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Transfer cells are ubiquitous plant cells that play an important role in plant development
as well as in responses to biotic and abiotic stresses. They are highly specialized and
differentiated cells playing a central role in the acquisition, distribution and exchange
of nutrients. Their unique structural traits are characterized by augmented ingrowths of
invaginated secondary wall material, unsheathed by an amplified area of plasma membrane
enriched in a suite of solute transporters. Similar morphological features can be perceived
in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-
knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic
relationship, these obligatory biotrophic plant pathogens engage different approaches
when reprogramming root cells into giant cells or syncytia, respectively. Both nematode
feeding-cells types will serve as the main source of nutrients until the end of the nematode
life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram
plant host cells. In this review we will discuss the structure, function and formation of
these specialized multinucleate cells that act as nutrient transfer cells accumulating and
synthesizing components needed for survival and successful offspring of plant-parasitic
nematodes. Plant cells with transfer-like functions are also a renowned subject of interest
involving still poorly understood molecular and cellular transport processes.
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INTRODUCTION
The plant cell wall consists of a dynamic extracellular complex
that responds to external and internal cellular signals, and forms
a bridge between the plasma membrane and the cytoskeleton
(Humphrey et al., 2007). The cell wall is formed of a network of
polysaccharides and proteins and is multifunctional in plants: it
maintains and determines the cell shape (Szymanski, 2009; Singh
and Montgomery, 2011), resists internal turgor pressure (Haswell
et al., 2008), controls cell and plant growth (Wolf et al., 2012),
contributes to plant morphology (Hamant et al., 2010), regu-
lates diffusion through the apoplast and is involved in perception
and signaling during plant development and defense mechanisms
(Hamann, 2012; Nühse, 2012; Underwood, 2012). Plant cell walls
are composed of primary and secondary walls. The primary cell
wall is laid down during cytokinesis and keeps expanding until
cells acquire their final shape. The composition and heterogene-
ity of cell walls rely on developmental programs, in addition to
environmental conditions (Burton et al., 2010). Secondary cell
walls are thicker, and are deposited at the inner side of the pri-
mary cell wall mainly in highly specialized tissues and cell types
such as xylem vessels and fiber cells. While most cells deposit a
uniformly thickened secondary wall, some cells, e.g., tracheary ele-
ments (Hogetsu, 1991) and transfer cells (TCs; Gunning and Pate,
1974), build up an intricate secondary wall at restricted regions.

TCs are highly specialized cells that are found in algae and fungi,
and in all taxa of the plant kingdom, suggesting that every plant
has the genomic ability to develop TCs under a particular array
of environmental status and/or developmental signals (Gunning
and Pate, 1974; Offler et al., 2003; Andriunas et al., 2013). TCs
are situated at regions of functional nutrient transport (Gunning
and Pate, 1969, 1974) with the multifaceted wall ingrowth/plasma
membrane complex often oriented to the track of solute flow. They
facilitate apo/symplastic exchange of solutes and their cytoplasm is
typically dense and organelle rich, with numerous mitochondria
and organelles of the endomembrane secretory system situated
nearby the extended wall ingrowths (Gunning et al., 1968; Davis
et al., 1990). Vacuoles in TCs may be small or not present.

Generally, TCs develop from a range of differentiated cell
types by a process that involves de-differentiation followed by
re-differentiation named trans-differentiation (Andriunas et al.,
2013). Examples are xylem or phloem parenchyma cells, per-
icycle and epidermal cells. Since TCs arise from differentiated
plant cells, these are named according to the initial cell type, e.g.,
companion-cell TCs (Gunning et al., 1968; Wimmers and Turgeon,
1991; Haritatos et al., 2000), nucellar projection TCs (Wang et al.,
1994), and so on. The trans-differentiation process occurs either
during the normal developmental course of a particular plant tis-
sue or takes place in response to an abiotic or biotic stress. The
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ensuing TC has a distinctive wall harboring intricately invaginated
ingrowths unsheathed by a plasma membrane enriched in nutri-
ent transporter proteins (Offler et al., 2003). Ingrowths on walls
in TCs generally present the reticulate or flange architecture or a
combination of both (Talbot et al., 2002). TCs may well develop at
both sides of the tissue interface or only at one side and ingrowths
may be asymmetrically distributed.

Although little is known about the molecular signals that induce
TC differentiation, some genes expressed associated with TCs have
been described (Hueros et al., 1995, 1999; Gómez et al., 2002;
Gutiérrez-Marcos et al., 2004; Muñiz et al., 2006). Among these
the Myb-related protein-1 (MRP-1) was the first TC-specific tran-
scriptional activator identified in plants (Gómez et al., 2002) and
was shown to be a key regulator of TCs differentiation process
in maize endosperm (Gómez et al., 2009). In addition, MRP-1
regulates the expression of several TC-specific genes, like BETL-1
and BETL-2 (Gómez et al., 2002), Meg-1 (for Maternally Expressed
Gene 1; Gutiérrez-Marcos et al., 2004), and TCRR-1 (for transfer
cell response regulator 1; Muñiz et al., 2006), through its interac-
tion with the corresponding promoters (Barrero et al., 2006) and
of BETL-9 and BETL-10 promoters (Gómez et al., 2009).

Transfer cells can also develop associated with biotic symbionts
(nitrogen-fixing bacteria and mycorrhiza) and plant pathogens
(e.g., nematodes, leafhoppers, fungus; Pate and Gunning, 1972;
Offler et al., 2003). TC establishment is also linked to interac-
tions connected with a reciprocally beneficial trade of nutrients
between host and symbiont. Examples are Frankia hyphae on
Alnus rubra root hair infection directing the development of
nitrogen-fixing root nodules (Berry et al., 1986), or root epider-
mal cells in association with mycorrhizas (Allaway et al., 1985)
and Rhizobium nodules on pea roots (Gunning et al., 1968).
Examples of TC induction in response to pathogen strike com-
prise injury of leafhopper on companion cells of Medicago
sativa (alfalfa) internodes (Ecale-Zhou and Backus, 1999) and
disease caused on Duchesnea indica leaf cells by rust fungus
(Mims et al., 2001).

Infection of plant roots by plant-parasitic nematodes also
lead to the development of root swellings containing specialized
host-derived feeding structures, with which nematodes acquire
nutrients. The most studied specialized feeding sites are induced
by root-knot (RKN, Meloidogyne spp.) and cyst (CN, Globodera
spp., Heterodera spp.) nematodes, designated giant cells and syn-
cytia, respectively (Jones and Northcote, 1972a,b). However, other
minor economic species belonging to other taxa, such as Roty-
lenchulus spp., Nacobbus spp., and Xiphinema spp., are also able
to induce specialized feeding sites in the host roots. In the case
of RKN and CN, both feeding-cell types have the function to
feed the pathogen (Jones and Northcote, 1972a,b; Schemes in
Figures 1A,B). Products secreted by nematodes through their
stylet induce the differentiation of root cells into feeding struc-
tures and the content of this secretion remains largely unidentified
(Mitchum et al., 2013).

The molecular and cellular processes involved in solute trans-
port in plant tissues via TCs is yet poorly understood, even
though vital for the survival of plants and particular biotrophic
plant pathogens. This review will focus on data available on
cells with transfer-like function induced by biotrophic sedentary

FIGURE 1 | Schematic view of nematode feeding transfer-cells induced

by plant-parasitic nematodes. (A) Giant cells induced by RKN show cell
wall thickenings with invaginations (blue arrow) often at the proximity of
xylem vessels. Plasmodesmata (red arrow) also connect giant cells with
phloem cells to facilitate solute transfer and may connect NCs.
(B) Syncytium induced by a CN show cell wall thickenings with
invaginations (blue arrow) often at the proximity of xylem vessels.
Plasmodesmata (red arrow) also connect a syncytium with phloem cells to
facilitate solute transfer and may connect NCs. Wall stubs are the result of
cell dissolution of several root cells that fused to the syncytium itself.
Asterisk, giant cell; X, xylem; S, syncytium.

plant-parasitic nematodes, such as RKN and CN nematodes.
Cytological similarities between TCs suggest that at least part of
the nematode feeding site developmental pathway might involve
common routes regulating TC morphology and function.

NEMATODE INDUCED TRANSFER CELLS: CELLULAR
REARRANGEMENTS AND FUNCTION
Nematodes are devastating plant pathogens that trigger yield losses
in numerous crop plants. A great part of the damage is caused
by sedentary nematodes, which induce specialized feeding sites
in plant roots, from which nutrients are withdrawn. Amongst
these pathogens, CN (family Hoplolaimidae) and RKN nematodes
(family Meloidogynidae) are considered the major economically
important plant parasitic species (de Almeida Engler et al., 2005).
Feeding sites induced by CN and RKN are regarded as resilient
metabolic sinks (Grundler and Hofmann, 2011; Bartlem et al.,
2014). Even though both feeding systems share common structural
and functional features, their ontogeny differs considerably.

Root-knot nematodes induce galls composed of giant cells sur-
rounded by neighboring cells (NCs), giving the root a shape of a
knot (Figures 2A,B; de Almeida Engler et al., 1999, 2010). Giant
cells are generated through sequential mitoses without cytokinesis
(Huang and Maggenti, 1969; de Almeida Engler et al., 2004) and
cycles of DNA replication (Jones and Payne, 1978; Wiggers et al.,
1990; de Almeida Engler et al., 1999, 2012), leading to nuclear and
cellular hypertrophy.

Cyst nematodes induce syncytia, formed by an initial feeding
cell followed by fusion of hundreds of NCs causing root distension
(Figures 2C,D; de Almeida Engler et al., 1999, 2010; Sobczak et al.,
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FIGURE 2 | Nematode feeding sites induced by specialized sedentary

biotrophic plant-parasitic nematodes. (A,B) Arabidopsis thaliana roots
infected with the RKN Meloidogyne incognita. (A) A typical gall induced in
the plant host containing a mature female nematode, and associated
gelatinous matrix filled with nematode eggs. (B) Longitudinal gall section
containing seven multinucleate giant cells with unevenly thickened cell
walls, surrounded by asymmetrically divided NCs. (C,D) Arabidopsis
thaliana roots infected with the CN Heterodera schachtii. (C) A typical
syncytium induced in plant host roots associated with a female CN.
(D) Detailed longitudinal section of a syncytium resulting from the cell wall
dissolution of several root cells. em, egg masses; g, gall; n, nematode;
NC, neighboring cells; Asterisk, giant cells; S, syncytium. Bars = 50 μm.

2011). The multinucleated state in a syncytium is most probably
attained by cell wall dissolution of NCs (Endo, 1978) rather than
by mitotic activity. Increase in cytoplasmic density and nuclear
volume (de Almeida Engler et al., 1999, 2012) and cell wall mod-
ifications (Jones and Goto, 2011; Sobczak and Golinowski, 2011)
have been observed for both syncytia and giant cells. Both feeding
sites lead to root swellings disturbing water and nutrient transport
thereby affecting plant growth.

Different arguments have been attributed to the choice of
nematodes to induce feeding cells at the vascular parenchyma.
The position of the initial syncytial cell ensures close contact of
the feeding site at the proximity of the xylem and phloem nec-
essary to provide nutrients to the developing gall (Bartlem et al.,
2014) or syncytium. As well, the selected cells of the vascular tissue
may be more amenable to the nematode-induced changes. Vascu-
lar parenchymal cells are not entirely differentiated and may thus
be arrested at a particular cell cycle phase, allowing the switch to

other cell types like the nematode feeding site (de Almeida Engler
et al., 2011). Roles of cortical or endodermal cells outside the vas-
cular cylinder tissue have not yet been ascribed to syncytia induced
by the CN, Heterodera schachtii, nor to galls induced by the RKN,
Meloidogyne incognita, in Arabidopsis thaliana roots.

In the past years there has been extensive data reporting on
the anatomy of the sophisticated nematode feeding sites induced
by CN and RKN, comprising light, scanning and transmission
electron microscopy (e.g., Bird, 1961; Jones and Dropkin, 1976;
Wergin and Orion, 1981; Hussey and Mims, 1991; Berg et al.,
2008; Sobczak and Golinowski, 2008). Both nematode feeding
sites share common features, such as the increase of metabolic
activity and cytoplasmic density, the replacement of a large cen-
tral vacuole by several smaller ones, the large nuclei number
of increased size, and the proliferation of organelles including
Golgi stacks, mitochondria, plastids, ribosomes, and endoplas-
mic reticulum (Figure 3; Vieira et al., 2013 and Figure 4: Berg
et al., 2008; Sobczak et al., 2011). Concomitant with the struc-
tural modifications in a gall or a syncytium, cell walls thicken
and finger-like protuberances (ingrowths or cell wall labyrinths)
form (Schemes in Figures 1, 3 and 4; Berg et al., 2008; Sobczak
et al., 2011; Vieira et al., 2013) with the function to increase
the membrane surface area for solute uptake (e.g., Golinowski
et al., 1996; Hussey and Grundler, 1998). The cell wall degra-
dation is also observed in syncytia (Scheme in Figures 1B and
2D; de Almeida Engler et al., 1999 and Figures 4A,B; Sobczak
et al., 2011). Extensive changes of cell wall architecture in diverse
types of TCs encountered in plants may comprise cell wall
ingrowths and partial cell wall degradation (Offler et al., 2003)
as occurring in syncytia. Increased giant cell wall ingrowths
accompanied by intense surrounding vascularization will certainly
contribute to the access to nutrient supply by the feeding nema-
tode (Bartlem et al., 2014). Similar intense vascularization around
syncytia will certainly enhance nutrient supply to the developing
nematode.

Modifications of plant cell walls within nematode feeding cells
appear to be coordinated by significant changes in host gene
expression, as highlighted by a range of methods (e.g., Gheysen
and Fenoll, 2002; Jammes et al., 2005; Hammes et al., 2005; Ithal
et al., 2007a,b; Gheysen and Mitchum, 2009; Barcala et al., 2010;
Damiani et al., 2012). Examples are plant cell wall and metabolism
genes, shown to be differentially expressed in nematode feeding
sites compared to uninfected root tissue. Although the origin of
thickened cell walls, and elaborate cell wall labyrinths of combined
reticulate or flange architecture are still not well understood, the
elaborate structural design of nematode feeding cell walls reflects
the hyperactivity of the cell wall synthesis machinery of the host
plant. Similarly to walls of plant TCs (Offler et al., 2003), feeding
cells are mainly composed of polysaccharides such as cellulose,
hemicelluloses and pectin (Dropkin and Nelson, 1960; Littrell,
1966).

The large repertoire of host genes encoding plant cell wall
modifying enzymes distinctively regulated in giant cells include
for example; an extensin (EXT, Niebel et al., 1993), the expansin
gene family (several members of α- and β-expansins; Bar-Or et al.,
2005; Jammes et al., 2005; Gal et al., 2006), a pectin acetylesterase
(putative pectin acetylesterase, PAE homologue; Vercauteren et al.,
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FIGURE 3 | Anatomy of Meloidogyne incognita-induced giant cells in

Arabidopsis thaliana roots. (A) Light microscopy image of sectioned
giant cells embedded in a gall and stained with toluidine blue. Cell wall
thickenings (black arrows), and a cell wall stub (red arrow) indicating
arrest of cytokinesis. (B–D) Ultra-structure of giant cell sections showing
cell wall ingrowths (black arrows) along regions predominantly flanking

the vascular tissue. Note the xylem elements with thickened cell walls
and dense cytoplasm containing numerous organelles including
asymmetrically shaped nuclei and small vacuoles. (D) Detailed giant cells
showing a PD (green arrow). Asterisk, giant cell; NC, neighboring cells; x,
xylem; CW, cell wall; V, vacuole; nu, nucleus. Bars = (A) 25 μm and
(B–D) 5 μm.

FIGURE 4 | Anatomy of Heterodera schachtii induced-syncytium in

Arabidopsis thaliana root cells. (A) Light microscopy of a maturing
syncytium section stained with toluidine blue, presenting cell wall thickenings
(black arrows). (B–D) Ultra-structure of syncytia sections showing cell wall

ingrowths along regions mainly flanking the vascular tissue. Note the xylem
elements with thickened cell walls and the dense cytoplasm containing
numerous organelles including asymmetrically shaped nuclei and small
vacuoles. S, syncytium; x, xylem; CW, cell wall; nu, nucleus. Bars = (A) 25 μm.
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2002), pectate lyases (PEL; Jammes et al., 2005) and endoglu-
canases (endo-β-1,4-glucanases; Goellner et al., 2001; Sukno et al.,
2006).

Similar cell wall related genes are up-regulated in syncytia,
such as expansins (α- and β-expansins; Golecki et al., 2002; Wiec-
zorek et al., 2006; Fudali et al., 2008; Griesser and Grundler,
2008), endoglucanases (endo-β-1,4-glucanases; Goellner et al.,
2001; Wieczorek et al., 2008), EXT, and extension-like (EXTL)
genes (Ithal et al., 2007a,b); polygalacturonases (PG; Mahalingam
et al., 1999) and pectin acetylases (PE;Vercauteren et al., 2002; Ithal
et al., 2007a,b). This data is suggestive of both unique and appar-
ently common mechanisms orchestrated by these nematodes to
provoke adaptations of the plant cell wall to facilitate feeding cell
expansion and function.

Apart from cell wall changes pathogens may also locally inter-
fere with signaling pathways changing the concentration of sugars
such as sucrose (Hofmann et al., 2007) or plant hormones (e.g.,
Goverse and Bird, 2011; Rodiuc et al., 2012) in a coordinated man-
ner that may directly or indirectly influence the function of feeding
cells to act as TCs. Nematode secretions are likely to contain the
proteins or peptides that can affect plant gene expression (Davis
et al., 2008). In addition, for successful parasitism, nematodes
can make use of plant genes as observed for the plant cell cycle
or cytoskeleton machinery (de Almeida Engler et al., 1999, 2004,
2012; de Almeida Engler and Favery, 2011). Thus, nematodes may
manipulate genes involved in cell wall rearrangements inducing
the trans-differentiation of parenchyma vascular cells into giant
or syncytial TCs.

CELL WALL MODIFICATIONS AND CELLULAR
COMMUNICATION IN ROOT-KNOT NEMATODE-INDUCED
GIANT CELLS
As mentioned above, RKN species induce root galls containing
giant-feeding cells in a large variety of plant hosts. In giant cells
induced by RKN, wall thickening is observed as patches expand-
ing, merging, branching and often of uneven cell wall material
deposition at early stages of giant cell development suggesting an
existing mechanism responsible for depositing irregular cell wall
material (Figure 3; de Almeida Engler et al., 2004; Mordechai and
Oka, 2006; Berg et al., 2008). Patches of wall thickenings are dis-
tributed in giant cells mainly in the proximity of the proliferating
phloem and xylem elements, involved in the transfer of water
and solutes, and may include NCs (Jones and Northcote, 1972a;
Hoth et al., 2008). Throughout giant cell maturation these cell wall
patches expand and cover large areas, generating regions with pro-
fuse reticulate TC wall labyrinths (Scheme in Figures 1A and 3;
Berg et al., 2008; Vieira et al., 2013). It is fascinating to observe that
cell wall ingrowths proliferate as RKN develop, then degenerate
as nematodes reach maturity and complete their life cycle. Cell
wall composition of young giant cells is similar to syncytia. Thus,
these progressive cell wall changes suggest that the molecular dia-
log between nematodes and plant hosts is continuous, and might
hold a key role in maintenance of the physiological status of giant
cells (Jones and Northcote, 1972a).

Giant cells also present cell wall fragments, or stubs, thought
initially to originate from cell wall breakdown as was observed in
syncytia (Jones and Dropkin, 1975; Figure 3A; Vieira et al., 2013).

Subsequently, it has been demonstrated that cell wall stubs are
the product of the abortion of phragmoplast expansion and cell
wall formation (Jones and Payne, 1978; de Almeida Engler et al.,
2004).

A significant demand for nutrients from feeding cells is created
by nematodes. This is manifested by the development of TC wall
labyrinths of wall ingrowths, an idea long sustained as a hallmark
of giant cells (Jones and Northcote, 1972a,b; Jones and Gunning,
1976). These wall ingrowths notably increase the surface area of
the plasma membrane, assisting the transport of nutrients into
or out of the feeding cell, i.e., like symplast–apoplast exchange
occurring in plant TCs (Gunning and Pate, 1969; Gunning et al.,
1974; Offler et al., 2003). Furthermore, TC wall labyrinths can be
observed on the cell walls of neighboring giant cells, indicating
that nutrient transport in the apoplast, pooled from outlying cells,
can be an important source of giant-cell nutrients. As shown by
Berg et al. (2008), walls lying between giant cells are thickened and
labyrinth-rich, suggesting that nutrients might also flow between
these feeding cells (Jones and Northcote, 1972b; Jones and Gun-
ning, 1976). As well, solutes that are phloem-derived are imported
into the giant cells either via plasmodesmata (PD) (symplasti-
cally; Figure 3D; Vieira et al., 2013 and Figures 5B–E’; Hofmann
et al., 2010; Vieira et al., 2012) or by means of active transport
(apoplasmically).

Hofmann et al. (2010) gave insights into the role of PD fre-
quency and distribution and callose deposition along cell walls
of giant-feeding cells. This survey employed the double local-
ization of callose and green fluorescent protein (GFP) in root
sections. Initially, giant cells were reported to be symplastically
isolated from NCs (Jones and Dropkin, 1976; Wolf et al., 1991;
Hoth et al., 2008). Further studies using Arabidopsis transgenic
plants containing a viral movement protein (MP) of the Potato
leaf roll polerovirus fused to GFP (MP17PLRV-GFP; Hofius et al.,
2001) as a PD marker (Figure 5A; Roberts and Oparka, 2003;
Hofmann et al., 2010), reported that giant cells are connected
by PD (Hofmann et al., 2010). No callose deposition has been
detected in galls except in a number of NCs (Hofmann et al., 2010).
Most viral MP attach to branched PD that are essentially sec-
ondary PD formed in existing cell walls. Primary PD are often
not branched and appear during cell wall formation after cell
division.

Plasmodesmata are unique membrane channels in plant cell
walls that provide cytoplasmic continuity, cell-to-cell transport,
and an intercellular exchange network (Crawford and Zambryski,
2000). The status of PD may change from closed to opened, allow-
ing the flow of small or larger metabolites only when pertinent
for plant tissue development (Kim and Zambryski, 2005). Inward
compression of the plasma membrane can also play a role in
reducing the size exclusion limit of the PD, or eventually cut-
ting off solute passage (Wolf et al., 1991). As well, passage of most
molecules is controlled by the size exclusion limit and therefore
macromolecules such as proteins and RNA rely on specific traffick-
ing processes. Passage through PD has to be tightly regulated due
to its importance in signaling for information and solute exchange
during plant cell development. In plant–nematode interactions,
callose has been detected around the nematode stylet inserted
into plant cells of Criconemella xenoplax (Hussey et al., 1992) and
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FIGURE 5 | Plasmodesmata localization in Meloidogyne

incognita-induced galls and Heterodera schachtii-syncytium in

Arabidopsis thaliana roots. (A) In vivo localization of MP17PLRV-GFP
(plasmodesmata localization marked by green fluorescence). In an
uninfected root; (B) in a gall at early stage after nematode infection; and
(C) in a mature gall. (C’) Detail of two adjacent giant cells containing
numerous PD (red arrow). (D) In vivo MP17PLRV-GFP localization between
two giant cells and connecting NCs. Observations of Figures A–D were
made on non- and infected material of Arabidopsis transgenic lines
(35S:MP17PLRV-GFP). Non-infected roots, and galls were dissected from
roots, embedded in 5% agar and fresh slices were observed using an

inverted confocal microscope. (E) Cleared whole-mount gall showing the
complex network of PD between giant cells. (E’) Detail of giant cells
containing numerous PD (red arrows). (F,G) PD (red arrows point to green
fluorescence of PD) in a section of a syncytium flanked by NCs, and (F’) a
differential interference contrast image is presented to show syncytium
tissue morphology. (G) Double localization of PD (red arrows point to
green fluorescence of PD) and callose (white arrows to yellow dots).
Green dots hint at open PD whereas yellow dots suggest that solute
transport can be blocked by callose in syncytia. UR, uninfected root; n,
nematode; NC, neighboring cells; Asterisk, giant cell; S, syncytium.
Bars = 50 μm.
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H. schachtii (Sobczak et al., 1999) and along PD of syncytia (Jones
and Payne, 1977; Grundler et al., 1998). Deposition of callose
(β-1,3-glucan) in the cell wall contiguous to PD, at both ends of the
channel, may control the passage of water and solutes and can be
transient or reversible. Numerous PD can be found in the cell walls
of giant cells induced by RKN in Arabidopsis, suggesting massive
symplastic solute transfer (Figure 5D; Hofmann et al., 2010). PD
were detected not only in walls between giant cells but also in walls
of NCs, including the proliferating vascular tissue (Figures 5B–E’;
Hofmann et al., 2010; Vieira et al., 2012). Immunocytochemical
analysis verified that these PD were not functionally impaired due
to potential callose deposition, contrary to what is observed for
syncytia. This suggests that the stress that RKN might cause to
vascular parenchyma root cells dedifferentiated into feeding cells
is not enough to induce callose deposition. The occurrence of cell
wall ingrowths and PD at the feeding site induced by RKN thus
imply that these cellular adaptations are responsible for bulk solute
transport across the plasma membrane and via symplastic trans-
port. In addition, solute transport may be aided by specialized
membrane transport proteins that regulate the flow of nutrients
into and out of giant cells. Giant cell morphology indicates that
areas occupied by cell wall ingrowths have a lower frequency of PD
(Huang and Maggenti, 1969; Jones, 1981) and thus regions with
less wall ingrowths contain a higher density of PD.

CELL WALL MODIFICATIONS AND CELLULAR
COMMUNICATION IN A CYST NEMATODE-INDUCED
SYNCYTIUM
The initial syncytial cell induced by CN originates from a pro-
cambial cell for Heterodera spp. or a cortical parenchyma or
endodermis cell for Globodera spp. (Golinowski et al., 1996;
Sobczak et al., 2005). The first visible changes in this initial
syncytial cell include alterations to the plant cell wall configu-
ration and cell wall dissolution (Figures 2D and 4B; Golinowski
et al., 1996; de Almeida Engler et al., 1999; Sobczak et al., 2011).
The syncytium expands along the host root, NCs divide and
fuse, and some cells differentiate into new xylem tissue (ves-
sels) and phloem cells (sieve elements; Berg et al., 2008; Hoth
et al., 2008). Although nematodes produce a range of cell wall
degrading enzymes in their esophageal gland cells, which are
secreted through the stylet (Mitchum et al., 2013), their spe-
cific involvement in the cell wall degradation within the syn-
cytium is still unclear. The activity of plant cell wall degrading
enzymes (Goellner et al., 2001) in syncytia suggest that degra-
dation of cell walls in syncytium is mainly accomplished by
plant enzymes, while nematode-specific enzymes assume greater
importance for cell wall degradation and loosening during the
migration of nematodes through the host root. Degradation of
cell walls in syncytia accompanies the cell wall synthesis needed
to produce cell wall ingrowths (Jones and Northcote, 1972a;
Sobczak et al., 1997) close to the xylem and for the thicken-
ing of the outer cell wall of the syncytium (Golinowski et al.,
1996).

In syncytia, finger-like cell wall ingrowths are elongated
(Scheme in Figures 1B and 4; Sobczak et al., 2011), branch and
form sophisticated reticulate labyrinths that expand apically, caus-
ing the basal parts of ingrowths to fuse, developing into extensive

cell wall thickenings. Deposition of wall ingrowths is only obvious
around 5 to 7 days after CN infection once feeding cell develop-
ment is well advanced (Golinowski et al., 1996). This indicates that
wall ingrowth development may be a secondary response, unre-
lated to nematode feeding cell development (Jones and Northcote,
1972a), and might be caused by the augmented flow of solutes
to the feeding nematode. While cell walls flanked by the syncy-
tial elements are locally broken down, incorporating NCs into
the syncytium (Golinowski et al., 1996; Grundler et al., 1998), the
outer cell walls seem to be extended and thickened to resist aug-
mented turgor pressure created inside the syncytium (Golinowski
et al., 1996; Wieczorek et al., 2006). During nematode develop-
ment, cell wall ingrowths fuse and form distinct depositions along
the cell wall of the CN-induced syncytium. Thus, the forma-
tion and deposition of new ingrowths are continuously fashioned
during nematode maturation (Golinowski et al., 1996; Sobczak
et al., 2011), resulting in an increase of surface area of the plasma
membrane at the interface predominantly between syncytium and
xylem elements and phloem cells, facilitating water and nutrient
transport into the syncytium.

Cell wall ingrowths occurring in syncytia, typical for TCs,
involve myo-inositol oxygenases (MIOX; Kanter et al., 2005),
which are strongly expressed in syncytia (Szakasits et al., 2009).
MIOX genes are involved in the production of UDP- glucuronic
acid, a precursor of sugars used for cell wall biosynthesis, and
potentially involved in ascorbate synthesis (Lorence et al., 2004).
Thus, studies covering different aspects of cell wall rearrangements
in a CN induced-syncytium reveal adjustments in cell wall mor-
phology, thickness and possibly composition, presumably essential
to maintain a functional feeding site. Likewise, the presence of
cell wall ingrowths with transfer-like function most likely plays
an important role in nutrient translocation to allow nematode
development and reproduction.

Openings caused by cell fusion in the forming syncytium may
also develop from PD that are widened and subsequently enlarged
by gradual dissolution of cell walls (Jones and Northcote, 1972a;
Wyss et al., 1984; Grundler et al., 1998). During the maturation
of a syncytium wall in contact with vascular cells, invaginations
develop at regions in close contact with the secondary xylem and
phloem elements (Figure 4C; Golinowski et al., 1996; Sobczak
et al., 2011). Nematode feeding is highly depending on transfer of
solutes from neighboring phloem and xylem elements. The cell
wall of a young syncytium thickens uniformly except for walls in
contact with sieve tubes, which remain thin until the moment
neighboring sieve tube cell wall start thickening (Grundler et al.,
1998). Thus, an established syncytium is surrounded by thickened
walls where NCs continue to be incorporated by progressive and
local cell wall dissolution (Figures 4A,B; Sobczak et al., 2011).
New cell wall openings can also be created between NC walls
with no involvement of PD. After dissolution of the cell wall and
middle lamella the plasmalemma fuses and the protoplast of the
NC is incorporated into the syncytium. Often remnants of cell
walls are present within an expanding syncytia (Figures 2D and
4; de Almeida Engler et al., 1999; Sobczak et al., 2011). Only a
few PD are detected in young syncytia (Figures 5F,F’; Hofmann
et al., 2010) and a temporal callose deposition implies impaired
symplastic exchange (Figure 5G; Grundler et al., 1998; Hofmann
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et al., 2007, 2010). Co-localization of MP17PLRV-GFP and callose
confirmed the isolation of syncytia during the first days of feed-
ing site development (Figure 5G; Hofmann et al., 2010). In the
meantime, the outer syncytial wall becomes thickened and newly
deposited cell wall material obstructs existing PD. This will lead to
the symplastic isolation of young syncytia, thus nutrients are trans-
ported from phloem apoplastically via transmembrane carriers
(Juergensen et al., 2003; Hofmann and Grundler, 2006). Dur-
ing syncytium development (4–7 days after inoculation-DAI) an
increased frequency of PD is observed with less callose deposition,
confirming previous fluorochrome transport studies (Hofmann
and Grundler, 2006; Hofmann et al., 2007). At later developmental
stages (>10 DAI), microscopy studies, in addition to microinjec-
tion assays, confirmed that syncytia are symplastically connected
to new host phloem assembled as sieve elements and companion
cells as illustrated by the presence of PD (Hoth et al., 2005, 2008;
Hofmann et al., 2007, 2010). This symplastic transport is essen-
tial for transfer of nutrients into the syncytia and for nematode
development.

It is a widespread event that plant tissues can switch between
symplastic isolation to connectivity during development and func-
tional analysis can validate this status. This has been shown for
Arabidopsis embryos (Kim and Zambryski, 2005), or during cotton
fiber elongation characterized by a period of symplastic isolation
followed by increased expression of plasma membrane trans-
porters and decreased callose PD gating (Ruan et al., 2001, 2004).
Yet when mature syncytia are not symplastically isolated sucrose
transporters are still required for additional sugar retrieval.

Functional analysis of the T-DNA line with an insertion in
the exon of the β-1,3-glucanase (AtBG_ppap; Levy et al., 2007)
showed a reduced size of syncytia and the increased ratio of male
nematodes after CN infection, suggesting stress conditions (Hof-
mann et al., 2010). The β-1,3-glucanase enzyme degrades callose
deposited along PD. Decreased syncytial size most likely affected
nutrient availability and nematode development, also affect-
ing sexual differentiation (Betka et al., 1991). A second mutant
line with a T-DNA insertion in the putative callose synthase
gene GLUCAN SYNTHASE-LIKE5 (AtGSL5), although showing
a strong reduction in wound callose and papillary callose forma-
tion after mechanical wounding and infection with Sphaerotheca
fusca (Jacobs et al., 2003), had no negative effect on nematode
development (Hofmann et al., 2010). In fact, reduced callose
deposition might facilitate PD-dependent cellular fusion dur-
ing syncytium expansion, increasing its volume, thus enhancing
nutrient availability for nematode growth (Hofmann et al., 2010).

Thus, the presence and functionality of PD in nematode-
induced TCs may affect their structure, development, maintenance
and morphogenesis through their impact on solute exchange.
Unrestricted PD paths will assist intracellular communication
facilitating solute import needed for the prompt nematode
development and efficient reproduction.

PLASMA MEMBRANE AND TRANSPORT FUNCTION OF
NEMATODE FEEDING SITES
The main functions of TCs are nutrient and water transport. Both
galls and syncytia are terminal sink tissues that require direct
access to the plant vascular tissue (Jones, 1981; Grundler and

Hofmann, 2011). For nematodes, a food source coming from
their feeding-TCs is essential for their development and repro-
duction. The presence in TCs of the typical “wall-membrane
apparatus” provides evidence of an efficient mechanism facili-
tating transmembrane transport of solutes. Cell wall ingrowths
are surrounded by the plasmalemma, amplifying significantly
the symplast–apoplast interface (Pate and Gunning, 1972; Goli-
nowski et al., 1996; Offler et al., 2003). The plasmalemma is tightly
linked to cell wall protusions and microtubules localized along
wall ingrowths (Berg et al., 2008). Therefore, the large wall-
membrane surface encountered in nematode feeding sites will
facilitate great volumes of solute transfer. Sedentary nematodes
need large amount of solutes containing nutrients and water to
develop and reproduce in a short time. Thus, the presence of
wall ingrowths increases short-distance solute transport between
the apoplast (cell wall compartment) and symplast (cytoplasmic
compartment) in plant cells. TCs are not the only cells particu-
larly adapted for fast transport. As well, impressive solute fluxes
can occur via PD symplastically linked as observed in nematode
feeding sites (Hoth et al., 2008; Hofmann et al., 2010). Changes in
cell size, as seen for giant cells, can also increase plasma membrane
area as for cell wall ingrowths (Jones, 1981). As well, in species
where TCs are absent, cells bordering the interface can become
specialized for a transport function. Therefore, cells neighboring
nematode feeding sites might be engaged to perform an analo-
gous function. The occurrence of invaginations in giant cell walls
and the large feeding-cell surface surrounded by NCs with transfer
function would indubitably increase the efficiency of these feeding
cells to import and translocate solutes to the feeding nematode.
Increased plasma membrane surfaces in giant cells also requires
increased proton pump and molecule carriers used for the translo-
cation of nutriens to giant cells to nourish the nematode. As a
consequence, genes encoding constitutive enzymes and structural
proteins may be altered in their expression in order to support
the increased cellular metabolic activity related to nematode feed-
ing (Bleve-Zacheo and Melillo, 1997). Giant cells seem to employ
a proton-coupled transport system located between the plasma
membrane at wall ingrowths and xylem vessels (Dorhout et al.,
1992; Grundler and Böckenhoff, 1997). Amino acid and sugar
transport into plant cells is commonly assumed to be mediated
by a proton force (Rheinhold and Kaplan, 1984) and there is
evidence for a chemiosmotic model of proton-amino acid sym-
port (Bush, 1993; DeWitt and Sussman, 1995). Sucrose/proton
symport has also been observed in protoplasts derived from epi-
dermal TCs of developing broad-bean cotyledons (McDonald
et al., 1996).

Plasma membranes of TCs display large membrane potential
dissimilarities (ranging from –150 to –200 mVat sites of solute
influx; Jones et al., 1975; Robards and Stark, 1988; Bonnemain
et al., 1991). These values are similar to other cell types implicated
in solute influx like root hairs (Miedema et al., 2001). Mem-
brane potential variation results from the activity of H+-ATPases,
and most of these membrane proteins have been identified in
plasma membranes of different TC types (Bouche-Pillon et al.,
1994; McDonald et al., 1996; Harrington et al., 1997; Tegeder et al.,
1999; Bagnall et al., 2000). The H+-ATPase gene has been found
to be upregulated upon nematode infection in tomato roots (Bird
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and Wilson, 1994). So far, two members of the Ca2+-ATPase
(ACA) family were verified to be upregulated in young nema-
tode feeding sites (Hammes et al., 2005), implying a high energy
demand (McClure, 1977; Gheysen and Fenoll, 2002). AtACA4
was localized to small vacuolar structures (Geisler et al., 2000)
and is abundant at early stages of nematode feeding site develop-
ment. Contrastingly, AtACA8 was located at the plasma membrane
(Bonza et al., 2000) and its expression is higher in nematode
feeding sites compared to uninfected root tissues, suggestive of
playing a role during gall development. Thus, AtACA4, AtACA8,
and AtCAX3 (Hirschi, 2001) a member of the Ca2+:cation
antiporter family, were proposed to modulate Ca2+-mediated sig-
naling events in plant cells (Sanders et al., 1999; Manohar et al.,
2011), and most likely in nematode-induced feeding cells. Data
generated by these studies suggests that Ca2+ influx and sig-
naling are involved in nematode-induced giant-TC development
(Hammes et al., 2005).

As mentioned herein, nematode feeding sites have been
described as sink tissues supplied with phloem-derived solutes
such as sugars. Sucrose has been described as the main trans-
ported sugar in the phloem of Arabidopsis from source to sink
tissues (Haritatos et al., 2000; Kühn, 2003) and phloem is loaded
both apoplasmically and symplastically. Sucrose is also the major
source of carbohydrate into nematode feeding sites and metabo-
lite analyses revealed considerably augmented sucrose levels in
nematode-induced syncytia and giant cells (Hofmann et al., 2007;
Baldacci-Cresp et al., 2012). Similarly, Hofmann et al. (2008) pro-
posed that syncytia as induced plant structures make use of starch
as an intermediate carbohydrate storage to compensate for the
fluctuating sugar levels taking place during nematode feeding and
development.

Phloem-specific sucrose transporters seem also to be involved
in solute transport in nematode feeding sites. AtSUC2 is thought to
recover sucrose into the phloem (Truernit and Sauer, 1995; Weise
et al., 2000) whilst AtSUC4 seems to be in charge of phloem loading
and unloading (Weise et al., 2000). In addition, sucrose trans-
porters play a role in the development of sink tissues in various
plant organs (Gottwald et al., 2000; Kühn, 2003). In young syncytia
symplastic pathways are not functional and sucrose transporters
like AtSUC2 and AtSUC4 seem critical for importing sucrose into
syncytia (Juergensen et al., 2003; Hoth et al., 2008). Hofmann et al.
(2007) reported that AtSUC4 silencing affected nematode devel-
opment, suggesting its role during early syncytium development
when no functional PD were present. Thus, it is believed that
transporters are responsible for sucrose supply in young syncytia
whereas at a later stage, connection to the phloem is established via
PD although transporters seem also required for sucrose retrieval
(Hofmann et al., 2007). The need to use different stratagems
for solute retrieval from syncytia is understandable, given that
a mature feeding site expands along the host root and must sup-
ply the nematode with enough solutes to grow and reproduce.
In giant cells, sucrose is a major osmolyte and AtSUC1 induc-
tion is most likely involved in sucrose transport (Hammes et al.,
2005).

Recently, Cabello et al. (2013) investigated the role of sucrose
cleaving enzymes like sucrose synthases (SUS) and invertases
(INV) during the CN, H. schachtii and RKN, Meloidogyne javanica

development, using single and multiple INV and SUS mutants.
Both genes were shown to be transcriptionally regulated in nema-
tode feeding sites (Szakasits et al., 2009; Barcala et al., 2010). Ele-
vated sugar pools in multiple INV and SUS mutant lines promoted
nematode development suggesting that these sugars have impor-
tant nutritional value for the nematodes that may cleave sucrose
with their own INVs (Grundler et al., 1991; Cabello et al., 2013).
Syncytia and the plant shoot apex within these mutants exhibited
changed sugar levels and enzyme activity suggestive of changes in
the source-sink movement (Trouverie et al., 2003; Cabello et al.,
2013). For the RKN, Meloidogyne javanica, development within
INV and SUS mutants presented similar effects as observed for
CN (Cabello et al., 2013). Hofmann et al. (2009) investigated, by
Affymetrix gene chip, the expression of all genes annotated as
sugar transporters in syncytia compared to non-infected roots
using the Arabidopsis Membrane Protein Library. Expression of
three significantly up-regulated (STP12, MEX1, and GTP2) and
three down-regulated (SFP1, STP7, and STP4) genes in syncy-
tia were validated by quantitative RT-PCR. While STP4, STP7, and
STP12 belong to the STP sugar transport protein family, MEX1 and
GTP2 are plastidial transporter genes, and SFP1 is a senescence-
related monosaccharide transporter. A T-DNA insertion line of the
most up-regulated gene (STP12) showed that insufficient sugar in
feeding sites resulted in increased male ratios since females need
higher sugar concentration in order to grow and reproduce (Hof-
mann et al., 2009). In addition, fluorescent-labeled glucose and
membrane potential recordings performed following the applica-
tion of several sugars deciphered sugar transporter activity across
the plasma membrane of syncytia (Hofmann et al., 2009). Analy-
ses of soluble sugar pools demonstrated a typical composition for
syncytia. Besides sucrose, previously reported by Hofmann et al.
(2007), glucose, galactose, raffinose, fructose, and trehalose were
detected. Thus, sugar transporters are expressed and active in syn-
cytia, indicative of their role in inter- and intracellular transport
processes.

Besides sugars, amino acids are important as nutrient sup-
ply for nematode growth and development. Amino acids are the
main form of transported organics, which is reduced nitrogen in
the majority of plant species. Upon RKN infection noteworthy
changes in the expression of genes involved in amino acid trans-
port have been detected (Hammes et al., 2005, 2006; Marella et al.,
2013). More peptide transporters than amino acid transporters
were induced by CN (Puthoff et al., 2003). Most of the investi-
gated amino acid transporters were expressed in galls suggesting
a role for these transporters in the amino acid transport ability of
infected roots (Fischer et al., 1995; Okumoto et al., 2002). Amino
acid transporters of the amino acid permease (AAP) family were
reported to be induced in syncytia (Szakasits et al., 2009; Hof-
mann et al., 2009). Also, amino acid transporters, like AAP3 and
AAP6 were demonstrated to play a role during Arabidopsis-RKN
interaction. RKN infection on AtAAP3 and AtAAP6 knock-out
plants was significantly reduced in comparison with wild-type
(Marella et al., 2013). Two putative auxin transporter genes of the
AAAP (amino acid auxin permeases) superfamily, AtAUX1 and
AtAUX4/LAX3, were shown to be expressed in syncytia (Hammes
et al., 2005). Beside of auxin that is essential for syncytia devel-
opment (Viglierchio and Yu, 1968; Goverse et al., 2000), other
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phytohormones such as cytokinin, ethylene, CLAVATA elements,
CEP (C-terminally encoded peptide), and PSK (phytosulfokines)
are also associated with the RKN or CN feeding cell formation
(e.g., Goverse and Bird, 2011; Rodiuc et al., 2012). As well, the
amino acid transporter, AtCAT6 is induced in giant cells similarly
to other amino acid sink plant tissues, however, it is not essential
for the establishment of RKN feeding sites (Hammes et al., 2006).
This might be due to redundancy in transporter expression or
compensatory expression of other transporters in AtCAT6 knock-
out plants. In addition, nutrient loading into giant cells depends
not only on the apoplastic step but also occurs symplasticallybrea
via PD.

Water import into feeding sites seems to involve genes respon-
sible for water transport (Grundler and Hofmann, 2011). Consid-
ering that the plasma membrane has a restricted ability for water
transport and diffusion, this process can be assisted by aquapor-
ins forming water pores along the plasmalemma (Johansson et al.,
2000). Aquaporins in plants are observed within the plasma mem-
brane and in the tonoplast (vacuolar membrane; Maurel et al.,
1993; Kammerloher et al., 1994). Plasma membrane aquaporins
and homologs are named PIPs (plasma membrane intrinsic pro-
teins) and tonoplast aquaporins and homologs are called tonoplast
intrinsic proteins (TIPs). Elevated expression of the aquapor-
ins TobRB7, AtPIP2.6 AtPIP2.5 has been observed by microarray
of Meloidogyne incognita-infected roots (Opperman et al., 1994;
Hammes et al., 2005). Localization of AtPIP2.5 in galls suggests
that this gene might be a functional ortholog of a giant-cell-
specific aquaporin TobRB7 of tobacco (Opperman et al., 1994;
Puthoff et al., 2003). AtPIP2.5 was also induced upon infection
with the beet CN, H. schachtii (Puthoff et al., 2003). Upregula-
tion of both types of aquaporins (PIPs and TIPs) in galls has
been proposed to be associated with a volume increase of giant
cells (Barcala et al., 2010). The developing nematode is continu-
ally ingesting the giant cell contents in order to rapidly grow and
reproduce.

CONCLUSIONS AND PERSPECTIVES
Plant parasitic nematodes are reliant on water and nutrient
resources from their host plants. Feeding strategies applied by
plant-parasitic nematodes will determine how efficient the supply
of solutes will be. These strategies greatly depend on sophisticated
cell wall modifications of the feeding site in order to transform vas-
cular parenchymatic cells into TCs. These cellular adaptations are
of key relevance in order that sedentary endoparasitic nematodes
capture enough water and nutrient supply for their development
and reproduction.

Nematode-induced syncytia or giant cells constitute a mult-
inucleate model of TCs, and it is generally believed that wall
protuberances arise as a result of nematode demand for nutri-
ents. Although some information on solute supply has been mostly
reported for syncytia induced by H. schachtii in Arabidopsis, many
questions remain open. Currently it is not yet comprehensible
what signals are employed to cause the establishment of these sink
structures (galls and syncytia) and the transport occurring within
these solute transfer sites involving the feeding cell and numerous
phloem and xylem elements along this sink. It remains ambigu-
ous as to what switches ordinary plant cells into transfer-feeding

cells that supply nematodes with solutes for their development and
reproduction. These plant cellular morphological changes might
be caused directly or indirectly by secreted products or feeding
activity employed by the nematode during parasitism. What trig-
gers and regulates the switch from apoplasmic to symplastic solute
supply and the gating of PD is yet to be discovered. Further func-
tional genetic approaches as well as microscopic studies will help
to elucidate genes involved in this process in order to comprehend
how nematode induced TCs operate.
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