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To understand the genetic requirements for resistance to high versus low LET radiation, a
series of Arabidopsis thaliana mutants were exposed to either 1GeV Fe nuclei or gamma
radiation. A comparison of effects on the germination and subsequent growth of seedlings
led us to conclude that the relative biological effectiveness (RBE) of the two types of
radiation (HZE versus gamma) are roughly 3:1. Similarly, in wild-type lines, loss of somatic
heterozygosity was induced at an RBE of about a 2:1 (HZE versus gamma). Checkpoint
and repair defects, as expected, enhanced sensitivity to both agents. The “replication
fork” checkpoint, governed by ATR, played a slightly more important role in resistance to
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INTRODUCTION

The function of a cell, its capacity to proliferate, and ultimately, its
viability, are under constant threat from a diverse array of DNA
damaging agents and events. Although any lesion can have dele-
terious effects on an organism, double strand breaks (DSBs) are
among the most dangerous types of DNA damage a cell can sus-
tain. The threat such a lesion poses to an organism is influenced
by several important factors. The site of damage and the phase
of the cell-cycle in which the damage occurs impact both a cell’s
response to DSBs and their consequences (Rothkamm et al., 2003;
Delacote and Lopez, 2008; Goodarzi etal., 2010). Furthermore,
while some DSBs are relatively simple, more complex breaks may
arise from secondary damage to the DNA backbone, damage to
bases adjacent to the DSB, or the presence of multiple breaks in
close proximity. Such variation in DSB complexity also plays an
important role in governing the repair of these lesions (Mladenov
etal., 2009).

Ionizing radiation (IR) is a particularly potent DNA damaging
agent that produces single strand breaks, oxidized bases, abasic
sites, and DSBs of varying complexity (McGrath and Williams,
1966; Lehnert, 2008). The efficiency with which an ionizing par-
ticle transfers its energy to the medium it passes through, termed
linear energy transfer (LET), plays an important role in the nature
of the DNA damage caused by exposure to IR (Zirkle etal., 1952).
Low LET particles, such as gamma rays and X-rays, deposit their
energy inefficiently as they pass through a cell, resulting in widely
scattered damage (Costes etal., 2007). Such damage is generally
repaired via base excision or nucleotide excision repair in a largely
error-free manor (Ward and Chen, 1998). High-LET particles,
such as accelerated nucleons or high charge, high energy (HZE)
particles, deposit their energy much more efficiently along a dis-
creet track as they pass through matter, resulting in significantly
more complex, clustered damage along the track (Goodhead, 1988;

Nikjoo etal., 1998, 1999; Sutherland et al., 2001; Costes et al., 2007;
Hada and Georgakilas, 2008). In human cell lines, the distribu-
tion of DSBs induced by HZE has been shown to lie along a well
defined path through the nucleus, whereas gamma-induced DSBs
are widely scattered; furthermore, HZE-induced y-H2AX foci are
often so closely packed, that individual foci are difficult to discern
(Karlsson and Stenerlow, 2004; Costes etal., 2007). Although life
on Earth’s surface is largely protected from exposure to high-LET
radiation, it’s hazards are still of significant concern, particularly in
the planning of long-duration space missions. Moreover, the dam-
age sustained as a result of exposure to either low or high-LET
radiation exhibits similarities with the damage caused by other
more common DSB-inducing agents, and may provide insight
into the response to and repair of such lesions.

To investigate the immediate and long-term impacts high ver-
sus low-LET radiation have on plants, we employed the various
DNA repair-deficient and cell-cycle checkpoint-deficient lines in
the model plant Arabidopsis thaliana. ATM (ataxia-telangiectasia,
mutated) and ATR (ATM and Rad3-related), members of the
phosphoinositide-3-kinase-related protein kinase (PIKK) family,
play important roles in governing the transcriptional response to
DNA breakage and in the induction of cell-cycle arrest (Durocher
and Jackson, 2001; Khanna and Jackson, 2001; Sancar etal., 2004;
Culligan etal., 2006). While ATM and ATR have been shown to
recognize DSBs and stalled replication forks respectively, it is clear
that both kinases play important roles in the IR-induced DNA-
damage response (Chen etal., 1999; Gatei etal., 2000; Abraham,
2001; Friesner etal., 2005; Ismail etal., 2005). Given the distinct
nature of the lesions these proteins target, we were interested in
the role these checkpoint genes play in responding to DNA dam-
age of variable complexity as induced by exposure to high versus
low-LET radiation. Lines lacking DNA ligase IV (LIG4) or KU70,
important players in the canonical nonhomologous end-joining
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(NHE]J) repair pathway, were also utilized to probe the impor-
tance of NHE] and alternative repair pathways in the response to
damage done by high and low-LET radiation.

MATERIALS AND METHODS

PLANT LINES

The following DNA repair-deficient and cell-cycle checkpoint-
deficient alleles were used in our root growth assay: atm-1 (Garcia
etal., 2003), atr-3 (Culligan etal., 2004), lig4-1 (Friesner and Britt,
2003), and ku80-1 (Friesner and Britt, 2003); all of which are in
the Ws ecotype.

For our sectoring assay, we searched the Arabidopsis Informa-
tion Resource (TAIR) database to identify alleles that might serve
as an albino marker. The APG3 gene (albino/pale green mutant 3),
located near the telomere of chromosome I11, is essential in chloro-
plast development (Motohashi et al., 2007). Seedlings deficient for
APG3 arrest development shortly after germination; as the name
implies, cells deficient for APG3 lack pigment and are easily dis-
tinguished from those that retain a wild-type copy of the APG3
gene. A line harboring a T-DNA insertion in APG3 was ordered
from the Arabidopsis Biological Resource Center (Syngenta stock
“CS16118”; McElver etal., 2001). This particular allele, apg3-2,
was selected both because the T-DNA construct used in generating
this particular line imparts resistance to the herbicide Basta, and
because of its clear and consistent albino phenotype; the presence
of the Basta resistance (BAR) gene in this construct afforded us the
ability to select for just those plants carrying the albino marker.
To introduce the APG3 albino marker into our repair-deficient
and checkpoint-deficient lines, we tried where possible, to choose
alleles that did not already carry the BAR gene. We crossed apg3-2
with atm-1 (Garcia etal., 2003), atr-2 (Culligan et al., 2004), lig4-3
(Hefner etal., 2003, 2006), and ku80-1 (Friesner and Britt, 2003);
the ecotype of apg3-2 and atr-2 is Col, that of atm-1 and ku80-1 is
Ws, and that of lig4-3 is Ler.

IONIZING RADIATION

High-LET radiation treatments were administered at the NASA
Space Radiation Laboratory (NSRL) at Brookhaven National Lab-
oratory (BNL) (Upton, NY) using accelerated *°Fe nucleons with
a beam size diameter of 20 cm and a dose rate of 7 Gy min~!.
Following irradiation, samples remained at the NSRL facility for
approximately 30 m until deactivated.

Low-LET, gamma radiation treatments were carried out at BNL
using a 137Cs source in the Controlled Environment Radiation
Facility at a dose rate of up to 6 Gy min~!. A subset of the gamma
radiation treatments done on samples for the albino sectoring
assay were carried out using an alternate '3’Cs source (Institute
of Toxicology and Environmental Health, University of California,
Davis, CA, USA) with a dose rate of 7 Gy min~ .

PREPARATION OF SAMPLES USED IN ROOT GROWTH AND SECTORING
ASSAYS

Four to six days prior to irradiation, seeds used in the root growth
assay were surface sterilized using a 20% bleach solution; steril-
ized seeds and seeds used in the sectoring assay were aliquoted,
suspended in ddH2O, and stored at 4°C. Seeds were shipped
overnight, on ice, to BNL where they were again stored at 4°C

until the time of IR treatment. Samples were irradiated (See “Ion-
izing Radiation” above) with the doses indicated in the text and
figures. Following treatment, the samples were repacked on ice
and shipped overnight to the University of California, Davis.
Upon arrival, seeds used in the sectoring assay were sown on
soil (Sunshine Mix #1; Sungro, Bellevue, WA, USA) at a den-
sity of ~0.2 seeds cm~2 and placed in the growth chamber under
clear plastic domes to maintain high humidity; seeds used in the
root growth assay were sown on 1x nutrative MS (Sigma-Aldrich,
Saint Louis, MO, USA) Phytoagar (PlantMedia, Dublin, OH, USA)
plates, pH 5.9, and placed vertically in the growth chamber. Seeds
were grown under a simulated 16 h day/8 h night cycle using light
from cool-white lamps (100-150 wmol m~2 s~ 1) filtered through
Clear UV-filtering Protect-O-Sleeves (McGill Electrical Product
Group, Rosemont, IL, USA). Plastic domes were partially removed
from seeds used in the sectoring assay 3 days after sowing and fully
removed after 5 days.

MEASUREMENT OF ROOT LENGTH

Digital images of the plated seeds were taken eight days after trans-
fer to the growth chamber. The length of the primary root was
determined using the public domain, image-processing program,
Image].

QUANTIFICATION OF APG3 SECTORS

Because the apg3-2 allele imparts resistance to the herbicide Basta,
we were able to significantly reduce the number of plants it was
necessary to screen for sectoring. Roughly 2 w after sowing, the
number of healthy seedlings was determined. Plants were then
treated with Basta (Finale, AgrEvo Environmental Health, Mont-
vale, NJ, USA) and the number of resistant plants was determined
in the following days. Resistant plants were scored for the presence
of albino sectors approximately 3 weeks after sowing. The leaves of
each plant were gently manipulated in order to inspect underlying
leaves. Sectors were white or pale green in color, could be traced
toward or along the petiole, and exhibited a relatively clear and
well-defined boundary between the sector and the neighboring
tissue; leaves that were clearly unhealthy or grossly deformed were
not scored for sectors. While the number of Basta resistant plants
might have been used to calculate such a frequency directly, the
fact that In the case of the atm-I mutant, this insertion allele also
carries Basta resistance, and so seedlings in the next generation,
after selection for Basa resistance, would be expected to segre-
gate 2 apg3-2 het:1 APG3-2"/T. To correct for this, seeds were
collected from a heterozygous parent, and the frequency of hets
for apg3-2 was corrected for in the next generation. To estimate
the frequency of sectoring in the progeny of heterozygous APG3*
plants, we divided the number of plants with a sector by two-
thirds the total number of healthy seedlings present 2 weeks after
sowing.

RESULTS AND DISCUSSION

THE BIOLOGICAL EFFECTIVENESS OF HZE %Fe PARTICLES IS
APPROXIMATELY 3-FOLD GREATER THAN THAT OF '37Cs GAMMA RAYS
WITH RESPECT TO INHIBITION OF PRIMARY ROOT GROWTH

To test the relative impact of high- versus low-LET radiation on
root growth, a process governed by both cell division and cell
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expansion, seeds were irradiated with either high-LET >°Fe par-
ticles (HZE) or low-LET '37Cs gamma rays. The length of the
primary root 8 days after planting (DAP), relative to the length
in unirradiated seeds, is shown in Figure 1. Consistent with pre-
viously published data, exposure to increasingly higher doses of
gamma radiation results in increased inhibition of root elongation
(Jiang etal., 1997). A similar, though more pronounced trend is
observed in seeds exposed to HZE. At doses of 100 Gy HZE or
higher, root elongation appears to be almost completely inhib-
ited in wild-type lines, though seeds irradiated at such doses are
still capable of germination, indicating that the treated embryos
remain alive.

Relative biological effectiveness (RBE), defined as the absorbed
dose of radiation of a standard type (e.g. gamma) divided by the
absorbed dose of radiation type “x” that causes the same amount
of biological damage, offers a means of comparing how damaging
different types of radiation are, given the same amount of absorbed
energy; the larger the RBE for a type of radiation, the more damag-
ing the radiation per unit energy deposited (Failla and Henshaw,
1931). The RBE of HZE versus gamma radiation was estimated
by interpolating the dose response data to determine the dose at
which the length of the primary root is reduced to 37% that of
the untreated control (IDj/,; Table 1). In the case of both our
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FIGURE 1 | Relative root growth of irradiated seeds 8 days after
treatment. (A) Gamma treatment. (B) HZE treatment. Data points reflect
results from three (n = 3) biological replicates in the case of atm, and atr
and four (n = 4) biological replicates in the case of wild-type, lig4 and ku80
(Doses for which only a single biological replicate was performed are
displayed as hollow data points.). Rootlengths from an average of 29
seedlings were scored per line, per treatment, per replicate. Lines
represent interpolation of the data, fit to a sigmoid curve. Error bars depict
standard error of the mean, as calculated and plotted by Microsoft Excel.

Table 1| Relative biological effectiveness of HZE versus gamma
radiation with respect to root hypersensitivity.

ID4/e (Gy)
Line 56 Fe-HZE 137Cs.y RBE (IDy / IDyz¢)
Wild-type (Ws) 43.9 130.1 2.97
atm-1 22.8 82.9 3.63
atr3 39.0 81.6 2.09
liga-1 271 65.8 2.43
ku80-1 19.0 40.2 2.12

1Dy, = Dose required to inhibit growth of primary root to 37% that of the
untreated control.

wild-type and mutant lines, the effect of HZE on primary root
growth is significantly greater than that of gamma rays. The bio-
logical effectiveness of HZE versus gamma in our repair-deficient
lines is slightly lower than observed in wild-type. Somewhat more
variance is observed in our checkpoint-deficient lines. Lines defi-
cient for ATM exhibit a slight increase in root sensitivity to HZE
versus gamma radiation relative to wild-type (RBE = 3.63 versus
2.97), while lines deficient for ATR exhibit a slight decrease in their
relative HZE sensitivity (2.09). Whether this shift in root hypersen-
sitivity is a function of cell death resulting from a failed checkpoint
induction, or from prolonged cell-cycle arrest is unclear from the
root growth data.

GENOMIC INSTABILITY IN SEEDS EXPOSED TO HZE *Fe PARTICLES IS
GREATER THAN THAT OBSERVED IN SEEDS EXPOSED TO '¥7Cs GAMMA
RAYS

While the root hypersensitivity assay indicates that exposure to
HZE has a more pronounced effect, per Gy on the growth of
seedlings than does exposure to gamma radiation, it fails to shed
much light on long-term effects on genomic stability. In order
to address the impact HZE and gamma radiation have on the
integrity of the genome, we employed a sectoring assay to test
for loss of heterozygosity (LOH) in treated seeds (Preuss and
Britt, 2003). An albino marker gene (apg3) near the tip of chro-
mosome III was introduced to a series of DNA repair defective
lines and checkpoint defective lines. While seedlings homozygous
for the albino marker arrest and die shortly after germination,
untreated seedlings heterozygous for the marker appear pheno-
typically identical to wild-type. Loss of the wt allele marker in a
heterozygous single cell, whether as a result of anueploidy, loss of
the distal portion of the chromosome, or mutation of the wild-
type allele, followed by production of mutant cell files via cell
division, results in the production of an albino sector (Figure 2,
inset) The frequency with which these sectors occur within a pop-
ulation provides a measure of genomic stability (Yoshiyama etal.,
2009).

As expected, under normal conditions, genomic stability in
wild-type plants appears quite high. To obtain an estimate of the
rate of spontaneous LOH at the APG3 locus in wild-type plants,
900 untreated plants were scored for the presence of an albino
sector. Of the 900 plants scored, none exhibited the presence of
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FIGURE 2 | Loss of heterozygosity following exposure to radiation.
Loss of heterozygosity in wild-type plants treated with HZE (black line) and
gamma (gray line) radiation. Data points represent the mean of three
biological replicates; dashed lines depict linear regressions of datasets.
Error bars depict standard deviation, as calculated by standard statistical
methods in Mircosoft Excel. Inset: example of an IR-induced albino sector.

a sector, suggesting a rate of spontaneous LOH per plant for this
particular allele of less than 0.1%.

In seeds treated with low does of either HZE or gamma radi-
ation, sectoring increases with dose in a roughly linear, positive
fashion (Figure 2). However, plants treated with higher doses are
very small, and exhibit decreasing frequencies of sectoring/plant,
perhaps simply because fewer cells are sampled per plant. Sector-
ing frequency in seeds treated with “®Fe particles was consistently
higher than that observed in seeds treated with gamma rays;
these results are consistent with the observation that in human
cells, clustered damage generated by Fe ions leads to increases in
chromosome breakage and genomic instability (Asaithamby etal.,
2011). To obtain an estimate of the biological effectiveness of HZE
versus gamma radiation, in the context of long-term genomic sta-
bility, linear regressions were generated from the sectoring data
(Figures 2 and 3, inset). Regressions were constrained such that
they passed through the origin, and the ratio of the slopes from the
HZE and gamma datasets was determined. In wild-type plants, a
3.33-fold increase in sectoring was observed in seeds treated with
HZE as compared to those treated with gamma rays (Table 2). In
the case of lig4 and ku80, the 50 Gy gamma and 200 Gy HZE dat-
apoints were omitted in the regression analysis due to a drop-off
in sectoring at higher doses as discussed in the following section.

LINES DEFECTIVE IN DNA DSB REPAIR EXHIBIT A DECREASE IN
GENOMIC STABILITY

Given the significant roles LIG4 and the KU70/KU80 heterodimer
play in NHE]J (Friesner and Britt, 2003), we sought to determine
the importance of these factors in maintaining genomic stability
during the repair of IR-induced DSBs. As in the case of wild-type,
at low doses, our lig4 and ku80 lines exhibited a roughly linear
increase in the frequency of sectoring with exposure to increased
levels of radiation; however, unlike our wild-type line, a significant
drop-off in sectoring was observed at higher doses of either HZE
or gamma radiation (Figure 3). Again, we believe this is due to the
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—— WT (gamma treated)
—@-— lig4-1 (HZE treated)
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—O- lig4-1 (gamma treated)
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% of plants with sector(s)
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FIGURE 3 | Loss of heterozygosity in repair-deficient plants in response
to HZE and gamma radiation. Data points represent the mean of three
biological replicates. An average of 216 plants were scored per line, per
treatment, per replicate. Error bars depict standard deviation, as calculated
by standard statistical methods in Microsoft Excel. Inset: Linear regressions
for each dataset. Note: as described in the text, the 50 Gy HZE and 200 Gy
Gammea data points were excluded from the regression analysis.

very small size of the repair-defect plants after irradiation at these
doses.

Of the mutant lines tested, plants lacking LIG4 exhibited the
highest rate of sectoring following exposure to IR (Table 2).
Although research has demonstrated that DSBs can be rejoined
in the absence of LIG4, its role as the primary ligase involved in
NHE]J is well documented (Grawunder etal., 1998; Tsukamoto
and Tkeda, 1998; Junop etal., 2000; Friesner and Britt, 2003; van
Attikum etal., 2003; Huefner etal., 2011). The increased rate of
LOH in lig4 is almost certainly the result of persistent DSBs present
during cell division; whether the structure of these breaks pre-
cludes other ligases from rejoining the broken ends, or the ends are
repaired in a more error-prone fashion is unclear. KU80, another
important component of NHE], also appears to be involved in
maintaining genomic stability following exposure to IR. Other
work has shown that while the KU complex plays an impor-
tant role in governing the size of deletions and insertions at DSB

Table 2 | Relative biological effectiveness of HZE versus gamma
radiation with respect to LOH.

Slope of Linear Regression “y = mx” (fraction of APG3* plants
with visible sector/Gy)

Line m (%6 Fe-HZE) m (%7 Cs-y) RBE (myzg/my)
Wild-type 0.1389 0.0417 3.33
atm-1 0.2626 0.1024 2.56
atr2 0.3079 0.0784 3.93
liga-3 0.4292 0.1268 3.38
kug0-1 0.2343 0.0686 3.42

Calculations were made as described in the text, where RBE of HZE relative to
gamma is taken as the ratio of slopes (myzg/my) for the linear regressions of the
sectoring versus dose datasets forced through the origin.
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repair sites and in stabilizing broken ends prior to ligation, end-
joining can still occur in its absence (Ma et al., 2003; Boboila et al.,
2010; Huefner etal., 2011). It is likely, therefore, that a relatively
large portion of the broken DNA ends generated by IR are ulti-
mately rejoined in our ku80 line resulting in the more moderate
increase in sectoring observed in ku80 plants as compared to lig4
plants.

THE RELATIVE IMPORTANCE OF ATM AND ATR IN MAINTAINING
GENOMIC STABILITY DIFFERS IN RESPONSE TO HZE VERSUS GAMMA
RADIATION
As with our DNA repair-deficient lines, a significant increase in
sectoring was observed in our checkpoint-deficient lines relative
to wild-type (Figure 4). Such an increase is consistent with the
role ATM and ATR play in governing the DSB driven, early G2/M
phase arrest. Failure to properly arrest cells in response to DSBs
could result in the presence of persistent DSBs during cell division,
thereby leading to aneuploidy and LOH (Garcia etal., 2003; Cul-
ligan and Britt, 2008). ATM and ATR function synergistically in
response to IR-induced DNA damage, functioning in some ways
redundantly and in other ways distinctly to activate downstream
targets, trigger cell-cycle arrest, and help drive DNA repair. In
light of the fact that ATM is thought to respond directly to DSBs
via interaction with proteins associated with the breaks (Bakkenist
and Kastan, 2003; Lee and Paull, 2005), whereas ATR is thought
to respond to the presence of persistent single-stranded DNA
(ssDNA) (Burrows and Elledge, 2008; Cimprich and Cortez, 2008),
we were interested in whether ATM and ATR function differently
in maintaining genomic stability in response to the damage caused
by HZE versus gamma radiation.

atm-1 seeds exposed to gamma radiation exhibit a 2.5-fold
increase in the frequency of sectoring as compared to wild-type
(calculated from the slopes reported in Table 2). A more moderate
increase in sectoring, 1.9-fold, was observed in our atr line, sug-
gesting that while both ATM and ATR play a role in maintaining
genomiic stability in response to gamma radiation exposure, ATM

30
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FIGURE 4 | Loss of heterozygosity in cell-cycle checkpoint-deficient
plants in response to HZE and gamma radiation. Data points represent
the mean of three biological replicates. Error bars depict standard deviation,
calculated as before via Microsoft Excel. Inset: Linear regressions for each
dataset.

is of greater relative importance. In seeds exposed to HZE particles,
an increase in sectoring was again observed in both atm and atr
relative to wild-type. Fold increases of 1.9 and 2.2 were observed
for atm and atr respectively, indicating a reversal in the relative
importance of ATM and ATR in mitigating LOH in HZE versus
gamma treated seeds, although these differences are small. Quan-
tification of the RBE of HZE versus gamma, in terms of genomic
stability, in our checkpoint-deficient lines demonstrates a decrease
in the relative importance of ATM in response to HZE radiation as
compared to wild-type (2.6 and 3.3, respectively), and an increase
in the relative importance of ATR (3.9). Based on the LOH data,
it appears that ATR plays a more important role in responding
to the complex, clustered damage induced by HZE particles than
it does in responding to damage induced by exposure to gamma
radiation.

Given that ATR responds to persistent ssDNA, one possible
explanation for the increased importance ATR plays in response
to HZE treatment, is that more ssDNA is produced directly upon
exposure to HZE particles. Multiple nicks to the DNA backbone in
close proximity to one another may produce significant stretches
of ssDNA in conjunction with DSBs not typically present in breaks
generated by low-LET radiation. Alternatively, ssDNA may also be
produced secondarily in HZE treated cells as the cell attempts
to repair the clustered damage via resection of damaged ends or
excision of damaged nucleotides. In cells deficient for ATR, impo-
sition of cell-cycle arrest in HZE treated cells may be abrogated
or delayed, resulting in enhanced loss of heterozygosity in cells
that divide before the damage can be resolved. This may also
provide insight into the observation that relative to both wild-
type and atm, root growth in atr is slightly more resistant to
HZE treatment, given that affected cells, while incurring greater
damage to the genome, may still be capable of cell division and
expansion.

CONCLUSION

Our results demonstrate a clear difference in the sensitivity of
Arabidopsis to high- versus low-LET radiation. Data from both
our root hypersensitivity and LOH assays indicate that the RBE
of HZE radiation is between two and four times that of gamma
radiation. The increased sensitivity of plants to HZE suggests
that not only the quantity, but also the complexity of DSBs
induced by IR play an import part in determining the effi-
ciency and accuracy of DNA repair. A significant decrease in the
genomic stability of KU80-deficient and LIG4-deficient lines in
response to both HZE and gamma radiation reflects the impor-
tance of C-NHE] in the repair of both simple and complex
DSBs.

While it is unclear what additional factors may be unique to
or of special importance in the repair DSBs induced by one class
of radiation versus another, it is apparent that the relative impor-
tance of ATM versus ATR shifts in response to HZE versus gamma
radiation. The increased relative importance of ATR versus ATM
in responding to damage induced by HZE suggests that treatment
with high-LET radiation results, either directly of indirectly, in a
significant increase in the amount of ssDNA in the cell. Given the
differences in the composition of DNA damage induced by HZE
and gamma radiation, it will be interesting to determine what
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other differences exist in a cell’s response to both types of IR. Dif-
ferences in response at the transcriptomics level are addressed in
the accompanying paper.
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