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FLOWERING LOCUS T (FT) encodes a systemic signal communicating the perception of
long day photoperiod from leaves to the shoot apex to induce the floral transition. Transient
expression of FT in the phloem companion cells of rosette leaves for one to several days
was previously shown to be sufficient to commit plants to flowering. Here we show that
partial commitment results in pleiotropic inflorescence meristem reversion phenotypes.
FT expression is much stronger in organs formed after the floral transition such as cauline
leaves, sepals, and developing siliques. We show that expression of FT and its paralog
TWIN SISTER OF FT (TSF) after the floral transition plays a role in inflorescence meristem
stabilization even if plants flower very late in development. CONSTANS (CO), the major
activator of FT, is not required to prevent late reproductive reversion. The requirement for
FT is temporal since reproductive reversion to a vegetative state occurs only in recently
formed inflorescence meristems. Unlike for the expression of FT in leaves, neither the
distal putative FT enhancer nor long-day photoperiod is required for FT expression in
developing siliques. Expression of FT in developing siligues and their supporting stems
is sufficient to stabilize flowering during the sensitive developmental window indicating
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INTRODUCTION

In many plant species, FLOWERING LOCUS T (FT)-like genes
play a critical role in the photoperiod dependent timing of the
transition from the vegetative to the reproductive stage (Ballerini
and Kramer, 2011). In the model plant Arabidopsis thaliana, FT
integrates environmental and developmental variables at the level
of its transcriptional regulation (Andres and Coupland, 2012). As
part of florigen, FT protein produced in the leaves migrates to
the shoot apical meristem where it triggers the reprogramming
of regulatory networks resulting in a change from vegetative to
reproductive growth (Corbesier et al., 2007). Prior to the floral
transition, FT expression is restricted to the leaves and only occurs
if days are longer than the critical day length (Suarez-Lopez et al.,
2001; Yanovsky and Kay, 2002; Adrian et al., 2010). Photoperiod
control of FT is dependent on CONSTANS (CO), which acts as
direct transcriptional activator presumably in a complex involv-
ing NF-Y transcription factors (Wenkel et al., 2006; Kumimoto
et al., 2008, 2010; Tiwari et al., 2010). If days are longer than
the critical day length, CO protein is stabilized by light and thus
capable of promoting FT expression (Valverde et al., 2004). In the
absence of light, CO is rapidly degraded in the dark and unable to
promote FT expression. Apart from photoperiod, other external
and internal cues participate in FT regulation. For example, an
increase in ambient temperature overrules FT’s dependency on
photoperiod and CO by affecting chromatin accessibility (Kumar
et al.,, 2012). In biennial Arabidopsis plants, high levels of the
transcription factor FLOWERING LOCUS C (FLC) prior ver-
nalization prevent the activation of FT in long-day photoperiod

that fruit generated FT participates in inflorescence stabilization.
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(Hepworth et al., 2002; Michaels et al., 2005). FLC directly binds
to putative regulatory regions in the first intron of FT (Searle
et al., 2006). The effect of FLC is partially dependent on the pres-
ence of SHORT VEGETATIVE PHASE (SVP), with which it may
form a complex (Hartmann et al., 2000; Li et al., 2008). SVP
preferentially binds to regions in the FT promoter containing sev-
eral putative CArG boxes. The effect of SVP repression on FT is
particularly visible in young plants as well as in cold ambient tem-
perature (Lee et al., 2007). Plant age participates in FT regulation
via the microRNA 156 (miR156) pathway (Mathieu et al., 2009).
Recently, more pleiotropic roles of FT and FT-like genes have
been reported (Pin and Nilsson, 2012). During the analysis of
multi-parent recombinant inbred lines in Arabidopsis, FT was
identified as quantitative trait locus (QTL) implicated in the for-
mation of axillary meristems after. but not before, the floral
transition (Huang et al., 2013). FT and its closest paralog TWIN
SISTER OF FT (TSF) were shown to play a role in side shoot
outgrowth with ft and #sf single mutants showing a reduced elon-
gation rate of side shoots in long days (LD) and short days (SD),
respectively (Hiraoka et al., 2013). Double ft;tsf mutants showed
an enhanced reduction of side shoot elongation in both photope-
riods. In addition, FT expression in stomata was shown to result
in stomata opening, indicating a participation of FT in transpi-
ration control (Kinoshita et al., 2011). In potato, some FT-like
genes were shown to be involved in tuber initiation in response
to long days, whereas other paralogs were regulating flowering
in short days (Navarro et al., 2011). In poplar, high expression
of FT-like genes causes early flowering and thus overcomes the
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juvenility phase that usually prevents the floral transition in the
first years of development (Bohlenius et al., 2006; Hsu et al., 2006,
2011). However, expressed at lower levels, functional divergence
of poplar FTI and FT2 paralogs becomes obvious. Poplar FT1,
which is induced by prolonged cold in various tissues including
buds and leaves, triggers the onset of reproductive bud formation,
whereas the long-day induced poplar FT2, which expresses in the
leaves, is much less effective in this process. Moderate expression
of FT2 prevents growth cessation, which is usually triggered in
short days or after stress perception in natural conditions but is
not sufficient to trigger reproductive bud formation. Thus the role
of FT2 is to maintain vegetative growth during the growing season
(Hsu et al., 2011).

Interestingly, FT in Arabidopsis is expressed at much higher
levels after the floral transition, notably in cauline leaves, sepals,
petals and developing siliques (Schmid et al., 2005; Adrian et al.,
2010), and the expression in developing siliques is independent of
photoperiod (Hiraoka et al., 2013). Here we set out to elucidate if
FT expression in developing fruits fulfills a biological function or
rather reflects a non-functional relaxation in the tight repressive
control of transcription that is necessary to prevent precocious
flowering earlier in development. We show that photoperiod-
independent expression of FT in developing fruits plays a role in
inflorescence maintenance.

RESULTS

SEVERAL DAYS OF INDUCTION OF FT EXPRESSION ARE REQUIRED FOR
FULL FLORAL COMMITMENT OF ARABIDOPSIS PLANTS TO FLOWER
Previous studies reported that 3 days in LD growth conditions
during which FT is expressed are sufficient to induce early flow-
ering in the Arabidopsis accession Ler whereas Col plants require
5 LDs for full induction of early flowering (Corbesier et al., 2007;
Torti et al., 2012). We wanted to quantify more precisely how
FT expression contributed to the commitment of the plants to
flowering. We grew Arabidopsis plants of the accession Col-0 in
18 SD before shifting them transiently for an increasing number
of days to extended short day (ESD) conditions and back to SD.
ESD growth conditions provide 8 h of full light supplemented by
8h of low intensity light sufficient to trigger long day (LD) light
responses, such as FT induction, while minimizing the differences
in growth rate observed between plants grown in SD and LD con-
ditions. As expected, plants showed accelerated flowering after
three ESDs as compared to control plants grown in SD conditions
(Figure 1A).

Plants flowering after experiencing few ESDs showed partial
transition/reversion phenotypes. We grouped all shifted plants
into three progressive phenotypic categories, which were “1: as
wild-type with a main shoot showing clear apical dominance
and cauline leaves with a different shape than rosette leaves,”
“2: shortened main shoot without apical dominance and with
aerial rosettes,” “3: main shoot fully arrested with less than 1 cm
bloting or not detectable, frequent aerial rosettes on side shoots
formed at the axils of rosette leaves” (Figures 1B-D). The sever-
ity of the phenotype was inversely correlated with the number
of ESDs the plants had experienced (Figure 1E) indicating that
maintained FT expression participates in preventing reversion
of the inflorescence meristem to a more vegetative or arrested
state. In addition, plants that were older at the start of the ESD
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FIGURE 1 | Several ESDs are required to fully commit the shoot apical

meristem to flowering. Col plants grown in SD for 14 or 18 days were

transiently shifted to an increasing number of days in ESD as indicated. (A)
(Continued)

Frontiers in Plant Science | Plant Genetics and Genomics

April 2014 | Volume 5 | Article 164 | 2


http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Liu et al.

FT in fruits prevents inflorescence reversion

FIGURE 1 | Continued

Flowering was determined by counting rosette and cauline leaves of the
main inflorescence. In the case of SD grown plants only rosette leaves
were counted. Numbers of total leaves are shown as the mean + SE.
Statistically significant differences between treatments was assessed by
One-Way ANOVA followed by Tukey Honest Significant Differences

(***p < 0.01). (B-D) Plants typical for phenotypic categories 1-3,
respectively. Categories are: “1: as wild-type,” “1: reduced apical
dominance and aerial rosettes at main shoot,” “2: main shoot arrested,
aerial rosettes on side shoots at the rosette” White arrows indicate aerial
rosettes, the inlet shows an arrested main shoot without apical dominance.
(E) Quantification of the number of plants per category observed for
different photoperiod treatments as indicated.

treatment showed less severe phenotypes than plants treated at a
younger age (Figure 1E).

TRANSIENT REPRODUCTIVE REVERSION IS OBSERVED IN ft MUTANT
PLANTS

The hypothesis that maintained FT expression is required to pre-
vent reversion of the inflorescence is challenged by the fact that
reversion has not previously been reported for plants grown either
in SD growth conditions or carrying non-functional FT alle-
les. We assessed whether reversion of flowering could have been
overlooked in plants that flower late in development. Although
we never observed reversion in Col-O plants grown in SDs,
partial reproductive reversion was commonly observed in ft-10
mutants (Figures 2A,B). This reproductive reversion phenotype
was different from that observed in younger plants induced by
a suboptimal length of ESDs, since bolting rate or apical dom-
inance of the main shoot were not affected (Figure 1). Instead,
reversion was observed in flowering shoots early after the for-
mation of the first true flowers. The inflorescence meristem
reverted to form vegetative side branches with rosette-like cauline
leaves (Figures 2A,B). Reversion was transient, affecting between
3 and 10 nodes before the formation of flowers was resumed.
Furthermore, reversion was not observed in co mutants but was
enhanced in ft-10;tsf-1 double compared to ft-10 single mutants,
which also showed a tendency to go through repeated cycles of
reversion (Figures 2A,B). Taken together, the results indicate that
the reversion phenotype is independent of CO but dependent on
the expression of the two FT-like genes FT and TSF.

FT EXPRESSION IN DEVELOPING FRUITS IS NOT DEPENDENT ON
PHOTOPERIOD AND THE DISTAL FT ENHANCER Block C

Before the reproductive transition,FT is expressed in the phloem
companion cells of the minor leaf veins if CO protein is sta-
bilized in response to LD photoperiod (Valverde et al., 2004).
After the transition, the expression level of FT' dramatically
increases in the cauline leaf veins in long days (Figure 3A and
Supplemental Figure 1). FT expression is also detected along
the vascular bundles of sepals, petals, the funiculi and septum
of developing siliques and in the vasculature of floral stems
during silique maturation as indicated by a GUS reporter gene
driven by the full-length 5.7kb FT promoter (Figures 3B-E).
Expression of FT in developing siliques and supporting stems
under the control of this promoter is independent of LD photope-
riod (Figures 3C-E). This is similar to data shown by Hiraoka

Col-0

ft-10

1234567 12345678 123456
St-10 St-10;15f-1 co-sail

1234586
Col-0

FIGURE 2 | Reversion phenotype of photoperiod pathway mutants in
SDs. Plants were grown under SD conditions. (A) Plants typical for
flowering phenotype of Col-0 wildtype and ft-70 mutant (B) Side shoots on
the main inflorescence were counted from the first flower (1) toward the
top (until node 34). Flowers are indicated by green, cauline leaves by red
squares, the number of plants assessed is indicated on the x-axis.

et al., who used a genomic FT:GUS fusion that included all
intronic regions and a slightly longer FT promoter (Hiraoka
et al., 2013). We have previously shown that induction of FT
by LD photoperiod requires the presence of a putative distal
enhancer region located between 5.7 and 4.0kb of the tran-
scription start site (Adrian et al., 2010). While expression of
FT in all leaf tissues before fertilization was dependent on
the presence of the distal regulatory regions (Figures 3EG) its
expression in the funiculi, the septum of developing siliques
and the supporting stem did not require the presence of this
putative enhancer indicated by the detection of GUS reporter
gene expression under the control of a 4.0kb FT promoter
(Figures 3H-J).

Taken together, the data indicate that distal regulatory regions
are important to express FT highly in cauline leaves whereas
FT utilizes a different regulatory network for activation in
developing siliques where the expression is also photoperiod
independent.
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FIGURE 3 | GUS driven by 4 kb FT promoter in siliques. Histochemical
GUS assay of A-E 5.7 kbFTp::GUS and F-H 4 kbFTp::GUS plants in Col-0
background harvested after bolting. Samples were cauline leaves in LDs
with cut margins to allow better infiltration of staining solution (A,F),
inflorescences grown in LD (B,G), and SDs (C,H), young siliques (D,l) and
mature siliques grown in SDs (E,J). Scale bars 5 mm, except (D,I): 0.5 mm.

REVERSION OF THE INFLORESCENCE MERISTEM IS PREVENTED BY
EXPRESSION OF FT IN DEVELOPING SILIQUES

Reproductive reversion in ft-10 mutants was observed in SD
growth conditions when expression of FT is mainly restricted to
the developing siliques and their stems indicating that expression
in these organs after fertilization may participate in maintain-
ing the recently committed inflorescence meristem. We made

use of the observation that the 4kbFTprom::GUS transgene was
exclusively expressed in these tissues to test the functional rele-
vance of FT expression in these organs. Transgenic plants that
expressed FT cDNA under the control of the 4kb FT promoter
in the ft-10 background showed no inflorescence reversion in
two out of three transgenic lines whereas a third line showed a
reduced reversion phenotype (Figure 4). This was not different
from the rescue of the reversion phenotype observed when FT
cDNA was expressed under the control of the full length 5.7 kb
FT promoter (Figure 4). The floral reversion type was not cor-
related to slight differences in flowering time that were observed
between the transgenic plants and the parental f¢-10 mutant in SD
growth conditions (Supplemental Figure 2).

Taken together, the data indicate that photoperiod indepen-
dent expression of FT in developing siliques and their supporting
stem is functional and participates in maintaining the commit-
ment of the inflorescence meristem.

DISCUSSION

We addressed the question whether expression of FT plays a
functional role in Arabidopsis development after the plants have
transitioned to flowering. The interest in solving this question
was ignited by the previous observation that FT levels are much
higher in organs formed after the floral transition than in rosette
leaves (Supplemental Figure 1). Recently, it has been reported that
FT and the related TSF play a role in controlling the elongation
rate of side shoots developing from subtending cauline leaves and
that FT protein moves from cauline leaves to axillary meristems
(Hiraoka et al., 2013; Niwa et al., 2013). Our data suggest that ele-
vated FT levels after the transition to flowering help stabilizing the
recently formed inflorescence meristem, which seems particularly
required if plants flower early in development.

Reversion of the inflorescence meristem in young plants by
insufficiently persistent photoperiod signals can lead to dramatic
phenotypic effects the most severe being the full arrest of the main
apical meristem (Figure1). It is currently unclear if this is an
accidental consequence of the repeated reorientation of meristem
identity or a deliberate developmental program. It can be argued
that plants growing in natural conditions in autumn may profit
from inflorescence arrest if this permits them to resume vegetative
growth until the next spring instead of flowering in late autumn
at an early developmental stage.

Inflorescence reversion after the formation of flowers was
previously reported for plants carrying mutations in both,
SUPRESSOR OF CONSTANS 1 (SOC1) and FRUITFUL (FUL)
(Melzer et al., 2008). SOCI and FUL act with partial redundancy
to accelerate flowering in LD (Melzer et al., 2008) and attenuate
the effect of an ectopic overexpression of FT (Melzer et al., 2008;
Torti et al., 2012). Inflorescence reversion observed in socl;ful
double mutants is suppressed by adding an additional mutation
in the gene encoding the floral repressor SHORT VEGETATIVE
PHASE (SVP) (Torti et al., 2012). Thus it is likely that the expres-
sion of FT in developing fruits and their supporting stems serves
to maintain the expression of SOCI, FUL, and other unknown
SVP target genes at the inflorescence meristem.

In wild type Col-0 plants grown in SD combined expres-
sion of FT and TSF prevents floral reversion after the formation
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FIGURE 4 | Reversion of ft mutants is abolished by expressing FT
under the control of a 4.0kb FT promoter. Reversion phenotype
of ft-10 plants carrying constructs to drive FT cDNA by 5.7 and
4.0kbFTp were measured. Three independent transgenic lines are

4.0kbFTp::FTcDNA/ft-10 CDNA/ft-10_#2

shown for 4.0kbFTp construct. Col-0, ft-10, and co-sail were also
measured. The nodes of siligues on the major influence shoot are
marked as green boxes, and the reverted vegetative nodes are
shown as red boxes.

of the first flowers. Expression of FT in the vascular bundles
of developing siliques and the supporting stems is sufficient to
prevent reversion of newly committed inflorescence meristems.
Expression of FT in these tissues is independent of photoperiod
and does not require the distal regulatory region that we previ-
ously showed was required for FT activation by CO in rosette
leaves (Adrian et al., 2010). Apparently; in these particular tis-
sues FT can make use of a distinct set of transcriptional activators
to promote expression. These activators may not be expressed or
activated in other organs. However, it is also possible that the FT
locus itself becomes more permissive for transcription activation
in developing siliques. Interestingly, the 4 kb FT promoter, which
is sufficient for driving expression in developing siliques but not
in other tissues also activates FT ectopically in SD in mutants
affecting the chromatin-dependent Polycomb Group (PcG) path-
way such as like-heterochromatin protein 1 (lhpl) and curly leaf
(clf) (Adrian et al., 2010; and Supplemental Figure 3). Thus, a
reduction in PcG-mediated repression of FT could explain pho-
toperiod independent expression in developing siliques and their
supporting stems.

Feed-back from developing fruits toward programming of
developing meristems is also documented in other plant species,
such as fruit trees belonging to the Rosaceae family. Many apple
landraces show biennial flowering (alternate bearing) because the
ripening fruits inhibit the transition of newly forming meristems
to an inflorescent state (Goldschmidt, 2013). However, the molec-
ular mechanisms explaining this developmental program are not

understood and it is unclear if FT related genes are implicated in
the process.

A delay of the reproductive phase has been associated with
high performance of cereal crops grown in temperate climates
that are not threatened by seasonal water shortage (Jung and
Muller, 2009). Given their common potential to promote flow-
ering in response to photoperiod, mutations in FT-like genes are
likely to delay flowering in many species and thus may represent
good targets for breeding. However, more pleiotropic roles of FT
and related genes after the floral transition suggest that loss of
FT function could have deleterious effects on overall seed yield.
Our study shows that FT is important to stabilize the inflores-
cence meristem and recently it was reported that FT expression
promotes side shoot formation at the axils of cauline leaves
(Huang et al., 2013) as well as the rate of side shoot elongation
(Hiraoka et al., 2013). Future studies should elucidate whether the
pleiotropic roles FT plays after the floral transition are as universal
as its involvement in the promotion of flowering.

METHODS

PLANT GROWTH

SD conditions included 8h of cool-white fluorescent light (8.5
Wm~2), followed by 16 h of darkness. Extended SD conditions
included 8h of cool-white fluorescent light, followed by 8h of
low-fluence rate incandescent light (0.2 Wm™=2), followed by 8 h
of darkness. LD conditions included 16 h of cool-white fluores-
cent light followed by 8 h of darkness. Seeds were sowed on soil
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and stratified at 4°C for 3 days. Soil trays were transferred to
LD or SD growth conditions as indicated. For the shift exper-
iment, plants grown in SDs for 14 or 18 days were transiently
shifted to ESDs for 3—7 days and shifted back to SDs until setting
seeds. As measure of flowering time, the total rosette, and cauline
leaves on the main inflorescence shoot were counted. Plants were
grown at 22°C for SD-ESD-SD shift experiments and at 20°C for
inflorescence reversion experiments.

PHENOTYPING INFLORESCENCE REVERSION

For plants shifted temporarily from SD to ESD conditions, rever-
sion was assessed by grouping plants into three phenotypic
categories which were “1: as wild-type with a main shoot show-
ing clear apical dominance and cauline leaves with a different
shape than rosette leaves,” “2: shortened main shoot without api-
cal dominance and with aerial rosettes,” “3: main shoot fully
arrested with less than 1 cm bloting or not detectable, frequent
aerial rosettes on side shoots formed at the axils of rosette leaves.”
Reversion for plants grown in SD was assessed on the main inflo-
rescence shoot when plants had initiated inflorescences on all side
shoots.

GUS HISTOCHEMICAL STAINING

Cauline leaves, flowers, and siliques were collected from 2-month-
old LD or 3-month-old SD grown plants carrying either a 5.7 or
4.0kb FT promoter GUS constructs as indicated. Samples were
incubated in 90% Acetone on ice for 30 min, rinsed with 50 mM
sodium phosphate buffer and incubated for 24-36 h at 37°C in
GUS staining solution (0.5 mg/ml X-Gluc, 50 mM sodium phos-
phate buffer, 0.5 mM potassium ferrocyanide, 0.5 mM potassium
ferricyanide, 0.1% Triton X-100). To allow better penetration of
the staining solution, cauline leaves were cut at the edges. After
incubation, samples were washed repeatedly with 50 mM sodium
phosphate buffer for 30 min and 70% ethanol until leaves turned
white. GUS staining was visualized and photographed under a
stereomicroscope (Leica).

TRANSGENIC PLANTS AND MUTANTS

5.7 kb-FTpro:GUS/FTcDNA;ft-10 and 4.0 kb-FTpro::GUS/FIc
DNA;ft-10 transgenic plants have been described previously
(Adrian et al., 2010). Mutants ft-10 (GK-290E08), tsf-1(SALK
087522), and co-10 (SAIL_24_HO04) are caused by T-DNA
insertions in the Colombia-0 ecotype and have been described
previously (Michaels et al., 2005; Yoo et al., 2005; Laubinger et al.,
2006).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fpls.2014.00164/
abstract
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