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The metal hyperaccumulator Noccaea caerulescens is an established model to study the
adaptation of plants to metalliferous soils. Various comparators have been used in these
studies. The choice of suitable comparators is important and depends on the hypothesis
to be tested and methods to be used. In high-throughput analyses such as microarray, N.
caerulescens has been compared to non-tolerant, non-accumulator plants like Arabidopsis
thaliana or Thlaspi arvense rather than to the related hypertolerant or hyperaccumulator
plants. An underutilized source is N. caerulescens populations with considerable variation
in their capacity to accumulate and tolerate metals. Whole transcriptome sequencing
(RNA-Seq) is revealing interesting variation in their gene expression profiles. Combining
physiological characteristics of N. caerulescens accessions with their RNA-Seq has a
great potential to provide detailed insight into the underlying molecular mechanisms,
including entirely new gene products. In this review we will critically consider comparative
transcriptome analyses carried out to explore metal hyperaccumulation and hypertolerance
of N. caerulescens, and demonstrate the potential of RNA-Seq analysis as a tool in
evolutionary genomics.

Keywords: RNA-Seq, deep sequencing, NGS, Noccaea caerulescens, Thlaspi caerulescens, hyperaccumulation,

metal tolerance, Brassicaceae

INTRODUCTION
The Alpine pennycress Noccaea caerulescens (previously Thlaspi
caerulescens) from the Brassicaceae family has been extensively
studied at the physiological level for its ability to hyperaccumu-
late and hypertolerate metals such as Zn, Cd, and Ni (Meerts and
Van Isacker, 1997; Lombi et al., 2000; Reeves et al., 2001; Assunção
et al., 2003c; Roosens et al., 2003; Escarré et al., 2013). To explore
the basis for these traits, a number of plants with differences
in hyperaccumulation and hypertolerance have been compared.
This includes cross- and intra-species comparisons, and compar-
isons between accumulators and non-accumulators. The choice
of comparators is important and depends on the hypothesis to
be tested and methodology used. While deep sequencing tech-
niques have the potential to greatly increase our understanding
about the mechanisms of plant metal-related traits and their evo-
lution during the adaptation to different environments, a careful
consideration of appropriate comparators becomes increasingly
important. A major challenge is to find the genes of inter-
est among those differentially expressed between the plants. In
this review we consider the choice of comparators in exploring
metal hyperaccumulation and hypertolerance characteristics of
N. caerulescens, and discuss the pros and cons of the approaches
in relation to RNA-Seq analysis. Applying RNA-Seq analysis to
N. caerulescens populations with contrasting metal tolerance or
hyperaccumulation capacities is a superior tool to analyze the evo-
lutionary genomics of plant adaptation strategies to metalliferous
soils.

TRANSCRIPTOME COMPARISON BETWEEN N. caerulescens
AND NON-TOLERANT NON-ACCUMULATOR PLANTS
The non-accumulator, non-tolerant Arabidopsis thaliana, a model
plant from the Brassicaceae family, is considered as a good com-
parator to N. caerulescens because of considerable sequence sim-
ilarity: 87-88% identity in intergenic transcribed spacer regions
(Peer et al., 2003), and ca. 88.5% nucleotide identity within
transcribed regions (Rigola et al., 2006). Furthermore, genetic
resources available for A. thaliana are superior compared to any
other plant.

One of the first efforts to characterize the N. caerulescens tran-
scriptome was made by Rigola et al. (2006), comparing ESTs
(expressed sequence tags) of A. thaliana and N. caerulescens
accession La Calamine, a Zn-tolerant Zn hyperaccumulator
(Assunção et al., 2003c). Besides two species, the complex com-
parison thus included Zn hyperaccumulator/non-accumulator
pair, Zn tolerant/non-tolerant pair as well as different Zn con-
centrations. The assembled partial cDNA sequences (unigenes)
represented only 13% of the root and shoot transcriptomes,
but some interesting findings emerged. Several unigenes showed
similarity to genes for which a role in metal hyperaccumula-
tion, tolerance or homeostasis was previously implicated. Three
percent of the unigenes corresponded to A. thaliana ortho-
logues not known to be expressed, and ca. 8% were consid-
ered N. caerulescens – specific. An effort was made to esti-
mate transcriptional activity of highly expressed genes from
the frequency of their detection but, unlike RNA-Seq, EST
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analysis provides limited information about transcript abun-
dances.

To identify genes involved in Zn tolerance and/or accumula-
tion, van de Mortel et al. (2006) compared root gene expression
profiles of A. thaliana and N. caerulescens (La Calamine) under
Zn excess and deficiency. For both species, a 60-mer oligo
DNA microarray covering nearly complete A. thaliana transcrip-
tome was used. An uncertainty in this approach was that the
probes generally did not hybridize to N. caerulescens cDNA as
efficiently as to A. thaliana cDNA, partly because they were
designed to fit less conserved regions of A. thaliana transcripts.
Furthermore, in the absence of N. caerulescens genome data, a
marked effort was needed to develop primers to verify the results
by PCR, as microarray does not provide accurate information
about sequences. Over 2000 genes were significantly differentially
expressed between A. thaliana and N. caerulescens. A challenge
remained that most of the differentially expressed genes would
not be directly linked to metal homeostasis. Furthermore, con-
sidering Zn hyperaccumulation as a constitutive species-level trait
in N. caerulescens (Rascio and Navari-Izzo, 2011), many metal
homeostasis genes being constitutively highly expressed in hyper-
accumulators (Hammond et al., 2006; van de Mortel et al., 2006,
2008), Zn-dependence of the expression would not be expected
for these genes.

In order to identify genes primarily involved in Cd tolerance,
van de Mortel et al. (2008) investigated the root gene expres-
sion profiles of A. thaliana and N. caerulescens (La Calamine)
under different Cd and Zn exposures, using the same A. thaliana
array platform as van de Mortel et al. (2006). The authors con-
cluded that these two species have specific responses to Cd, and
emphasized the role of lignin, glutathione and sulfate metabolism.
Only 93 out of 409 N. caerulescens genes differentially expressed
in response to Zn exposures were identical to those reported
by van de Mortel et al. (2006), highlighting the fact that dif-
ferences in plant growth conditions, sampling, but also probe
hybridization conditions lead to major differences in the out-
comes. Interestingly, although similarities were found in gene
expression profiles between N. caerulescens and Arabidopsis hal-
leri, another metal hyperaccumulator species, compared to A.
thaliana, there were also clear differences (Weber et al., 2004; Talke
et al., 2006), which implied either species-specific differences in
the mechanisms of metal hyperaccumulation or methodological
differences.

Another non-accumulator plant, Thlaspi arvense, has been used
as a comparator to N. caerulescens. The average similarity between
the coding regions of A. thaliana and N. caerulescens or T. arvense
genes was calculated by Hammond et al. (2006) as 81.5%. To
increase the understanding about Zn hyperaccumulation mech-
anisms, Hammond et al. (2006) compared shoot transcriptomes
of agar- and compost-grown N. caerulescens (Viviez population)
with T. arvense by using an A. thaliana array, in which each gene
was represented by a set of oligo probes. The array was exten-
sively validated in order to overcome the potential limitations
arising from sequence divergence between orthologous genes in
A. thaliana, N. caerulescens and T. arvense, as the probe selec-
tion was demonstrated to dramatically affect the estimates of
differential gene expression. Approximately 5000 differentially

expressed genes were found, including several genes previously
implicated in Zn homeostasis. Literature comparison indicated
that very few of those genes were common to the genes iden-
tified when A. halleri and A. thaliana were compared which,
according to Hammond et al. (2006), might have been a con-
sequence of not accounting for sequence divergences between
A. thaliana and A. halleri. Furthermore, although Viviez pop-
ulation shows constitutive Zn hyperaccumulation capacity, it
is primarily a Cd hyperaccumulator and thus perhaps not the
best comparator to study Zn hyperaccumulation (Schwartz et al.,
2003).

Until now, no transcriptome comparisons between N.
caerulescens and related metal hyperaccumulators are available.
In principle, such comparisons might be useful if the plants pro-
vide unique accumulation/tolerance profiles. Even with similar
profiles, these comparisons might help to reject or support a
hypothesis and could tell whether the genetic basis of any spe-
cific tolerance or accumulation mechanism is species-specific or
more universal. Examples of such plants are the Ni accumulator
N. goesingense (Lombi et al., 2000) and the Zn/Cd hyperaccumu-
lator N. praecox, which accumulates Cd similarly to N. caerulescens
Ganges accession but is less Cd-tolerant (Vogel-Mikuš et al., 2005).
Another comparator of interest is the more distantly related A.
halleri, which accumulates Cd and Zn but not Ni, is not Ni
tolerant, shows different Zn compartmentation, and has differ-
ences in the regulation of Cd uptake compared to N. caerulescens
(Cosio et al., 2004; Marquès et al., 2004; Broadley et al., 2007).
Comparing N. caerulescens and A. halleri at specific tissue- or
even single cell level might help determining the specific mech-
anisms responsible for metal accumulation (e.g., different Zn
compartmentation).

MICROARRAY ANALYSIS VERSUS RNA-SEQ
While cross-species microarray analyses have provided valuable
information about N. caerulescens and its responses to environ-
ment compared to the related non-accumulators A. thaliana and
T. arvense, the approaches have limitations, which may lead to a
conclusion that there is a link between metal hyperaccumulation
and a specific gene expression when in fact there is not, and vice
versa. All microarray-based methods have limitations in terms of
sensitivity and dynamic range, but a major challenge in cross-
species comparisons is the sequence divergence of orthologous
genes and thus the probe design. This can lead to inaccuracies,
e.g., in estimating relative transcript abundances and to the lack
of identification of novel transcripts.

RNA-Seq analysis is rapidly becoming the method of choice in
the cross- and intra-species comparisons. Some advantages are its
superior sensitivity and dynamic range. An example of the sensi-
tivity is the MYB72 gene, which is of interest because the A. thaliana
myb72 loss-of-function mutant exhibits decreased tolerance to Zn
and Fe (van de Mortel et al., 2008). No expression of an ortho-
logue could be established in N. caerulescens by microarray or
low-stringency semi-quantitative RT-PCR (van de Mortel et al.,
2008). Low-level expression was, however, found by RNA-Seq
analysis, which opens the possibility that this transcription fac-
tor is involved in Zn tolerance of N. caerulescens (Halimaa et al.,
2014). It should be noted that the detection of lowly expressed
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genes in RNA-Seq analysis is particularly sensitive to sequencing
depth and coverage (Rapaport et al., 2013).

Since the output is made available as sequences and read
counts rather than signal intensities like in microarrays, RNA-
Seq is particularly attractive for species that have not been fully
sequenced, such as N. caerulescens. Apart from being able to
reveal novel transcripts, RNA-Seq can provide detailed infor-
mation about single nucleotide polymorphisms (SNPs), splice
variants and small RNAs. An example of nucleotide polymor-
phism leading to differences in amino acid sequences is shown in
Figure 1 for IRT1 transcript assembled from Illumina RNA-Seq
data in three N. caerulescens accessions (Halimaa et al., unpub-
lished). Some of the differences in the corresponding amino acid
sequences of this metal transporter might contribute to differences
in metal specificity among the accessions, e.g., by influencing the
affinity to different metals. In Arabidopsis, IRT1 has broad metal
specificity (Eide et al., 1996; Korshunova et al., 1999).

The RNA-Seq technology does not fully solve the problems
faced with cross-species comparisons. When comparing, e.g., N.
caerulescens and A. thaliana to a common reference genome, the

two species will have different mapping properties, complicating
the calculation of transcript abundances (Derrien et al., 2012). In
cross-species comparisons, the safest approach is thus to compare
the profiles of sets of genes rather than transcript levels of indi-
vidual genes. This problem can be partly overcome by de novo
assembling the N. caerulescens transcriptome. However, this intro-
duces a new challenge of identifying orthologues between the two
species, particularly for gene families with many similar sequences
(Romero et al., 2012). The reliability of comparisons increases
with closer phylogenetic relationship between the plants to be
compared (Koch and German, 2013).

Noccaea caerulescens ACCESSIONS AS THE SOLUTION FOR
THE COMPARATIVE RNA-SEQ ANALYSIS
Whereas caution has to be exercised when comparing different
species, different N. caerulescens accessions and crosses could be
almost ideal comparators in RNA-Seq, particularly if the acces-
sions have been self-pollinated for several generations and are
physiologically well-characterized. Comparison of IRT1 sequences
showed that, whereas differences were found on average in 12.4%

FIGURE 1 | Predicted secondary structure of A. thaliana IRT1 metal

transporter. The amino acid sequence was retrieved from TAIR10
database. The secondary structure of the protein was predicted using
HMMTOP 2.0 (Tusnády and Simon, 1998, 2001). The diagram was
generated with TEXtopo package (Beitz, 2000). Amino acids known to be

important for the function of IRT1 are labeled with stars and arrows. Stars
also indicate the locations where N. caerulescens accessions differ from
A. thaliana. The N. caerulescens amino acid sequences were derived from
Illumina RNA-Seq analysis of three accessions: Lellingen, Ganges, and
Monte Prinzera.
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of the nucleotides compared to A. thaliana, the polymorphism
among three N. caerulescens accessions was only 1.7%, apart from
a deletion in the histidine motif in Monte Prinzera (Figure 1;
Halimaa et al., unpublished). Furthermore, when comparing tran-
script abundances between accessions by mapping the RNA-Seq
reads to a common reference genome, the read counts can simply
be normalized by the sequencing depth of the library (for a review
of normalization methods see Dillies et al., 2012).

Another advantage of RNA-Seq is that different transcripts
within one sample can be compared using FPKM normaliza-
tion, i.e., adjustment by the length of each complete transcript.
This can be used, e.g., to answer the question which path-
ways dominate in a specific tissue. As an example, we have
used SOLiD RNA-Seq system to analyze the pathways that dom-
inate in the roots of three N. caerulescens accessions (Figure 2;
Halimaa et al., 2014). The biosynthesis of lignin, glucosinolates,
and auxin were among the most highly expressed pathways in
all three accessions. Lignin and auxin biosynthesis are related
to general root development, while glucosinolate biosynthe-
sis is associated with the Brassicaceae family. Genes related to
sulfate and nitrate assimilation were also highly expressed, pro-
viding essential raw material to metal ligand synthesis. Nitrate
enhances Zn hyperaccumulation in the roots and shoots of
N. caerulescens (White-Monsant and Tang, 2013). Methionine

cycle that generates intermediates to nicotianamine, ethylene,
and polyamine synthesis was very highly expressed. Additionally,
genes encoding the synthesis of metal ligands (e.g., glutathione,
histidine, glutamine, metallothioneins, nicotianamine, and cit-
rate) were abundantly expressed. Furthermore, our data indicated
high expression of many genes linked to scavenging of reactive
oxygen species (ROS) and related signaling networks. This is
in line with previous findings linking salicylate and jasmonate
biosynthesis to signaling of glutathione-mediated Ni tolerance
(Freeman et al., 2005), and to Cd tolerance (Tolrà et al., 2006),
respectively. As all known N. caerulescens populations have basal
levels of metal tolerance and hyperaccumulation that exceed those
found in non-accumulator plants (Assunção et al., 2003b), some
of the highly expressed pathways probably contribute to these
traits.

Apart from the more or less constitutive high expression of the
above-mentioned pathways contributing to the basal level of tol-
erance and accumulation, metabolic differences can be expected
between N. caerulescens populations adapted to environments
with different metal complements. The different populations are
potentially a rich source of variation in the uptake, translocation,
accumulation of and tolerance to several metals, and could thus
serve as useful platforms in comparative analyses to explore the
underlying molecular and evolutionary mechanisms. For example,

FIGURE 2 |The most active metabolic pathways in N. caerulescens

roots. The data are based on SOLiD RNA-Seq analysis of three
biological replicates of three N. caerulescens accessions: La Calamine,
Ganges, and Monte Prinzera. The read counts were normalized by the
size of the libraries and the length of the genes, assuming an equal

length for orthologous genes in A. thaliana and N. caerulescens, and
the most highly expressed genes (expression value > 1000) were
subjected to a more detailed analysis. The genes were manually linked
to metabolic pathways in KEGG (Kyoto Encyclopedia of Genes and
Genomes).
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one of the most studied N. caerulescens accessions found near a
Zn/Cd smelter in Prayon, Belgium (Vázquez et al., 1992), accumu-
lates 3.4% Zn in shoot dry weight, with shoot to root ratio of ca. six
(Monsant et al., 2011), but accumulates much less Cd than some
populations from Southern France (Robinson et al., 1998; Lombi
et al., 2000; Reeves et al., 2001; Roosens et al., 2003). Assunção
et al. (2003c) studied the physiological differences among four
N. caerulescens accessions: Ganges from Southern France is the
best Cd accumulator; La Calamine from a calamine ore waste in
Belgium enriched with Zn, Cd, and Pb has the lowest level of
accumulation of all the metals tested, and accumulates much less
Cd and Ni than the non-accumulator T. arvense; Monte Prinz-
era from a Ni-enriched serpentine soil in Italy is characterized by
its superior Ni tolerance and accumulation but is very sensitive
to Cd; Lellingen from a non-metalliferous soil in Luxembourg is
relatively sensitive to all three metals. Ganges and La Calamine
have similar tolerance profiles, being the most tolerant to Zn and
Cd, but least tolerant to Ni. Xing et al. (2008) demonstrated large
variation between ten N. caerulescens accessions in Zn and Cd
uptake and translocation. Escarré et al. (2013) found large het-
erogeneity in Zn, Cd, and Ni concentrations among eighteen
metallicolous, non-metallicolous and serpentine N. caerulescens
populations in response to different cultivation conditions. These
examples demonstrate highly contrasting metal tolerance and
accumulation characteristics among N. caerulescens populations,
and points to their potential for comparative RNA-Seq combined
with association analyses.

Comparing just two N. caerulescens accessions might not allow
the conclusion why one population accumulates Ni and another
one Cd or Zn while sharing the same genes. For example, compar-
ison of N. caerulescens accessions Prayon and Ganges suggested
that HMA4 expression does not correlate with Cd translocation
efficiency (Xing et al., 2008), whereas opposite conclusion was
drawn from the expression patterns of three different accessions,
i.e., St-Félix-de-Pallières, Puente Basadre, and Prayon (Craciun
et al., 2012), supported by our RNA-Seq comparison of Ganges, La
Calamine, and Monte Prinzera accessions (Halimaa et al., 2014).
However, both studies are consistent with initial findings of con-
stitutive high expression of HMA4 in hyperaccumulators (Bernard
et al., 2004; Talke et al., 2006; van de Mortel et al., 2006; Hammond
et al., 2006), which is largely due to gene duplication (Hanikenne
et al., 2008; Lochlainn et al., 2011; Craciun et al., 2012). A care-
ful combination of accessions can thus significantly improve the
predictability of comparisons. It is, however, important to recog-
nize that in RNA-Seq analysis the number of replicated samples
is the most predominant factor in providing detection power for
differential expression (Rapaport et al., 2013).

The application of RNA-Seq and multiple predictive tools to
the comparison of several N. caerulescens accessions is a power-
ful way to provide insights into the evolution of the populations
in different environments. As an example, Gene Ontology (GO)
enrichment analysis indicated that the most significant differ-
ences between N. caerulescens accessions La Calamine, Ganges and
Monte Prinzera are related to metal ion (di-, tri-valent inorganic
cation) transmembrane transporter activity, iron and calcium ion
binding (inorganic) anion transmembrane transporter activity,
and antioxidant activity (Halimaa et al., 2014).

Co-segregation, genetic linkage mapping and quantitative trait
loci (QTL) analyses make use of crosses between genotypes with
contrasting phenotypes. Several crosses have been made between
N. caerulescens accessions (Assunção et al., 2003a, 2006; Deniau
et al., 2006; Richau and Schat, 2009). However, expression QTL
(eQTL) has not been applied so far to address metal hyperac-
cumulation or tolerance. Candidate gene identification can be
further improved by applying RNA-Seq to recombinant inbred
lines selected for particular tolerance or accumulation capacities
or, preferably, their associated QTL markers.

PROSPECTS
Deep sequencing technologies with unparalleled accuracy, reso-
lution and throughput have revolutionized transcriptomic and
genomic research. So far full advantage of these techniques has not
been taken to study the regulatory mechanisms underlying metal
hyperaccumulation and tolerance. Environmental stress factors
can cause changes in chromatin properties and in the production
of small RNAs that contribute to regulation of gene expression.
Deep sequencing has the potential to detect the small RNAs with
low abundance. For example, several micro-RNAs (miRNAs)
regulated by drought, cold and salt in rice, and responding to
aluminum treatment in Medicago truncatula, were identified with
deep sequencing (Barrera-Figueroa et al., 2012; Chen et al., 2012).
Metals cause epigenetic changes, and epigenetics may have a role in
plant adaptation to metalliferous environments, but there are only
few studies of metal effect at DNA methylation level (Aina et al.,
2004; Wada et al., 2004; Choi and Sano, 2007; Ou et al., 2012).

Having populations with a wide range of metal hyperaccu-
mulation and hypertolerance capacities, N. caerulescens shows
a great potential to serve as an excellent model in plant evolu-
tionary genomics. Combined with high-throughput sequencing,
a significant leap forward is expected in the understanding of
the metabolic adaptation of this plant to different metal envi-
ronments. However, even with its increasing power, RNA-Seq still
remains a screening method that provides candidate genes, a more
detailed analysis being needed to prove the true significance of the
findings.
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