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A correct three-dimensional structure is crucial for the physiological functions of a protein,
yet the folding of proteins to acquire native conformation is a fundamentally error-prone
process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-
mediated protein quality control (ERQC) mechanism to monitor folding processes of
secretory and membrane proteins, allowing export of only correctly folded proteins to their
physiological destinations, retaining incompletely/mis-folded ones in the ER for additional
folding attempts, marking and removing terminally misfolded ones via a unique multiple-
step degradation process known as ER-associated degradation (ERAD). Most of our current
knowledge on ERQC and ERAD came from genetic and biochemical investigations in
yeast and mammalian cells. Recent studies in the reference plant Arabidopsis thaliana
uncovered homologous components and similar mechanisms in plants for monitoring
protein folding and for retaining, repairing, and removing misfolded proteins.These studies
also revealed critical roles of the plant ERQC/ERAD systems in regulating important
biochemical/physiological processes, such as abiotic stress tolerance and plant defense.
In this review, we discuss our current understanding about the molecular components
and biochemical mechanisms of the plant ERQC/ERAD system in comparison to yeast and
mammalian systems.
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INTRODUCTION
It is well known that the proper function of a protein strictly
depends on its native conformation, but protein folding is a
fundamentally error-prone process. The endoplasmic reticulum
(ER) is the cellular port of entry for secretory and membrane
proteins to enter the secretory pathway and is a folding compart-
ment for proteins to attain their native conformations through
interactions with molecular chaperones, sugar-binding lectins,
and folding enzymes (Gidalevitz et al., 2013). Misfolded pro-
teins not only lead to functional deficiency but also induce
dominant-negative and cellular toxicity effects, and it is thus essen-
tial that the ER should possess several highly stringent protein
quality control mechanisms to closely monitor the folding pro-
cess, allowing export of only correctly folded proteins to their
final destinations but retaining incompletely/mis-folded proteins
for additional rounds of chaperone-assisted folding. A high-
efficient ER-mediated protein quality control (ERQC) system
can also differentiate terminally misfolded proteins from fold-
ing intermediates and/or reparable misfolded proteins, stopping
the futile folding cycles of the former proteins and eliminat-
ing them via a multistep degradation process widely known as
ER-associated degradation (ERAD) that involves ubiquitination,
retrotranslocation, and cytosolic proteasome (Smith et al., 2011).
Our current understanding of the eukaryotic ERQC/ERAD sys-
tem derived largely from studies in yeast and mammalian cells.
However, recent genetic, biochemical, and cell biological stud-
ies in the reference plant Arabidopsis thaliana and other model

plant species not only identified homologous ERQC/ERAD com-
ponents but also revealed evolutionarily conserved features as well
as unique aspects of the plant ERQC/ERAD mechanisms (Hong
and Li, 2012; Huttner and Strasser, 2012; Howell, 2013), espe-
cially their connections with the stress tolerance and plant defense
pathways.

N -GLYCAN-BASED ER RETENTION MECHANISM
Many secretory and membrane proteins are co-translationally
glycosylated when entering the ER (Aebi, 2013). The so-called N-
linked glycosylation occurs on the asparagine (Asn or N) residues
within the Asn-X-Ser/Thr sequons (X indicating any amino acid
except proline while Ser/Thr denoting serine/threonine residue)
of a nascent polypeptide. This reaction is catalyzed by the
enzyme oligosaccharyltransferase (OST), an integral membrane
protein complex that transfers a preassembled oligosaccharide
precursor Glc3Man9GlcNac2 (Glc, Man and GlcNac denoting glu-
cose, mannose and N-acetylglucosamine, respectively) from a
membrane-anchored dolichylpyrophosphate (DolPP) carrier to
the Asn residue (Figure 1; Mohorko et al., 2011). The assem-
bly of Glc3Man9GlcNac2 involves a series of highly specific
asparagine-linked glycosylation (ALG) proteins that sequentially
add a monosaccharide onto the DolPP linker or a DolPP-
linked oligosaccharide precursor (Aebi, 2013; Figure 1A). The
structure of a N-linked glycan plays an important role in the
protein folding and quality control (Aebi et al., 2010). Immedi-
ately after transferring of Glc3Man9GlcNac2 to an Asn residue,
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FIGURE 1 | (A) Stepwise assembly of N -glycan precursor on the ER
membrane. The assembly of the N -glycan precursor starts at the cytosolic
face of the ER membrane by adding two GlcNAc and five Man residues
to the membrane-anchored Dol-PP linker. The resulting
Dol-PP-Man5GlcNAc2 flips over into the ER lumen. Four Man residues are
sequentially added to the flipped Dol-PP-Man5GlcNAc2 by three
mannosyltransferases, ALG3, ALG9 (known as EBS3 in Arabidopsis) and
ALG12 (known as EBS4 in Arabidopsis) with the ALG9 catalyzing two
reactions of adding the terminal α1,2 Man residues on the middle and

right branches. Three Glc residues are subsequently added to the right
branch, generating the 14-sugar precursor, Dol-PP-Glc3Man9GlcNAc2. Two
α1,6 Man residues are marked by brown and salmon color. The Dol-PP
linker and different sugar residues are indicated. (B) The structure of
N-linked Glc3Man9GlcNac2 glycan with three dimannose branches (branch
A, B and C). Lower case letters inside sugar residues represent the order
of sugar addition. The sugar linkage bonds and enzymes (GI, GII) that
remove the three Glc residues are indicated. Figure adapted from Hong
et al. (2009).

the terminal and middle Glc residues are removed sequentially by
glucosidase I (GI) and glucosidase II (GII), producing a monoglu-
cosylated N-glycan, GlcMan9GlcNac2, which is recognized by
the ER chaperone-like lectins, a membrane-anchored calnexin
(CNX) and its ER luminal homolog calreticulin (CRT; Caramelo
and Parodi, 2008; Figure 2). The high-specificity high-affinity
binding between GlcMan9GlcNac2 and CNX/CRT is crucial for
folding a nascent polypeptide as CNX/CRT can recruit other
ER-chaperones and folding enzymes, including protein disulfide
isomerases (PDIs) essential for generating inter/intra-molecular
disulfide bonds. The removal of the remaining Glc residue by
GII releases the nascent glycoprotein from CNX/CRT, thus ter-
minating its folding process (Caramelo and Parodi, 2008). If
the protein folds correctly, it will be transported out of the ER
to reach its final destination. However, if the protein fails to
attain its native conformation, it will be recognized by UDP-
glucose:glycoprotein glucosyltransferase (UGGT), an ER-resident
folding sensor consisting of a large non-conserved N-terminal
domain presumably involved in recognizing non-native confor-
mations and a smaller highly conserved C-terminal catalytic
domain capable of catalyzing a glucosyltransferase reaction using
uridyl diphosphate-glucose (UDP-Glc) as a substrate (D’Alessio
et al., 2010). As a result, a single Glc is added back to degluco-
sylated N-glycans of the incompletely/mis-folded protein, per-
mitting its reassociation with CNX/CRT and their associated
proteins for another round of assisted folding. The alternate
reactions of GII and UGGT drive many cycles of dissociation
and reassociation of CNX/CRT with an incompletely/mis-folded
glycoprotein [widely known as the CNX/CRT cycle (Hammond
et al., 1994)], till the protein attains its native conformation

(Figure 2). It is worthy to mention that the budding yeast
(Saccharomyces cerevisiae), which is widely used for studying the
ERAD process, lacks the CNX/CRT-UGGT system due to the pres-
ence of a catalytically inactive UGGT homolog (Meaden et al.,
1990).

The Arabidopsis genome encodes only one UGGT homolog,
and its physiological function was inadvertently found in a
study for identifying additional signaling proteins of the plant
steroid hormones, brassinosteroids (BR; Jin et al., 2007). A
genetic screening for extragenic suppressors of an Arabidop-
sis dwarf mutant brassinosteroid-insensitive 1-9 (bri1-9) led to
the discovery of Arabidopsis UGGT (also known as EBS1 for
EMS mutagenized bri1 suppressor 1; Jin et al., 2007). BRI1 is a
cell surface-localized leucine-rich-repeat receptor-like-kinase that
function as a BR receptor and contains a single transmembrane
domain and 14 putative N-glycosylation sites in its N-terminal
extracellular domain (Li and Chory, 1997). The mutant bri1-
9, carrying a Ser662-Phe mutation in the BR-binding domain
(Noguchi et al., 1999), was found to be retained in the ER
by an EBS1/AtUGGT-dependent mechanism and subsequently
degraded by a plant ERAD process (Jin et al., 2007; Hong et al.,
2009). Loss-of-function mutations in EBS1/AtUGGT compro-
mise such an ER-retention mechanism and allow some bri1-9
proteins to escape from the ER to reach the plasma membrane,
resulting in phenotypic suppression of the dwarfism of the bri1-9
mutant. The same genetic screen also identified CRT3 (Jin et al.,
2009), a unique member of the Arabidopsis CNX/CRT family
consisting of two CNXs and three CRTs, which actually retains
bri1-9 via the CRT3-GlcMan9GlcNac2 binding. Both UGGT and
CRT3 were also identified from two other independent genetic
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FIGURE 2 | An overview of the ERQC/ERAD system. Two Glc residues on
the N -glycan of a nascent polypeptide are rapidly trimmed by GI and GII right
after being transferred from the Dol-PP-linker. The resulting monoglucosylated
N -glycans bind the two ER lectins CNX and CRT chaperone-assisted folding.
The removal of this last Glc by GII releases a mature polypeptide from
CNX/CRT. A correctly folded protein can leave the ER while an
incompletely/mis-folded glycoprotein is recognized by UGGT (known as

EBS1 in Arabidopsis) that adds back a Glc residue to the A branch, permitting
its reassociation with CNX/CRT. A glycoprotein that fails to gain its native
structure within a certain time window is removed from the folding cycle via
sequential trimming of the two terminal α1,2 Man residues of the B and C
branch by MNS1 (an ER-localized α1,2-Mannosidase, known as MNS3 in
Arabidopsis) and Htm1/EDEM. A terminally misfolded glycoprotein with α1,6
Man-exposed glycan is selected to enter the ERAD pathway.

screens aiming to identify key regulators of the plant innate
immune response to a bacterial translational elongation factor
EF-Tu (Li et al., 2009; Saijo et al., 2009). Interestingly, while loss-
of-function mutations in AtUGGT/CRT3 led to regaining partial
sensitivity to BRs, atuggt/crt3 mutants were insensitive to elf18,
a biologically active epitope of EF-Tu. Further studies showed
that both UGGT and CRT3 are absolutely required for the cor-
rect folding of EFR (EF-Tu Receptor; Saijo, 2010), a BRI1-like
receptor-like kinase that binds elf18/EF-Tu to initiate a plant
defense process (Zipfel et al., 2006). The importance of N-glycan-
mediated folding control was further supported by discoveries that
loss-of-function mutations in STT3A, a OST subunit, and GII
resulted in significant reduction of the EFR protein abundance,
presumably caused by incomplete folding and subsequent degra-
dation (Lu et al., 2009; Haweker et al., 2010; von Numers et al.,
2010).

In addition to the glycan-dependent ER retention system, the
ER is equipped with additional retention systems to prevent
export of misfolded proteins, especially those non-glycosylated
ones. One system uses the family of ER-localized HSP70 proteins
(known as BiPs), which have a N-terminal ATP-binding domain

and a C-terminal substrate-binding domain that recognizes and
binds to exposed hydrophobic patches of incompletely/mis-folded
proteins in an ATP-dependent manner (Buck et al., 2007). The
Arabidopsis has three BiP homologs, AtBiP1, AtBiP2 and AtBiP3,
all of which were known to exhibit higher levels of gene expres-
sion under ER stresses (Sung et al., 2001). In Arabidopsis, BiPs
were shown to bind both bri1-9 and bri1-5, another mutant
variant of BRI1 carrying a Cys69Tyr mutation that destroys a
disulfide bridge crucial for the structural integrity of the BR
receptor, and were thought to contribute for the ER reten-
tion of the two mutant BR receptors (Jin et al., 2007; Hong
et al., 2008). BiPs and their associated factors ERdj3B (an Ara-
bidopsis ER-localized DNAJ homolog) and SDF2 (the Arabidopsis
homolog of the murine stromal cell-derived factor 2) are also
involved in the biogenesis/folding control of EFR (Nekrasov
et al., 2009). BiPs were also known to interact with the orphan
heavy chain of a murine IgG1 antibody or an assembly defec-
tive form of the trimeric vacuolar storage protein phaseolin in
transgenic tobacco plants (Pedrazzini et al., 1997; Nuttall et al.,
2002). Another glycan-independent ER retention mechanism
relies on mixed disulfide bridges between incompletely/mis-folded
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FIGURE 3 | A model of ERAD system. An ERAD client that has lesion in
membrane-embedded segment (ERADM) or in ER lumen region (ERADL) is
recruit by Hrd3 (EBS5 in Arabidopsis) and Yos9 (EBS6/OS9 in Arabidopsis)
to the membrane-anchored E3 ligase Hrd1 (AtHrd1A and AtHrd1B in
Arabidopsis) complex that also contains Cue1, Ubc6 (UBC32 in
Arabidopsis), Usa1 and Der1. An ERAD substrate with a folding lesion in
the cytosolic domain (ERADC) is recruited to a different ER
membrane-anchored E3 ligase complex that contains Doa10 and Ubc6 (or
Cue1/Ubc7). The two E3 ligase complexes share similar components on the
cytosolic side of the ER membrane, including the substrate-extracting
Cdc48-Ufd1-Npl4 trimeric complex and its membrane recruitment factor
Ubx2 (one or more AtPUX proteins in Arabidopsis). An extracted
polyubiquitinated ERAD substrate is processed by Ufd2, Ufd3, Otu1, and/or
Png1 (AtPNG1 in Arabidopsis), delivered to the cytosolic proteasome with
help of Dsk2 and Rad23, and eventually proteolyzed by the 26S
proteasome.

proteins with PDIs and related ER-localized oxidoreductases
(Reddy et al., 1996; Anelli et al., 2003, 2007). The Arabidopsis
genome encodes 13 PDI-like proteins (Houston et al., 2005), none
of which has been implicated in retaining misfolded proteins.
However, a recent study on bri1-5 carrying an orphan cys-
teine residue (Cys62) suggested involvement of a thiol-mediated
retention system in keeping the mutant BR receptor in the ER
(Hong et al., 2008). Further biochemical studies are needed to
verify this prediction and to identify one or more PDIs that
form the predicted mixed disulfide bridge with the orphan Cys62
residue.

MARKING OF A TERMINALLY MISFOLDED GLYCOPROTEIN
FOR ERAD
A protein that fails to attain its native conformation within
a given time window is eliminated by ERAD (Vembar and
Brodsky, 2008). One of the key events in ERQC is to ter-
minate a futile folding cycle and to deliver an irreparable
misfolded protein into the ERAD pathway. Although little is

known about the marking mechanism for irreparable non-
glycosylated ERAD clients, recent studies indicated that removal
of the terminal α1,2-Man residue from the C-branch of N-
glycan (Figure 2), catalyzed by homologous to mannosidase 1
(Htm1) in yeast and ER-degradation enhancing α-mannosidase-
like proteins (EDEMs) in mammals, is required for generating
the ERAD signal, an exposed α1,6 Man residue on an N-
linked glycan (Quan et al., 2008; Clerc et al., 2009; Figure 1B).
The Arabidopsis genome encodes at least two homologs of
the yeast Htm1/mammalian EDEMs [known as MNS4 and
MNS5 (Liebminger et al., 2009)], but their involvement in a
plant ERAD process awaits functional investigation. Neverthe-
less, recent genetic screening for Arabidopsis mutants defective
in ERAD of bri1-5/bri1-9 and subsequent molecular cloning
and biochemical studies indicated that the glycan ERAD signal
is well conserved in plants (Hong et al., 2009, 2012). Loss-of-
function mutations in either EBS3 and EBS4 (homologs of the
yeast/mammal ALG9 and ALG12, respectively) prevent com-
plete assembly of the N-glycan precursor (Figure 1), resulting
in glycosylation of the two ER-retained mutant BR receptor with
truncated N-glycan lacking the α1,6-Man residue that would
function as the ERAD signal and consequential inhibition of
ERAD of bri1-5/bri1-9. In contrast, forcing the addition of the
missing α1,6 Man residue to Dol-PP-Man6GlcNAc2 by over-
expression of EBS4/ALG12 in an Arabidopsis ebs3/alg9 bri1-9
mutant promoted the ERAD of bri1-9 (Figure 1A; Hong et al.,
2012). Similarly, the ERAD of bri1-9 was presumably accel-
erated when its N-linked glycans carried a different exposed
α1,6 Man residue (the inner α1,6 Man; Hong et al., 2012)
caused by a loss-of-function mutation in ALG3 that adds an
α1,3 Man to the inner α1,6-Man (Henquet et al., 2008; Kajiura
et al., 2010; Figure 1A). The exposed inner α1,6 Man residue
was shown to function as an alternative ERAD signal in both
yeast and mammalian cells (Clerc et al., 2009; Hosokawa et al.,
2009).

RECRUITMENT OF ERAD SUBSTRATES
The N-glycan ERAD signal is decoded by one or two ER lumi-
nal lectins, osteosarcoma 9 (OS9, also known as Yos9 in yeast)
and XTP3-B (Yoshida and Tanaka, 2010; Figure 3). Yos9 and its
mammalian homologs contain the mannose-6-phosphate recep-
tor homology (MRH) domain that specifically recognizes and
binds N-glycans with an exposed α1,6 Man residue (Hosokawa
et al., 2010). In addition to OS-9/Yos9, selection of an ERAD
client requires another ER resident protein, Hrd3 (HMG-CoA
reductase degradation 3) in yeast and Sel1L (Suppressor of
lin-12-Like) in mammals (Hirsch et al., 2009), a type I trans-
membrane protein with a large ER luminal domain consisting
of multiple copies of the tetratricopeptide repeat motif. It was
believed that Hrd3/Sel1L, exhibiting high affinity binding to
exposed hydrophobic amino acid residues on misfolded pro-
teins, makes the initial selection of a potential ERAD client,
which is subsequently inspected by OS-9/Yos9 for the presence
of an N-glycan ERAD signal (Denic et al., 2006; Gauss et al.,
2006; Figure 3). Such a bipartite ERAD signal of a misfolded
domain plus an α1,6-Man-exposed N-glycan ensures degrada-
tion of only terminally misfolded glycoproteins but not folding
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intermediates carrying N-glycans with no exposed α1,6 Man
residue.

The Arabidopsis genome has two Hrd3/Sel1L homologous
genes, AtSel1A (also known as EBS5 or HRD3A or) and AtSel1B
(also known as HRD3B, an apparent pseudogene) and just one
OS9/Yos9 homolog, AtOS9 (also known as EBS6; Liu et al., 2011;
Su et al., 2011, 2012; Huttner et al., 2012). AtSel1A/EBS5 com-
plemented the ERAD-defect of the yeast �hrd3 mutant assayed
by ERAD of a mutant variant of carboxypeptidase Y (CPY∗; Su
et al., 2011), a commonly used ERAD substrate for many ERAD
studies in yeast. By contrast, AtOS9 failed to rescue the defective
ERAD of CPY∗ when expressed in a �yos9 yeast strain (Hut-
tner et al., 2012). Interestingly, a chimeric AtOS9-Yos9 protein
consisting of the full-length AtOS9 and the Yos9’s C-terminal
region (amino acids of 277–542) promoted CPY∗ degradation
in �yos9 yeast cells (Huttner et al., 2012), suggesting that the
MRH domain is interchangeable but the Yos9’s C-terminal domain
might be crucial for interacting with other components of the
yeast ERAD machinery. Loss-of-function mutations in either
AtSel1A/EBS5 or AtOS9/EBS6 inhibit ERAD of bri1-5, bri1-9,
misfolded EFR (in an ebs1/uggt mutant background), and/or the
transgenically expressed MLO-1 (Liu et al., 2011; Su et al., 2011,
2012; Huttner et al., 2012), a mutant variant of barley pow-
dery resistance o (MLO) that carries a single amino acid change
in the cytoplasmic region and was previously shown to be an
ERAD substrate (Muller et al., 2005). As expected, AtSel1A/EBS5
and AtOS9/EBS6 physically interacted with bri1-9 or bri1-5 in
a tobacco transient expression system or an in vitro pull-down
assay (Huttner et al., 2012; Su et al., 2012). Consistent with what
was known in yeast and mammalian cells, AtSel1A/EBS5 binds
AtOS9/EBS and seems to be required for maintaining the stabil-
ity of AtOS9/EBS6 (Huttner et al., 2012; Su et al., 2012). These
results strongly suggested that the selection mechanism for a
terminally misfolded glycoprotein for ERAD is conserved in Ara-
bidopsis. It is important to point out that Arabidopsis mutants
of AtSel1A/EBS6 or AtOS9/EBS6 are hypersensitive to NaCl-
induced salt stress, suggesting a relationship between a cellular
stress response and an environmental stress pathway (Liu et al.,
2011; Huttner et al., 2012). It is quite possible that environ-
mental stresses lead to decreased folding efficiency and increased
accumulation of misfolded proteins in the ER, which require a
highly efficient ERAD system for their removal to maintain ER
homeostasis.

UBIQUITINATION OF CHOSEN ERAD CLIENTS
Hrd3/Sel1L and Yos9/OS9 not only select irreparable misfolded
glycoproteins but also bring the chosen ERAD substrates to the
membrane-anchored ERAD complexes responsible for ubiquiti-
nation and retrotranslocation. The central component of these
ERAD complexes is a polytopic membrane protein with a RING
finger-type ubiquitin ligase (E3) activity exposed to the cytoso-
lic surface of the ER membrane, which not only ubiquitinates
ERAD substrates but also connects to various ER luminal/cytosolic
adapters (Hirsch et al., 2009). Yeast contains at least two dis-
tinct E3 ligases, 6 transmembrane-spanning Hrd1 (HMG-CoA
reductase degradation) and 14-transmembrane-spanning Doa10
(Degradation of alpha2), that ubiquitinate three different types

of ERAD substrates differing in the location of folding lesions:
ERADL (lesion in the ER luminal area), ERADM (lesion in the
transmembrane segment), and ERADC (lesion in the cytoso-
lic domain; Vashist and Ng, 2004; Carvalho et al., 2006). The
Hrd1 complex ubiquitinates ERADL/M substrates while the Doa10
complex deals with ERADC clients. Mammals have at least
9 membrane-bound ERAD E3 ligases (Olzmann et al., 2013),
including two Hrd1 homologs (HRD1 and gp78), one Doa10
homolog (TEB4), and several other RING-type E3 ligases such as
RING membrane-anchor 1 (RMA1; Younger et al., 2006), whose
founding member was initially discovered in Arabidopsis (Matsuda
and Nakano, 1998).

The Arabidopsis genome encodes two Hrd1 homologs
(AtHrd1A and AtHrd1B; Su et al., 2011; Huttner and Strasser,
2012), at least two Doa10 homologs (Doa10A/At4g34100 and
Doa10B/At4g32670; Liu et al., 2011), and three homologs of
RMA1, AtRMA1-AtRMA3 that were shown to be localized to the
ER and exhibit in vitro E3 ubiquitin ligase activity (Son et al.,
2009; Table 1), but it remains unclear if plants use distinct E3
ligases to removal different classes of ERAD substrates. Loss-of-
function mutations in AtHrd1A or AtHrd1B had no detectable
effect on bri1-5/bri1-9 degradation, but simultaneous elimina-
tion of the two Hrd1 homologs inhibited degradation of the
two mutant BR receptors, indicating that AtHrd1A and AtHrd1B
function redundantly in a plant ERAD pathway (Su et al., 2011).
By contrast, the role of the two Doa10 homologs in the plant
ERAD pathway remains unknown. Two recent genetic studies
revealed important regulator roles of Doa10A (also known as
SUD1 for SUPPRESSOR OF DRY2 DEFECTS1 or CER9 for
ECERIFERUM9) in the cuticle lipid biosynthesis and in con-
trolling the activity but not the protein level of an Arabidopsis
HMG-CoA reductase (Lu et al., 2012; Doblas et al., 2013). Fur-
ther studies are needed to determine if the Arabidopsis Doa10A
is indeed involved in an ERAD pathway that regulates the pro-
tein abundance of key regulatory factors or metabolic enzymes
involved in the cuticle lipid biosynthesis. Unlike yeast but sim-
ilar to mammals, plants have additional membrane-anchored
RING-type E3 ligases for ERAD. For example, the three Ara-
bidopsis RMA1 homologs (Rma1H1) and a hot pepper (Capsicum
annuum) Rma1H1 are involved in the degradation of a cell sur-
face water channel to regulate its plasma membrane level (Lee
et al., 2009). A recent study also suggested that a legume (Med-
icago truncatula) homolog of RMA1 seems to play a role in the
regulation of biosynthesis of plant defense compounds, triterpene
saponins that share the same biosynthetic precursors with sterols,
through regulated degradation of HMG-CoA reductase (Pollier
et al., 2013).

In a typical ubiquitination reaction, ubiquitin is attached to a
substrate through a three-step process consisting of activation,
conjugation, and ligation catalyzed by an ubiquitin-activating
enzyme (E1), ubiquitin-conjugating enzyme (E2), and E3 (Pickart,
2004). In yeast, the Hrd1/Doa10 E3 ligases work together with
a membrane-anchored E2 (Ubc6) and two cytosolic E2s (Ubc1
and Ubc7) that are recruited to the ER membrane by an ER
anchor protein Cue1 (Hirsch et al., 2009), which also activates
both E2 and E3 (Bagola et al., 2013; Metzger et al., 2013). Ara-
bidopsis has a total of 37 E2 enzymes (Kraft et al., 2005), including
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Table 1 | A list of known/predicted components of the Arabidopsis ERAD system.

Yeast/human gene name Arabidopsis name Accession number Reference

Hrd1/HRD1 HRD1A

HRD1B

At3g16090

At1g65040

Su et al. (2011)

Hrd3/SEL1L EBS5/HRD3A

HRD3B

At1g18260

At1g73570

Su et al. (2011)

Yos9/OS-9 EBS6/OS9 At5g35080 Huttner et al. (2012), Su et al. (2012)

Der1/DERLIN DER1

DER2.1

DER2.2

At4g29330

At4g04860

At4g21810

Kirst et al. (2005)

Wang et al. (2008), Kamauchi et al. (2005)

Ubc6/UBE2J1 UBC32

UBC33

UBC34

At3g17000

At5g50430

At1g17280

Kraft et al. (2005), Cui et al. (2012)

Htm1/EDEM MNS4

MNS5

At5g43710

At1g27520

Liebminger et al. (2009)

Doa10/TEB4 SUD1/CER9/DOA10A

DOA10B

At4g34100

At4g32670

Liu et al. (2011), Doblas et al. (2013), Lu

et al. (2012)

RMA1 RMA1

RMA2

RMA3

At4G03510

At4g28270

At4g27470

Matsuda and Nakano (1998), Son et al.

(2009)

Ubx2/ERASIN PUX1

PUX2

PUX3

PUX4

PUX5

PUX6

PUX7

PUX8/SAY1

PUX9

PUX10

PUX11

PUX12

PUX13

PUX14

PUX15

At3g27310

At2g01650

At4g22150

At4g04210

At4g15410

At3g21660

At1g14570

At4g11740

At4g00752

At4g10790

At2g43210

At3g23605

At4g23040

At4g14250

At1g59550

Park et al. (2007), Rancour et al. (2004)

Suzuki et al. (2001), Ueda et al. (2000)

Cdc48/p97 CDC48A

CDC48B

CDC48C

At3g09840

At2g03670

At3g01610

Rancour et al. (2002)

Npl4/NPL4 At2g47970

At3g63000

Ufd1/UFD1 UFD1 At2g21270

At4g38930

At2g29070

At4g15420

Galvao et al. (2008)

Ufd2/UFD2 At5g15400 Bachmair et al. (2001)

Png1/PNG1 PNG1 At5g49570 Diepold et al. (2007)

Rad23/RAD23 RAD23A

RAD23B

RAD23C

RAD23D

At1g16190

At1g79650

At3g02540

At5g38470

Farmer et al. (2010)
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one potential Ubc1 homolog (UBC27), three putative homologs
of Ubc7 known to be the cognate E2 for Hrd1 (UBC7 UBC13, and
UBC14), and three likely homologs of Ubc6 associated mainly
with Doa10 (UBC32, UBC33, and UBC34 each having a pre-
dicted transmembrane domain at their C-termini; Liu et al., 2011),
but our understanding of the roles of these potential ERAD-
participating E2s in the plant ERAD process is extremely limited.
One of the Arabidopsis Ubc6-like E2 gene, UBC32, was recently
found to be induced by salt, drought, and ER stress (Cui et al.,
2012). Interestingly, the Arabidopsis ubc32 mutant seedlings are
more tolerant whereas UBC32-overexpressing transgenic Ara-
bidopsis lines are more sensitive to salt and ER stress (Cui et al.,
2012). The observed salt tolerance of the ubc32 mutant is in con-
trast to the reduced salt tolerance of other known Arabidopsis
ERAD mutants, including ebs5/hrd3a, ebs6/os9, and hrd1ahrd1b
(Liu et al., 2011; Huttner and Strasser, 2012; Huttner et al., 2012).
This discrepancy might be explained by different ERAD substrates
being degraded by different E3 ligase complexes: ERADL/M sub-
strates by AtHrd1A/AtHrd1B in association with cytosolic E2s
and ERADC substrates by Doa10 using membrane-anchored E2s.
Indeed, UBC32 was found to interact with Arabidopsis Doa10B
and to stimulate the ubiquitination and degradation of a known
ERAD substrate MLO-12, another variant of MLO carrying a
single amino acid change in its cytosolic domain (Muller et al.,
2005), in a tobacco leaf transient expression experiment (Cui
et al., 2012). However, the tobacco result was quite different
from the results obtained with the yeast MLO experiment show-
ing that the ERAD of MLO-12 plus two other mutant MLOs
(all carrying a cytosolic mutation) used the Ubc7-Hrd1 path-
way but was unaffected by either ubc6 or doa10 deletion in yeast
(Muller et al., 2005). Such inconsistency might be simply caused
by heterologous expression of ERADC substrates in two different
eukaryotic systems. Nevertheless, UBC32 was implicated in the
Hrd1-mediated degradation of bri1-9 (a presumed ERADL sub-
strate) as the ubc32 mutation partially inhibited the degradation of
the mutant BR receptor and weakly suppressed the corresponding
dwarf phenotype (Cui et al., 2012). The partial inhibition could
be attributed to a redundant role of UBC32 with its two close
homologs or the potential Arabidopsis homologs of Ubc1/Ubc7.
However, blast searches failed to find a single homolog of the
yeast Cue1 gene from published sequences of plant genomes and
expressed sequence tags (our unpublished results), suggesting
that plant ERAD processes might exclusively rely on ER-anchored
membrane E2s. Alternatively, plants could recruit cytosolic E2s to
the membrane-anchored E3 complexes via yet unknown recruit-
ing factors that share no sequence homology but are functionally
similar to Cue1.

The ubiquitination of ERAD substrates, especially those lack-
ing N-glycan degradation signals, by the Hrd1 complex requires
two additional adapters: U1-Snp1 associating-1 (Usa1; HERP in
mammals), an ER membrane protein containing a ubiquitin-like
(UBL) motif near it N-terminus and two predicted transmem-
brane domains in the middle, and Der1 (degradation in the
ER; Derlins for Der1-like proteins in mammals), another inte-
gral ER membrane protein with four transmembrane segments
(Kostova et al., 2007). Usa1 is thought to regulate the stability
and/or oligomerization of Hrd1 and to recruit Der1 to the Hrd1

complex (Carvalho et al., 2006, 2010; Horn et al., 2009; Carroll
and Hampton, 2010), while Der1 is believed to function either
as a receptor for soluble non-glycosylated ERAD substrates or
a potential retrotranslocation channel (Lilley and Ploegh, 2004;
Ye et al., 2004; Kanehara et al., 2010). The Arabidopsis contains
no homolog of Usa1/HERP1 but its genome encodes three Der1
homologs whose functional involvement in a plant ERAD path-
way awaits detailed genetic and biochemical investigations (Kirst
et al., 2005). An earlier study showed that at least two maize Der1
homologs could complement the yeast �der1 mutant, suggesting
a potential role for a plant Der1 homolog in an ERAD pathway;
however, there is no genetic evidence for proving the hypothesis
(Kirst et al., 2005).

RETROTRANSLOCATION OF ERAD SUBSTRATES
Because the catalytic domains of the ERAD-participating E2s and
E3s are on the cytosolic surface of the ER membrane, ERAD
substrates need to undergo retrotranslocation for ubiquitination
and to access the cytosolic proteasome system for their degra-
dation. However, the molecular nature of this retrotranslocon
remains controversial (Hampton and Sommer, 2012). It was pre-
viously thought that the Sec61 translocon, which imports nascent
polypeptides into the ER lumen during protein biosynthesis, is
responsible for retrotranslocation ERAD substrates through the
ER membrane (Pilon et al., 1997; Plemper et al., 1997). Other
studies suggested that the yeast Der1 and its mammalian orthologs
Derlins are the suspected retrotranslocon (Lilley and Ploegh, 2004;
Ye et al., 2004). A recent study, however, showed that the E3 lig-
ase Hrd1 itself could serve as the retrotranslocation channel for
ERADL substrates (Carvalho et al., 2010). It is quite possible that
all three proteins are capable of retrotranslocation different ERAD
substrates involving different adapter proteins.

Compared to the knowledge gained from the yeast and mam-
malian studies, we know almost nothing about the retrotranslo-
cation step of a plant ERAD pathway. Several earlier studies
did suggest the existence of a retrotranslocon in plant cells to
move ERAD substrates into the cytosol. A confocal microscopic
analysis of subcellular localization of a fusion protein between
green fluorescent protein (GFP) with the P-domain of a maize
CRT in tobacco leaf protoplasts suggested a retrotransport route
from the ER to the cytosol (Brandizzi et al., 2003). In addi-
tion, a series of studies revealed that the A chain (known as
RTA) of a ribosome-inactivating toxin, ricin that is normally
produced as a dimeric protein of RTA covalently linked to a
galactose-binding B chain via a single intramolecular disulfide
bond and stored in the central vacuole of the endosperm cells
of castor bean (Ricinus communis), was detected to be degly-
cosylated and eventual degraded in the cytosol when expressed
alone in tobacco leaf protoplasts (Di Cola et al., 2001, 2005;
Marshall et al., 2008). It is important to mention that ricin
and a few other plant toxins were known to exploit the ERAD
pathway to reach their cytosolic targets after being internalized
by mammalian cells and retrograde-transported from the cell
surface to the ER (Lord et al., 2003). In both yeast and mam-
malian systems, retrotranslocation of ERAD substrates was driven
by ubiquitination (Bagola et al., 2011); however, a recent RTA
study using plant protoplasts showed that retrotranslocation is
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independent of ubiquitination as the lysine-lacking (hence non-
ubiquitinated) variant of RTA could still be retrotranslocated
from the ER into the cytosol (Di Cola et al., 2005), suggest-
ing that the ubiquitination-retrotranslocation coupling might be
substrate-dependent.

SUBSTRATE EXTRACTION, PROCESSING, AND DELIVERY TO
THE PROTEASOME
Without regard to the identity of the actual retrotranslocons, ubiq-
uitinated ERAD clients are extracted from the ER lumen (ERADL

substrates) or ER membrane (ERADM/C substrates) by a trimeric
complex consisting of a homohexameric Cdc48 (p97 or valosin-
containing protein in mammals), an AAA-type ATPase and its
two substrate-recruiting factors Ufd1 and Npl4 (each having a
ubiquitin-binding domain; Wolf and Stolz, 2012). The (CDC48)6-
Ufd-Npl4 complex itself is recruited to the Hrd1/Doa10 E3
complexes by Ubx2 (VIMP for p97/VCP-interacting membrane
protein in mammals), one of the 7 ubiquitin regulatory X (UBX)
domain-containing proteins in yeast (13 UBX proteins in mam-
mals; Neuber et al., 2005; Schuberth and Buchberger, 2005, 2008).
The current working model posits that extracted ERAD sub-
strates are further processed through antagonistic interactions
between an U-box-containing E4 multiubiquitination enzyme
Ufd2 and a WD40 repeat-containing protein Ufd3 with unknown
enzyme activity plus a deubiquitylating enzyme Otu1, and/or
through deglycosylation by the cytoplasmic peptide:N-glycanase
(PNGase) Png1 (Raasi and Wolf, 2007). The processed ERAD
substrates were subsequently delivered to the cytosolic protea-
some by Cdc48 in association with two ubiquitin receptors
Rad23 and Dsk2, each containing a UBL domain that interacts
directly with the cytosolic proteasome and a polyubiquitin-
interacting ubiquitin-associated (UBA) domain (Raasi and Wolf,
2007).

The Arabidopsis genome encodes three Cdc48 homologs,
AtCDC48A, AtCDC48B, and AtCDC48C (Rancour et al., 2002).
AtCDC48A was able to complement a yeast cdc48 mutant (Feiler
et al., 1995) and was shown to play a role in the ERAD of a mutant
form of MLO and a mutant variant of the Arabidopsis vacuo-
lar carboxypeptidase carrying the same Gly-Arg mutation as the
yeast CPY∗ and in the retrotranslocation of RTA and the orphan
subunit (RCA A) of another castor bean toxin agglutinin in plant
cells (Muller et al., 2005; Marshall et al., 2008; Yamamoto et al.,
2010). AtCDC48A is likely to be recruited to the ER membrane
by UBX-containing proteins as the Arabidopsis genome encodes a
total of 15 UBX-containing proteins (known as AtPUXs; Table 1),
some of which were shown to interact with AtCDC48A (Rancour
et al., 2004; Park et al., 2007). It remains to be determined which
of the 15 AtPUX proteins are actually involved in recruiting an
AtCDC48 to the ER membrane-anchored E3 ligase complexes and
play a role in degrading known plant ERAD substrates. Our BLAST
searches using the known ERAD components of yeast and mam-
mals as query identified multiple homologs of the Ufd1, Ufd2,
Ufd3, Npl4, Rad23, Dsk2 but only a single PNGase homolog in
Arabidopsis (Table 1). The functional involvement of these poten-
tial ERAD components in an Arabidopsis ERAD process remains
unknown except AtPNG1, which was recently shown to contain
the suspected PNGase activity and could stimulate the degradation

of two mutant variants of RTA in an N-glycan-dependent manner
in yeast cells (Diepold et al., 2007; Masahara-Negishi et al., 2012).

CONCLUSION AND CHALLENGES
Despite rapid progress in recent years for identifying molecular
components of plant ERQC/ERAD systems and studying their bio-
chemical functions, our understanding of the plant ERQC/ERAD
processes remains rather limited, especially about the later stages
of the ERAD pathway, such as retrotranslocation, processing of
polyubiquitin chains, and delivery (to cytosolic proteasome) of
the known plant ERAD substrates. While forward genetic screens
in Arabidopsis identified the GII-UGGT-mediated CNX/CRT cycle
in retaining incomplete/mis-folded glycoproteins and ERAD com-
ponents that function inside the ER lumen to promote the degra-
dation of the two mutant BR receptors, reverse genetic approaches
using T-DNA insertional mutants or RNAi-mediated knockdown
of candidate ERAD genes listed in Table 1 will certainly provide
additional knowledge on the plant ERAD mechanisms. Trans-
genic Arabidopsis lines expressing carefully engineered substrates
of glycosylated/non-glycosylated ERADC/ERADM coupled with
forward genetic screens and reverse genetic studies will reveal if
Arabidopsis has several distinct ERAD subpathways using differ-
ent E3 ligases and adapter proteins that recruits distinct ERAD
clients. Similarly, genetic screens for enhancers/suppressors of
the Arabidopsis wax mutant cer9 [defective in Doa10A (Lu et al.,
2012)] or drought hypersensitive 2 mutant [that led to indepen-
dent discovery of Doa10A (Doblas et al., 2013)] could uncover
additional ERAD components, reveal unique features of the plant
ERAD processes, and a better understanding of the regulatory
function of the plant ERAD system in biosynthetic processes. Pro-
teomic studies with the existing Arabidopsis mutants of the ERAD
E3 ligases could lead to the discovery of additional biochemical
pathways and/or physiological processes regulated by the plant
ERAD machinery. However, the biggest challenges for the plant
ERQC/ERAD research is whether the forward genetic approach in
Arabidopsis could identify novel ERQC/ERAD components that
haven’t been discovered in other eukaryotic systems and if the
combination of the Arabidopsis genetics with cutting-edge bio-
chemical studies in Arabidopsis and transient expression systems
could reveal novel biochemical functions of known or predicted
ERAD components and provide satisfactory answers to some of
the outstanding questions of the general ERQC/ERAD research
field.
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