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Nuclear-mitochondrial (NM) communication impacts many aspects of plant development
including vigor, sterility, and viability. Dynamic changes in mitochondrial number, shape,
size, and cellular location takes place during the cell cycle possibly impacting the process
itself and leading to distribution of this organelle into daughter cells.The genes that underlie
these changes are beginning to be identified in model plants such as Arabidopsis. In
animals disruption of the drp1 gene, a homolog to the plant drp3A and drp3B, delays
mitochondrial division. This mutation results in increased aneuploidy due to chromosome
mis-segregation. It remains to be discovered if a similar outcome is observed in plants.
Alloplasmic lines provide an opportunity to understand the communication between the
cytoplasmic organelles and the nucleus. Examples of studies in these lines, especially
from the extensive collection in wheat, point to the role of mitochondria in chromosome
movement, pollen fertility and other aspects of development.
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Nuclear-mitochondrial (NM) communication impacts all aspects
of plant development including fertility. The best known case
of incompatibility or NM miscommunication is cytoplasmic
male sterility (CMS, reviewed in Chase, 2006) and can result
from the disruption of energy production (Pla et al., 1995;
Gutierres et al., 1997; Brangeon et al., 2000; Sabar et al., 2000;
Bergman et al., 2000; Ducos et al., 2001; Dieterich et al., 2003;
Yui et al., 2003; Kim and Kim, 2006; León et al., 2007). Incom-
patibility can also be seen between the mitochondria and the
nucleus in alloplasmic lines, created through the exchange of
cytoplasmic organelles while maintaining the nuclear genome
(Tsunewaki, 1980; Maan, 1987). Other phenotypic variations
also are observed in these alloplasmic lines due to mitochon-
dria’s role as the powerhouse of the cell. NM communi-
cation and the underlying molecular mechanism is not well
understood, but is an area of developing research in plants
(reviewed in Schwarzländer and Finkemeier, 2013). A criti-
cal area of research in this regard is the timing and con-
trol mechanisms for equitable distribution of chromosomes
and organelles to new daughter cells after cell division. This
review focuses on mitochondria fusion and fission during the
cell cycle of plants, and its connection to chromosome move-
ment.

PLANT GENES INVOLVED IN MITOCHONDRIA FISSION AND
FUSION
Throughout the plant’s cell cycle, mitochondria undergo changes
in number, shape and location. These dynamic changes in the
mitochondria are only beginning to be understood in plants
compared to a greater understanding in yeast and animals
(reviewed in Gorsich and Shaw, 2004; Hales, 2010; Wester-
mann, 2010; Chan, 2012). Arabidopsis has been the model plant
species for understanding the genes underlying the dynamic
changes in mitochondria. There are several genes identified

affecting mitochondria fusion and division (reviewed in Scott
and Logan, 2011). Mutations in these nuclear encoded genes
result in larger size, decreased number, altered shape, or
mitochondrial network formation. Several of these genes were
identified using ethyl methane sulphonate (EMS) mutagenesis.
These mutants include the big mitochondrial mutant (BMT1),
network mitochondrial mutant (NETWORK1), friendly mito-
chondrial mutant (FMT), and motley mitochondrial mutant
(MMT1, MMT2; Logan et al., 2003). None of these mutants
have any reported orthologs in yeast or humans. Other mito-
chondrial mutants affecting dynamics do have orthologs in yeast
or humans. The genes BIGYIN1 and BIGYIN2 are ortholo-
gous to FIS1 and FZOI (Scott et al., 2006; Lingard et al., 2008;
Zhang and Hu, 2008; Scott and Logan, 2011). The remaining
genes, DRP3A and DRP3B, are dynamin-related proteins with
a role in mitochondrial fission (Arimura and Tsutsumi, 2002;
Arimura et al., 2004; Logan et al., 2004). These are orthologous
to the yeast and human DRP1. In Arabidopsis, it is specu-
lated the BIGYIN genes may interact with dynamins such as
DRP3A or DRP3B during mitochondria division, but experi-
mental evidence for this hypothesis is lacking (Scott and Logan,
2011).

An understanding of how these genes interface with the cell
cycle, and if their homologs exist in other plant species will
be necessary to improve our understanding of NM interactions
and their role in mitochondrial dynamics during the cell division
process.

MITOCHONDRIA FUSION AND FISSION DURING MITOSIS
AND MEIOSIS
Understanding the timing and mechanism of mitochondrial
fusion, and fission during the cell cycle is critical to determining
their role in plant development. Using a limited number of plant
species and experimental systems these changes are beginning to
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be appreciated. Mitochondrial movement in mitosis is mediated
by the actin cytoskeleton fibers. The movement of the mitochon-
dria is at a rate of 10 μm/s (Sheahan et al., 2004). There are no
reports of how the mitochondria move during meiosis in plants,
but it is expected to be similar.

In addition to movement, there is also a change in the number
and shape of the mitochondria during mitosis. In tobacco pro-
toplast cells, mitochondria undergo fusion to develop a tubular
structure (Sheahan et al., 2004). At 24 h into the cell cycle, there
is a decrease in the total number of mitochondria, per protoplast
but the net cellular content remains the same. After the forma-
tion of the tubular structure, fission is predominantly observed
within these cells resulting in small mitochondria. A high density
of mitochondria is observed along the newly formed cell wall. At
72 h, the process of mitosis is complete. The number of mitochon-
dria is doubled and dispersed between the two cells (Sheahan et al.,
2004).

Like the tobacco protoplast, there are mitochondrial changes
in Arabidopsis during the cell cycle. During the G1/S stages of the
cell cycle in the shoot apical meristem, there is one large mito-
chondria found at the end of the nucleus with additional small
round shaped mitochondria in other parts of the cell. During
the G2, the large and small mitochondria double in size. At the
M phase, about 60% of the small mitochondria will fuse with
the large mitochondria in the cell. The large mitochondria sur-
rounding the nucleus during the M phase has been described
as a “cage.” It is hypothesized the “cage” formation allows for
the mixing of mitochondria contents, including DNA, before
distribution to the daughter cells (Seguí-Simarro and Staehelin,
2009). The large “cage” mitochondria will then divide, forming
smaller rounded mitochondria, and re-distribute to the new cells
similar to what is observed in tobacco protoplast cells. It is sus-
pected that the large mitochondria provides the energy needed
by the cell during the process of division (Seguí-Simarro et al.,
2008). In the root-tip apical meristem, the presence of a single
large mitochondria is not seen, the mitochondria maintain their
classical rounded shaped (Seguí-Simarro et al., 2008). This differ-
ence in mitochondrial behavior in Arabidopsis between the two
actively growing tissues suggests that there may be multiple dis-
tribution routes for mitochondria within a plant during the cell
division.

During the process of meiosis there also are changes in plant
mitochondria size and number. Mitochondrial changes, during
meiosis, have been primarily observed during pollen develop-
ment. Research in lily (Lillium) found that in the zygotene stage
of prophase, mitochondria of the pollen mother cell begin to
condense. They reach a diameter of 0.5 μm by leptonema, and
would remain condensed until the tetrad stage (Bird et al., 1983).
At the tetrad stage an increase in the number of mitochondria
was found. Upon separation of the tetrads, the mitochondria
return to their pre-meiotic state. Unfortunately, it is not clear
when the number of mitochondria increases during meiosis. In
barley pollen, the number of mitochondria was found to decrease
as it matured. Immature pollen had a mean number of 62.0 mito-
chondria per pollen grain with an average size of 0.038 μM3,
whereas mature pollen had a mean of 30.8 mitochondria per
pollen grain with a size of 0.020 μM3 (Mogenson and Rusche,

1985). In maize pollen cells and protoplast from pollen, mito-
chondria were found as large, complex branching shapes with
interconnections between the branches (McConchie et al., 1987;
Wagner et al., 1988; Mogensen et al., 1990). These large mito-
chondria are reportedly positioned near the nucleus (McConchie
et al., 1987; Wagner et al., 1988). It was noted that vegetative tis-
sue surrounding the pollen did not have the same mitochondrial
structure as found in the pollen (Mogensen et al., 1990). The
mean number of mitochondria found was 43.4 per cell with a
range of 7–74, and the average size of 3.97 μM3 (Mogensen et al.,
1990). Comparing barley mature pollen to maize pollen proto-
plast, the number of mitochondria per cell is similar, but there
is a difference in size by a factor of 200. These studies illus-
trate that mitochondria number and size change during pollen
development. However, there is no unifying pattern of mito-
chondria fusion and fission found for plants species studied to
date.

Similar to pollen development there are changes in mitochon-
drial number, size, and shape during megaspore development
representing female gamete production in plants. The early stages
of megasporogenesis in higher plants have similarity to the gametic
development in female animals, with one cell developing into the
egg and the remaining three haploid cells degrading. It may be
expected to see a similar pattern of mitochondrial distribution,
size and number in the plant megaspore as compared to animals.

Recent studies of mouse oocytes have revealed changes in mito-
chondria. There is an increase in the amount of mitochondrial
DNA during meiosis I (Mahrous et al., 2012). In these oocytes,
mitochondrial numbers reach over 100,000 per cell before the
completion of meiosis II. At anaphase I when the homologous
chromosomes separate, there is a biased inheritance in the num-
ber of mitochondria in the oocyte compared to the polar body.
Estimates of the area occupied by mitochondria is about 23%
in the oocyte compared to 4.8% for polar body (Dalton and
Carroll, 2013). The number and biased inheritance of mito-
chondria in the mouse oocyte shows the importance of this
organelle and the need for higher energy levels in animal gametes.
Currently there is no information on the mitochondria’s role
for energy production during female gametic development in
plants.

Later stages of megaspore development differ between higher
plants and animals. In animals, the mitochondria must pro-
duce the energy needed by the dividing cells to maintain the
blastocyst until the embryo stage, when further mitochondria
synthesis takes place (reviewed in Chappel, 2013). In plants,
the megaspore nucleus will go through subsequent divisions
without cytokinesis within the female gametophyte normally
composed of the eight haploid nuclei (egg, 2-synergids, 3-
antipodal, 2-polar). After the development of the eight haploid
nuclei, the embryo sac is cellularized separating the cytoplasm
and diluting the mitochondria between the cells (reviewed in
Yang et al., 2010). The antipodal cells are thought to have a role
in providing nutrients from the tissue surrounding the female
gametophyte (Raghavan, 1997). The antipodal cells mitochon-
dria could lower energy production demands on the embryo
sac if they are also able to transfer energy along with the
nutrients.
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The female megaspore mitochondria number, location and
shape have been analyzed in few plant species. In maize pro-
toplast developed from egg cells, the mitochondria are found
to be of various shapes including interconnected networks, and
located near the nucleus of the egg (Faure et al., 1992). Similar
to maize, a large filamentous mitochondria also is present in the
Capsella embryo near the time of fertilization (Schulz and Jensen,
1973). This network will then disappears after the first round
of endosperm division in Capsella (Schulz and Jensen, 1973).
Instead of a branching network as seen in maize and Capsella,
a large stacked collection of mitochondria are observed in the
embryo sac of Pelargonium zonale (Kuroiwa et al., 1996). Whereas
in the Arabidopsis egg cell, the mitochondria are described as rod
or spherical shaped with a large number in the chalazal region
(Yamaoka et al., 2011). There is also a substantial increase in
the amount of mitochondrial DNA present during embryo sac
development mirroring that reported in mouse oocytes. Dur-
ing the progression from immature to mature embryo sac in
P. zonale, over a 900 fold increase in the amount of mitochon-
drial DNA is observed (Kuroiwa et al., 1996). This increase is
mirrored in mouse oocytes, but estimates place the increase
to be only 100-fold (Mahrous et al., 2012). These studies of
pollen and megaspore development show that the mitochon-
dria change shape, size, and cellular location during meiosis;
yet linking these observations to the nuclear genes identified in
Arabidopsis with a role in mitochondrial dynamics has not been
established.

MITOCHONDRIA AND CHROMATIN MOVEMENT DURING
MEIOSIS
Research is ongoing to understand the effect of the mitochon-
dria on chromosome movement. Humans have served as the
model to understand this connection due to the decrease in fertil-
ity and increased frequency of aneuploidy with age (Schon et al.,
2000; Bartmann et al., 2004; Eichenlaub-Ritter, 2012). Research
in mice shows a disruption in energy production in the mito-
chondria was associated with an increase in diploid gametes. The
diploid gametes were caused by lack of chromosome separation
during meiosis. (Beermann and Hansmann, 1986). It is hypothe-
sized, as humans age their mitochondria accumulates mutations.
These mutations affect the organelle’s ability to adequately provide
energy needed by the cell to successfully separate and move chro-
mosomes during meiosis. The mis-segregation of chromosomes
led to decreased fertility.

In plants, mutations in either nuclear or mitochondrial genes
can result in sterility. Many of these identified mutations are
associated with energy production in the mitochondria and are
classified as CMS (Pla et al., 1995; Gutierres et al., 1997; Brangeon
et al., 2000; Sabar et al., 2000; Bergman et al., 2000; Ducos et al.,
2001; Yui et al., 2003; Kim and Kim, 2006; León et al., 2007). This
disruption can affect the electron transport chain components
including complex I and II, cytochrome C oxidase or the gener-
ation of ATP through mutations in the ATPase subunits. These
studied CMS material have not been linked to changes in chromo-
some movement during meiosis or mitosis. However, mutations
in mitochondrial genome alone may not be the only factor leading
to aneuploidy in human cells. The process of fission and fusion

of mitochondria also affects chromosome movement. The sup-
pression of the nuclear gene drp1, with a role in mitochondrial
fission in human cells, leads to cell cycle arrest at G2/M phase
resulting in aneuploidy. Large mitochondrial networks remained
in the drp1 lines throughout the cell cycle as compared to the
wild-type control with normal mitochondrial division. The delay
in mitochondrial fragmentation correlated with an increased in
chromosome mis-segregation. Researchers were able to uncouple
mitochondrial dynamics from oxidative stress and energy pro-
duction. This uncoupling illustrated that changes in fission can
led to aneuploidy independent of energy levels (Qian et al., 2012).
Within Arabidopsis, orthologs to DRP1 have been identified. These
are DRP3A and DRP3B, formerly ADL2b and ADL2a (Arimura
and Tsutsumi, 2002; Arimura et al., 2004; Logan et al., 2004).
These proteins linked to green fluorescent protein (GFP) tag have
been shown to locate in the mitochondria near the point of divi-
sion. Transient expression of either of the mutated proteins in
tobacco cells resulted in larger mitochondria (Arimura and Tsut-
sumi, 2002; Arimura et al., 2004; Logan et al., 2004). It will be
exciting to discover if DRP3A or DRP3B can affect chromosome
movement during either mitosis or meiosis in plants similar to the
observations in human cells.

NUCLEAR-CYTOPLASMIC INTERACTIONS BEYOND
CYTOPLASMIC MALE STERILITY
To understand the connection between the mitochondria and
chromosome movement during the cell cycle, it will be neces-
sary to understand the intricacies of nuclear-cytoplasmic (NC)
interactions. NC interactions can have multiple effects on plants
growth and development. CMS is the most studied interaction
due to its importance to crop production (reviewed in Ghavami
et al., 2014). However, the communication between the nucleus
and cytoplasm can also impact aspects of plant growth including
height, vigor, endosperm quality, and other traits.

Alloplasmic lines provide an opportunity to understand the
communication taking place between the cytoplasmic organelles
and the nucleus. In this material, the nucleus of one species is
replaced with a nucleus of another while retaining the cytoplas-
mic genomes. This replacement can lead to changes in phenotype
including sterility, vigor and viability (Figure 1; Tsunewaki, 1980;
Ogihara et al., 1997, 1999; Bergman et al., 2000; Tsunewaki et al.,
2002; Dieterich et al., 2003; Banga et al., 2003; Shinada et al., 2006;
Vu et al., 2011). For instance, a line with Triticum crassa cyto-
plasm exhibits a photoperiod-sensitive homeotic transformation
of anthers (Ogihara et al., 1997, 1999). It was determined that
a number of alterations in mitochondrial DNA structure and
transcription, as well as a nuclear MADS box gene, were respon-
sible for this transformation (Murai et al., 2002; Yamamoto et al.,
2013). This case illustrates the complexity of biochemical pro-
cesses involved in NM interaction in alloplasmic wheat, where
the phenotype is not a straightforward male sterility. In a male
sterile tobacco alloplasmic line a decrease in the ATP + ADP
pool of 55% in floral buds was found (Bergman et al., 2000).
Further investigation of this line identified changes in the mito-
chondrial genome as compared to the euplasmic (wild type)
control. The mitochondria in the alloplasmic line were larger
and the intermembrane space appeared more “open” compared
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FIGURE 1 | Examples of euplasmic and alloplasmic wheat lines. Top
part of the figure is a diagrammatic representation of a euplasmic (true
cytoplasm) and alloplasmic (alien cytoplasm, e.g., Aegilops longissima)
lines of wheat. Euplasmic communication can take place between
nucleus and cytoplasm as indicated by the arrows. Alloplasmic
communication between nucleus and cytoplasm can be disrupted as
indicated by opposing arrows. Bottom part of the figure provides

examples of alloplasmic plants and the influence of cytoplasm on
development. The first and third pictures are examples of cytoplasmic
influence on vigor, middle figure is the influence on fertility and the two
right most figures (both top and bottom) illustrate the influence of a
single nuclear locus (species cytoplasm specific or scs) on seed and plant
development in alloplasmic condition. In all cases A = alloplasmic and
E = euplasmic.

to the wild type (Farbos et al., 2001). It was hypothesized that
decreased energy production in the alloplasmic line delayed
developmental timing leading to sterility (Farbos et al., 2001).
These examples are evidence of disruption in NM interactions
changing plant phenotypes beyond the typically studied CMS
phenotype.

Thus, analysis of genes involved in NM interaction is crit-
ical to understanding of the gene networks controlling the
production of functional gametes and development of viable
plants.

CONCLUSION
Nuclear-mitochondrial interactions and the underlying molec-
ular mechanism(s) are not well understood, but is an area of
developing research in plants. Several genes have been identi-
fied in Arabidopsis with effects on mitochondrial size, shape,
and number. How these genes are related to the changes
observed in plant mitochondria during mitosis, pollen and
female gametophyte development is not known. The importance
of the mitochondria to cellular energy has been well studied.
Yet the connection of mitochondria and its role to chromo-
some movement as seen in animals has not been established
in plants. Knowledge of NM interactions will be beneficial
to understanding mitochondrial dynamics, and chromosome
movement.
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