant
cells.

IMPORTIN β FAMILY IN Arabidopsis thaliana
Importin β (or karyopherin β) family proteins are major nuclear
transport receptors that interact with Ran small GTPase and

mediate the nuclear transport of specific cargoes (Lott and Cin-
golani, 2011; Merkle, 2011). These proteins are also referred to
as importins or exportins depending on whether they mediate
cargo import into, or export out of, the nucleus. The structures of
importin β proteins are characterized by a similar series of heli-
cal HEAT repeats, which are approximately 40 residues in length
(Strom and Weis, 2001; Xu et al., 2010; Lott and Cingolani, 2011).
The fundamental repeat unit is a right-handed superhelical struc-
ture consisting of a hairpin comprising two β helices. Each hairpin
is connected to the next by a linker region. Crystal structural anal-
ysis has indicated that mammalian importin β is composed of 19
HEAT repeats and uses extensive interaction interfaces to asso-
ciate with different cargoes (Cingolani et al., 1999, 2002; Lee et al.,
2003).

The Arabidopsis thaliana genome encodes 18 importin β pro-
teins (Figure 1), while the Saccharomyces cerevisiae genome
encodes 14 importin β proteins and the Homo sapiens genome
encodes more than 20 of these proteins (Goldfarb et al., 2004). At
least 16 subfamilies of importin β, each containing representatives
from eukaryotic subgroups, have been identified (Figure 1), sug-
gesting that these importin β subfamilies were established prior
to eukaryotic radiation (O’Reilly et al., 2011). Plant genomes
lack the exportin 6 (XPO6) gene family, while embryophyte-
specific sequences have been identified, which were designated
PLANTKAP (At3g17340 in A. thaliana; O’Reilly et al., 2011;
Figure 1).

IMPORTIN α FAMILY IN A. thaliana
The best understood function of importin α is to serve as an
adaptor that links classical nuclear localization signal (cNLS)-
containing proteins to importin β, which interacts with the ternary
complex at the NPC. Importin α comprises two functionally and
structurally distinct domains, namely, the flexible N-terminal
importin β-binding (IBB) domain and a C-terminal domain that
consists of eight to nine tandem armadillo (ARM) repeats (Gold-
farb et al., 2004; Marfori et al., 2011). The stacking of helical ARM
repeats generates a right-handed superhelical structure, forming
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FIGURE 1 | Comparison of importin β family proteins in Arabidopsis, human, and yeast. (A) Phylogenetic tree of importin β family in Arabidopsis (green),
human (blue), and yeast (black) constructed using the neighbor joining method. (B) Arabidopsis importin β family proteins.

two separate cNLS-binding sites (the major and minor sites; Conti
et al., 1998; Marfori et al., 2011). Chang et al. (2012) determined
the crystal structure of rice importin α1a at 2-Å resolution. Con-
sistent with S. cerevisiae and H. sapiens proteins, Oryza sativa
importin α preferentially binds to the prototypical cNLS from
SV40 large T-antigen at the major nuclear localization signal (NLS)
binding site. On the contrary, two plant-specific NLSs (Kosugi
et al., 2009) bind to the minor site of rice importin α. Interestingly,
mouse importin α binds to these plant-specific NLSs at the major
site, suggesting that plant importin α has plant-specific features to
mediate nuclear import.

The number of importin α family genes has increased over
the course of evolution; yeast has a single importin α gene,
Drosophila melanogaster has four genes, and H. sapiens has six
genes (Mason et al., 2009; Yasuhara et al., 2009; Figure 2). H. sapi-
ens, D. melanogaster, and most animal importin α genes fall into
one of three conserved clades, i.e., α1, α2, and α3 (Mason et al.,
2002, 2009). By contrast, plant and fungal importin α belong to
α1 and a non-conventional family (Figure 2), suggesting that the
importin α1 gene may be the earliest progenitor of importin α,
and α2 and α3 are metazoan specific importin α. A. thaliana has
eight importin α proteins (IMPA1–7 and 9) that contain both

IBB domains and ARM repeats and a single protein (IMPA8)
that contains only ARM repeats. Based on sequence similarity,
A. thaliana IMPA9 is likely to be a non-conventional importin α

that does not fall into the α1, α2, or α3 groups (Figure 2). A.
thaliana IMPA1 binds to all three types of NLS in vitro, which
were identified in maize and SV40 (Smith et al., 1997). Moreover,
IMPA1–4 interact with A. thaliana CAS (cellular apoptosis sus-
ceptibility), which is required for recycling importin α from the
nucleus to the cytosol, indicating that nucleocytoplasmic transport
is functionally conserved in plants (Haasen and Merkle, 2002).

STRUCTURE OF THE NUCLEAR PORE COMPLEX
The NPC is a macromolecular assembly of protein subcomplexes
that serves as a key regulator of molecular trafficking between the
cytoplasm and the nucleus (Grossman et al., 2012; Parry, 2013;
Tamura and Hara-Nishimura, 2013). Extensive studies have iden-
tified more than 30 different nucleoporin proteins that serve as
building blocks of the NPC (Rout et al., 2000; Cronshaw et al.,
2002; Tamura et al., 2010). By contrast to other nuclear envelope
proteins, NPC components are evolutionarily conserved between
yeast, animals, and plants, indicating that these NPCs share a
common progenitor (Devos et al., 2006). Based on their function
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FIGURE 2 | Comparison of importin α family proteins in Arabidopsis, human, and yeast. (A) Phylogenetic tree of importin α family in Arabidopsis (green),
human (blue), and yeast (black) constructed using the neighbor joining method. (B) Arabidopsis importin α family proteins.

in the NPC, nucleoporins are classified into two groups, includ-
ing FG (phenylalanine–glycine) repeat-containing nucleoporins
and scaffold nucleoporins. The FG-repeat domain is composed
of multiple FG-rich peptides and is natively unfolded (Denning
et al., 2003). FG nucleoporins account for as much as one-third
of the molecular mass of the NPC. Since nuclear transport
receptor–cargo complexes dock to the NPC by binding to their
FG domains, FG nucleoporins are key determinants of nucleocy-
toplasmic transport. Scaffold nucleoporins form biochemically
stable NPC subcomplexes that appear to play important roles
as building blocks during NPC biogenesis on the nuclear mem-
brane. NPC core scaffold proteins consist of cage-like structures,
which is similar to the structure of coated vesicles (Bonifacino and
Glick, 2004; Strambio-De-Castillia et al., 2010). This characteris-
tic similarity suggests that a simple membrane-curving module
is the ancient common ancestor of NPCs and coated vesicles
(Devos et al., 2006; Alber et al., 2007). In addition to their roles in
nucleocytoplasmic transport, NPCs and individual nucleoporins
are involved in a large number of cellular processes, including
kinetochore and spindle assembly, regulation of gene expression,
chromatin organization, and DNA repair (Strambio-De-Castillia
et al., 2010; Bukata et al., 2013; Van de Vosse et al., 2013; Table 1).

DEVELOPMENT
THE ROLE OF EXPORTINS IN PLANT DEVELOPMENT
The first reported A. thaliana importin β family mutant was hasty
(hst ; Telfer and Poethig, 1998). In a forward genetic screen, hst was

originally identified as a mutant defective in the transition between
developmental phases. The hst mutant exhibits pleiotropic phe-
notypes, including reduced size of the shoot apical meristem,
accelerated vegetative phase change, late flowering under short
day conditions, and reduced fertility (Bollman et al., 2003), sug-
gesting that HST is essential for various developmental pathways
in plants. The HST gene is the ortholog of H. sapiens exportin
5 (XPO5) and the S. cerevisiae bidirectional transporter MSN5
(Bollman et al., 2003). In addition, HST interacts with Ran in yeast
two-hybrid assays and localizes to the nuclear periphery (Bollman
et al., 2003). Another exportin mutant, paused (psd), was isolated
by two different groups (Telfer et al., 1997; Hunter et al., 2003; Li
and Chen, 2003). The psd mutant exhibits transiently disrupted
organization of the shoot apical meristem, but the timing of the
transition to the adult phase of vegetative development is not sig-
nificantly altered in this mutant (Telfer et al., 1997). PSD encodes
an ortholog of exportin-t (XPOT), which mediates nuclear export
of tRNAs in yeast (Hellmuth et al., 1998) and human (Kutay et al.,
1998).

The different phenotypes observed between the hst and psd
exportin mutants can be accounted for by their impaired nuclear
export of different cargoes. The hst mutation leads to reduced
accumulation of most micro RNAs (miRNAs) but has no effect
on the accumulation of tRNAs or endogenous small interfering
RNAs (Park et al., 2005). On the contrary, the psd mutation results
in compromised tRNA-Tyr processing but does not affect the
accumulation or nuclear export of miRNAs (Park et al., 2005).
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Table 1 | Identified plant nucleoporin mutants.

Nup name AGI code Other name Related pathway Reference

Nup160 At1g33410 SAR1 Flowering, mRNA export, immunity, cold stress,

and auxin signaling

Dong et al. (2006a), Parry et al. (2006),

Robles et al. (2012), Wiermer et al. (2012)

Nup96 At1g80680 SAR3/MOS3 Flowering, mRNA export, immunity, and auxin

signaling

Zhang and Li (2005), Parry et al. (2006)

TPR/NUA At1g79280 Flowering, mRNA export, miRNA metabolism,

and auxin signaling

Jacob et al. (2007), Xu et al. (2007)

Nup58 TCU1 Flowering Ferrandez-Ayela et al. (2013)

Nup62 Flowering Zhao and Meier (2011)

Nup136/Nup1 Flowering and mRNA export Lu et al. (2010), Tamura et al. (2010)

ELYS HOS1 Flowering, mRNA export, and cold stress Dong et al. (2006b), Lazaro et al. (2012),

Jung et al. (2013), MacGregor et al. (2013)

Nup133 Symbiosis Kanamori et al. (2006), Binder and Parniske (2014)

Nup75/85 Symbiosis Saito et al. (2007), Binder and Parniske (2014)

Seh1 NENA Symbiosis, mRNA export and immunity Groth et al. (2010), Wiermer et al. (2012)

Nup88 MOS7 Immunity Cheng et al. (2009)

Nup214 LNO1 Embryo development Braud et al. (2012)

GLE1 Embryo development Braud et al. (2012)

These results clearly indicate that HST and PSD do not share
RNA cargoes for nuclear export. Therefore, multiple nuclear
export pathways for these small RNAs are required for plant
development.

Arabidopsis thaliana has two loci for exportin 1 (XPO1 in
vertebrates), designated as XPO1A (At5g17020) and XPO1B
(At3g03110); the corresponding proteins share 86% identity
(Blanvillain et al., 2008). Single mutants for XPO1A and XPO1B
appear normal, indicating that these genes function redundantly.
However, a double mutant homozygote has not been recovered
(Blanvillain et al., 2008). Consistent with this observation, cotrans-
mission of mutant alleles of these genes is abolished through the
female and is strongly reduced through the male. Female game-
tophytes of the double mutant show defects ranging from early
developmental arrest to disorganized cellular constitution. It was
therefore concluded that a maternal copy of XPO1 is required to
establish a viable embryo (Blanvillain et al., 2008).

FLOWERING
As expected, since nucleoporin is involved in fundamental cellular
functions, many nucleoporin mutants exhibit pleiotropic phe-
notypes at both the reproductive and vegetative developmental
stages. An early flowering phenotype is commonly observed in
various nucleoporin mutants, including nup58 (Ferrandez-Ayela
et al., 2013), nup62 (Zhao and Meier, 2011), nup96/sar3/mos3
(Zhang and Li, 2005; Parry et al., 2006), nup136/nup1 (Lu et al.,
2010; Tamura et al., 2010), nup160/sar1 (Dong et al., 2006b; Parry
et al., 2006), hos1/elys (Ishitani et al., 1998; Lazaro et al., 2012; Jung
et al., 2013; MacGregor et al., 2013), and tpr/nua (Jacob et al.,
2007; Xu et al., 2007). Xu et al. (2007) found that the tpr/nua
mutation affects the expression of flowering-related genes. The

expression of floral repressor genes (FLC and MAF4) is reduced
in the tpr/nua mutant, while the expression of floral activator
genes (FT, SOC, LFY, MYB33, and MYB65) is increased, compared
to wild type. Jacob et al. (2007) identified TPR/NUA as a sup-
pressor of FLC expression. The authors also found that tpr/nua
flowers earlier than the flc null mutant, suggesting that FLC-
dependent and -independent flowering pathways are regulated by
TPR/NUA.

The function of HOS1/ELYS in flowering pathway has been well
studied. Genetic analysis with hos1 flc double mutant suggested
that the HOS1/ELYS regulates flowering time independent of FLC
(Lazaro et al., 2012; Lee et al., 2012a). Moreover, it was found
that HOS1/ELYS and ubiquitinated-CONSTANS (CO) physically
interact, and HOS1/ELYS regulates CO abundance, particularly
during the daylight period (Lazaro et al., 2012). These results
suggest that HOS1/ELYS plays a key role in the proteasome-
dependent degradation of CO at nuclear pore for control of
flowering time (Lazaro et al., 2012; Joon Seo et al., 2013). Mac-
Gregor et al. (2013) reported that hos1/elys is affected in circadian
clock function, exhibiting a long-period phenotype. Interestingly,
Lee et al. (2012b) demonstrated that alternative HOS1 splicing
variant is crucial for regulating flowering time, and expresses in a
photoperiod-dependent manner.

On the contrary, it was also reported that HOS1/ELYS directly
regulates FLC transcription at the chromatin level through inter-
actions with FVE, a histone binding protein (Lee et al., 2012a), and
histone deacetylase 6 (HDA6; Jung et al., 2013). FVE and HDA6
interact with each other to function in chromatin silencing in A.
thaliana (Gu et al., 2011). HOS1/ELYS also interacts with HDA6
and inhibits the binding of HDA6 to FLC chromatin. Moreover,
cold treatment induces FLC expression by activating HOS1, which
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inhibits the association of HDA6 with FLC chromatin, resulting
in delayed flowering. Therefore, HOS1/ELYS is thought to act as
a chromatin-remodeling factor for FLC regulation in response to
cold stress. Similar NPC-dependent gene regulation systems that
function via chromatin remodeling have been reported in other
organisms. In mammalian cells, the nuclear basket component in
NPC plays a fundamental role in chromatin organization (Krull
et al., 2010). Loss of a nucleoporin induces chromatin conden-
sation all along the nucleoplasmic side of the nuclear envelope,
suggesting that NPC maintains pore-associated chromatin in an
open state (Grossman et al., 2012). S. cerevisiae Nup170 binds
to specific chromatin domains to promote transcriptional repres-
sion through its interactions with chromatin-remodeling complex
(Van de Vosse et al., 2013). Interactions between chromatin and
nucleoporins may represent an initial event in the regulation of
gene expression, because this process occurs independently of
any preceding transcription (Schmid et al., 2006). Taken together,
these results suggest that HOS1/ELYS in NPC also provides a plat-
form for transcriptional regulation to control flowering time in
plants.

ESSENTIAL NUCLEOPORINS
Given their fundamental functions in cellular activities, nucleo-
porins are thought to be essential for plant viability. However,
only a few essential nucleoporins have been identified in A.
thaliana. A certain allele of nup136/nup1 mutant exhibits game-
tophytic or embryonic lethal (Lu et al., 2010). A partial loss of
Nup88/MOS7 produces variable phenotypes, while a complete loss
of Nup88/MOS7 causes lethality (Cheng et al., 2009). This result
is consistent with the lethal phenotype of a null nup88 mutant in
D. melanogaster (Uv et al., 2000). Nup214, which provides bind-
ing sites for mRNA export factors, was also found to be essential.
A mutation in Nup214 abolishes the first asymmetrical cell divi-
sion during early embryogenesis, resulting in an arrest in embryo
development (Braud et al., 2012). Furthermore, a mutation in
GLE1, which is thought to work in conjunction with Nup214
in the mRNA export pathway, also leads to embryonic lethality
(Braud et al., 2012). In S. cerevisiae, large-scale deletion analysis
has already identified many nucleoporins that are essential for cel-
lular viability (Giaever et al., 2002). Further systematic analysis of
all A. thaliana nucleoporins using T-DNA knockout lines will pro-
vide insights into the functional diversity and redundancy of each
plant nucleoporin.

HORMONE AND STRESS SIGNALINGS
THE ROLE OF IMPORTINS AND EXPORTINS IN HORMONE AND STRESS
SIGNALING PATHWAYS
SAD2 [super sensitive to abscisic acid (ABA) and drought2], which
is an ortholog of vertebrate importin 7 and 8, was suggested to reg-
ulate various hormone and environmental response pathways in A.
thaliana. The sad2 mutant exhibits ABA- and stress-hypersensitive
induction of luciferase reporter activity (Verslues et al., 2006).
Interestingly, sad2 exhibits ABA hypersensitivity during seed ger-
mination and seedling growth, suggesting that SAD2 is involved
in nuclear transport of a negative regulator of ABA sensitivity
(Verslues et al., 2006). A. thaliana contains one gene (At3g59020)
homologous to SAD2 that is in the same clade as importin 7/8

(Figure 1). However, knock out of this gene does not duplicate
the sad2 phenotype in response to ABA during seedling growth
(Verslues et al., 2006), indicating that SAD2 transports specific
cargoes during ABA signaling. In addition to ABA responses, jas-
monic acid (JA)-inducible trichome formation is also impaired in
the sad2 mutant (Yoshida et al., 2009). The subnuclear localization
of the bHLH transcription factor GLABRA3 (GL3), which pro-
motes trichome formation in response to JA, is disrupted in sad2.
This suggests that SAD2 regulates (either directly or indirectly) the
subnuclear localization of GL3 in response to JA.

The R2R3-type transcription repressor MYB4 is a cargo pro-
tein of SAD2 that undergoes nuclear transport (Zhao et al., 2007).
MYB4 was previously found to control negative expression of cin-
namate 4-hydroxylase (Jin et al., 2000) and, therefore, regulate
the synthesis of sinapate esters, which are major photoprotec-
tive pigments (Li et al., 1993; Jin et al., 2000). Zhao et al. (2007)
demonstrated that sad2 significantly accumulates UV-absorbing
pigments and is more tolerant to UV-B irradiation than the wild
type. The authors also found that MYB4 coimmunoprecipitates
with SAD2 and its nuclear localization requires functional SAD2,
suggesting that SAD2 transports MYB4 to the nucleus to help
regulate the plant response to UV-B radiation.

Arabidopsis thaliana KPNB1 (At5g53480), which belongs to
the IMB1 family, also modulates ABA signaling (Luo et al., 2013).
Like the sad2 mutant, the kpnb1 mutant exhibits increased ABA
hypersensitivity during seed germination and cotyledon develop-
ment. Moreover, the kpnb1 mutation increases stomatal closure in
response to ABA, reduces the rate of water loss, and substantially
increases drought tolerance. However, KPNB1 was proposed to
regulate an ABA pathway independently of SAD2. Loss of func-
tion of SAD2 results in early flowering and increased expression
of ABA-responsive genes (RD20A and RAB18) under normal con-
ditions (Verslues et al., 2006). On the contrary, the kpnb1 mutant
exhibits late flowering and normal expression of these genes (Luo
et al., 2013). These results suggest that KPNB1 transports different
cargoes from those of SAD2 to regulate ABA signaling.

As described above, two A. thaliana XPO1 genes (XPO1A,
At5g17020 and XPO1B, At3g03110) were previously considered
to be functionally redundant (Haasen et al., 1999; Merkle, 2003;
Blanvillain et al., 2008). However, the hit2 (heat intolerant 2)
mutant, in which a single XPO1A gene is mutated, shows a defect
in basal but not acquired thermotolerance (Wu et al., 2010). The
hit2 mutant is also sensitive to methyl viologen-induced oxidative
stress, and the survival of hit2 seedlings in response to heat stress
is affected by light conditions. It was therefore concluded that the
hit2 phenotype is attributable to the lack of a sufficient response to
heat-induced oxidative injury (Wu et al., 2010). This study clearly
indicates that XPO1A has its own specific function and cargoes,
which are not necessary for normal growth but are important for
plant survival under conditions of sustained or sudden heat stress.

COLD SIGNALING
There is significant evidence to demonstrate that nucleoporins
are required for cold responses. In a screen for altered expres-
sion of cold-induced reporter genes, Zhu and colleagues identified
several mutants, including nup160/sar1 (Dong et al., 2006b) and
hos1/elys (Ishitani et al., 1998; Lee et al., 2001; Dong et al., 2006a).
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The nup160/sar1 mutant impairs cold-responsive gene expres-
sion and is sensitive to chilling stress and defective in acquired
freezing tolerance (Dong et al., 2006b). On the contrary, hos1/elys
exhibits enhanced expression of cold-induced genes in response
to low temperature treatment, suggesting that HOS1/ELYS neg-
atively regulates the cold acclimation responses (Lee et al., 2001;
MacGregor et al., 2013). Gong et al. (2005) isolated a cryophyte
mutant, which exhibits an enhanced cold stress-induction of the
master regulator of cold tolerance (CBF2), and its downstream
target genes. The mutant is more tolerant to chilling and freezing
stresses but is more sensitive to heat stress. The mutation is found
in a DEAD box RNA helicase gene that is identical to the pre-
viously identified low expression of osmotically responsive genes 4
(LOS4) locus. The A. thaliana LOS4 is the ortholog of S. cerevisiae
DBP5, which interacts with Nup159 and controls mRNA export
(discussed below; Kohler and Hurt, 2007). It is demonstrated that
LOS4–GFP fusion localizes at the nuclear rim (Gong et al., 2005),
suggesting that A. thaliana LOS4 interacts with nuclear pore as
observed in S. cerevisiae DBP5.

AUXIN HORMONE SIGNALING
Genetic screening experiments have revealed that nucleoporin
is involved in auxin hormone signaling. The auxin resistance1
(axr1) mutant accumulates Aux/IAA proteins, repressors of auxin-
regulated transcription, resulting in a pleiotropic phenotype
consistent with an overall reduction in the auxin response (Lin-
coln et al., 1990). Two mutant suppressor of axr1 (sar) lines have
been isolated and characterized (Cernac et al., 1997; Parry et al.,
2006). Parry et al. (2006) found that SAR1 and SAR3 encode
Nup160 and Nup96, respectively, which are nucleoporins in
the Nup107–Nup160 subcomplex critical for NPC scaffolding.
The authors also found that the sar1 and sar3 mutants both
exhibit impaired nuclear localization of the transcriptional repres-
sor AXR3/INDOLE ACETIC ACID17, suggesting that SAR1 and
SAR3 are required for nuclear transport of Aux/IAA proteins in
response to auxin signaling. Robles et al. (2012) reported that
the nup160/sar1 mutant exhibits an enhanced ethylene response.
Mutation of ARF7 or ARF19 almost fully blocks the ethylene
hypersensitive phenotype in nup160/sar1, suggesting that auxin
signaling is responsible for regulating the magnitude of the ethy-
lene response. Jacob et al. (2007) demonstrated that mutation
of TPR/NUA, which forms the nuclear basket of the NPC, also
alters the auxin sensitivity of the axr1 mutant to the same level
as that of nup96/sar3. Importantly, the levels of several miR-
NAs, some of which regulate the expression of genes involved in
auxin signaling, are significantly reduced in tpr/nua. This obser-
vation suggests that NPC may link miRNA metabolism to auxin
signaling.

PLANT–PATHOGEN INTERACTION
THE ROLE OF TRANSPORTIN-SR IN IMMUNITY
Serine–arginine rich (SR) proteins are evolutionarily conserved
nuclear proteins that play diverse roles in RNA metabolism,
including pre-mRNA splicing, non-sense-mediated mRNA decay,
and mRNA translation (Reddy, 2004; Long and Caceres, 2009).
Transportin-SR (TRN-SR), which belongs to the TNPO3 sub-
family (Figure 1A), functions as a nuclear import receptor for

SR proteins in S. cerevisiae (Pemberton et al., 1997) and H. sapi-
ens (Kataoka et al., 1999). Interestingly, knockdown of a TRN-SR
gene (TSR-1) in Caenorhabditis elegans results in an early embry-
onic lethal phenotype, indicating that TRN-SR protein is essential
for viability (Longman et al., 2000). A. thaliana has two TRN-SR
orthologs (At1g12930 and At5g62600; Figure 1), one of which
was identified as MOS14 (modifier of snc1-1, 14), which plays a
key role in immune responses (Xu et al., 2011). The A. thaliana
mos14 mutant exhibits impaired nuclear localization of several
SR proteins, including mRNA splicing factors (Xu et al., 2011).
Consistent with this phenotype, altered splicing patterns of auto-
activated Resistance (R) genes (SNC1 and RPS4) were observed
in mos14. The authors also found that mRNA splicing of Actin1
and β-tubulin4 occurs normally in mos14, suggesting there is an
mRNA specificity in MOS14-dependent splicing. Taken together,
these results suggest that MOS14 is required for plant immunity
through proper splicing of R genes. It would be interesting to know
whether the other A. thaliana TRN-SR homolog (At1g12930)
has different functions and transports different cargoes from
MOS14.

THE ROLE OF IMPORTIN α IN Agrobacterium tumefaciens
TRANSFORMATION
To date, two A. thaliana importin α mutants have been reported.
Palma et al. (2005) identified the IMPA3 (At4g02150)-deficient
mutant mos6 (modifier of snc1, 6), which exhibits partially sup-
pressed constitutive-resistance responses in snc1 mutant. In mos6,
salicylic acid (SA) accumulation is inhibited in response to vir-
ulent pathogens, suggesting that MOS6 functions upstream of
SA biosynthesis in the resistance-signaling pathway. Bhattachar-
jee et al. (2008) found that four importin α isoforms (IMPA1–4)
interact with Agrobacterium tumefaciens virulence proteins (VirD2
and VirE2), which are required for escorting T-DNA into the
host’s nucleus. However, only the impa4 mutant, but not the
other (impa1–3) mutants, exhibits resistance to Agrobacterium
tumefaciens transformation. These results suggest that α1 fam-
ily proteins functionally diverged to acquire specialized roles
involving transport of specific cargoes. In further studies, charac-
terization of multiple impa knockout mutants might be required
for revealing the functional redundancy of IMPA family in
plants.

THE ROLE OF NUCLEOPORINS IN SYMBIOSIS AND IMMUNITY
RESPONSES
Three loss-of-function mutants of Nup133, Nup75/85, and
Seh1 have been identified in Lotus japonicus. These nucleo-
porin mutants are impaired in both fungal (arbuscular myc-
orrhizal fungi) and bacterial (rhizobium bacteria) symbioses
in a temperature-dependent manner (Kanamori et al., 2006;
Saito et al., 2007; Groth et al., 2010). It was also found that
nup85 nup133 double mutants, but not single mutants, exhibit
severe temperature dependent growth and developmental defects
(Binder and Parniske, 2014). Although the detailed mechanism of
these temperature-dependent phenotypes is unclear, the pheno-
types of these mutants are consistent with evidence suggesting
temperature-dependent plasticity of nuclear pore plugging in
Xenopus laevis (Stoffler et al., 2003). Intracellular root infection

Frontiers in Plant Science | Plant Cell Biology April 2014 | Volume 5 | Article 118 | 6

http://www.frontiersin.org/Plant_Cell_Biology/
http://www.frontiersin.org/Plant_Cell_Biology/archive


Tamura and Hara-Nishimura Plant nucleocytoplasmic transport

by either endosymbiont is controlled by the activation of calcium
and calmodulin-dependent kinase, a conserved regulatory compo-
nent of symbiosis signaling. However, these nucleoporin mutants
fail to exhibit perinuclear calcium spiking in response to Nod
factor, a lipo-chitin oligosaccharide, which leads to differentia-
tion of nodule tissues (Stougaard, 2000). NPC may play a role in
calcium spiking by acting as a gate for calcium ions or as a regu-
lator of calcium channels on the nuclear membrane. Although
calcium-mediated opening and closing of nuclear baskets has
been demonstrated in X. laevis (Stoffler et al., 1999), the molec-
ular mechanism underlying the role of nucleoporin-dependent
calcium spiking in the symbiotic process in L. japonicus is
unclear.

The A. thaliana snc1 (suppressor of npr1-1, constitutive 1)
mutant, which contains a gain-of-function mutation in the
R (resistance) gene, shows constitutive activation of disease-
resistance responses against pathogens. In a screen for suppres-
sors of snc1, Li and colleagues identified several mos (modifier
of snc1) mutants, including nup96/sar3/mos3 (Zhang and Li,
2005) and nup88/mos7 (Cheng et al., 2009). Both mos mutants
have abolished SA accumulation, pathogenesis-related (PR) gene
expression, and basal and R-gene-mediated resistance. Impor-
tantly, in nup88/mos7, nuclear accumulation of snc1 and the
defense signaling components NPR1 (non-expresser of PR genes
1) and EDS1 (enhanced disease susceptibility 1) is significantly
reduced, while nuclear retention of other tested proteins is
unaffected (Cheng et al., 2009). This result suggests that cargo
specificity between nuclear proteins and Nup88 is critical for
immune responses. Nup96 is a component of the Nup107–
Nup160 subcomplex, which is the evolutionarily conserved and
largest subcomplex in the NPC. Wiermer et al. (2012) also exam-
ined whether other Nup107–Nup160 subcomplex members are
involved in immunity. Among eight putative complex mem-
bers examined, only plants with defects in Nup96, Nup160, or
Seh1 are impaired in basal resistance and exhibit a suppressed
auto-immunity phenotype in snc1 (Wiermer et al., 2012). The
nup160/sar1 and seh1 mutants also exhibit compromised accu-
mulation of EDS1, an essential regulator of basal resistance, as
observed in nup88/mos7 plants. These results suggest that the
functions of these nucleoporins partially overlap, but nucle-
oporins also play specific regulatory roles in plant immune
responses.

RNA METABOLISM
REGULATION OF miRNA ACTIVITY BY IMPORTIN
A forward genetic screen for miRNA activity led to the identifi-
cation of the ema1 (enhanced miRNA activity1) mutant, which
is allelic to sad2 (Wang et al., 2011). Wang et al. (2011) found
that the levels of endogenous miRNA targets (SPL3, MYB54,
and CUC2) were reduced by 40–50% in sad2/ema1, indicating
that SAD2/EMA1 is involved in general miRNA production. The
authors also demonstrated that the miRNA effector complexes in
ema1 contain higher amounts of miRNAs and elevated mRNA
cleavage activity compared to the wild type, indicating that EMA1
modulates miRNA activity by influencing the loading of miR-
NAs into ARGONAUTE1 (AGO1) complexes. On the contrary,
ema1 has no effect on the accumulation of miRNAs or AGO1

on their cytoplasmic or nuclear distribution. These results sug-
gest that SAD2/EMA1 functions as a negative regulator of the
miRNA pathway. Although it is unclear whether SAD2/EMA1
directly or indirectly interacts with AGO1 complexes, SAD2/EMA1
may sequester excessive miRNAs to prevent their loading into the
AGO1 complex. Alternatively, nuclear-cytoplasmic distribution
of SAD2/EMA1 cargoes may be important for the regulation of
miRNA activity.

REGULATION OF mRNA EXPORT AT NUCLEAR PORE
The mRNA-transport receptor complex physically interacts with
the FG-repeats of FG nucleoporins, which allow it to overcome the
permeability barrier of the NPC (Kohler and Hurt, 2007). An aber-
rant mRNA export phenotype is widely observed in nucleoporin
mutants, including nup96/sar3/mos3 (Zhang and Li, 2005; Parry
et al., 2006), nup136/nup1 (Lu et al., 2010; Tamura et al., 2010),
nup160/sar1 (Dong et al., 2006b; Parry et al., 2006), hos1/elys (Mac-
Gregor et al., 2013), seh1 (Wiermer et al., 2012), and tpr/nua (Jacob
et al., 2007; Xu et al., 2007). In addition, deficiencies of NPC-
associated factors also result in abnormal mRNA export. Mutation
in LOS4, whose yeast ortholog is known to interact with nuclear
pore and regulate mRNA export (Kohler and Hurt, 2007), results
in abnormal mRNAs accumulation in nucleus (Gong et al., 2005).
Lu et al. (2010) reported that TREX-2 complex, which is anchored
by Nup136/Nup1, is required for mRNA export in A. thaliana.
Although several components involved in the mRNA export have
been isolated, further study will be required for understanding the
molecular mechanisms and physiological roles of mRNA export
system in plants.

CONCLUDING REMARKS
As discussed above, many nucleocytoplasmic transport mutants
exhibit pleiotropic phenotypes. MacGregor et al. (2013) demon-
strated that los4 and several nucleoporin mutants including
nup160/sar1, nup107, nua, and hos1/elys all exhibit long-period cir-
cadian phenotypes and alterations to clock gene expression. Since
many of the signaling pathways are under control of circadian
clock, it is raised possibility that impairing in nucleocytoplas-
mic transport leads indirect effects on the signaling pathways.
Moreover, tpr/nua was found to increase largely in the amount
of mRNA compared with wild type, leading to broad-scale tran-
scriptome alterations (Jacob et al., 2007). This result also suggests
that the nucleocytoplasmic transport has indirect effect on the
signaling. Further studies are needed in order to differentiate
between direct and indirect role of nucleocytoplasmic transport in
plants.

Recent years have seen major progress in our understand-
ing of the molecular mechanisms underlying nucleocytoplasmic
transport in plant cells. It is now firmly established that these
transport systems are responsible for developmental and signal-
ing pathways that are indispensable for plant growth. Although
nucleocytoplasmic transport is an evolutionarily conserved system
in eukaryotic cells, plants appear to have developed function-
ally divergent cargoes and regulatory mechanisms, especially in
response to environmental signaling. Achieving a deeper under-
standing of the mechanisms by which nuclear transport recep-
tors exert these functions will require the identification of the
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cargo molecules that are transported by these nuclear transport
receptors.
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