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Reviews of metagenomics analysis often
emphasize the interdisciplinary and tech-
nical aspects of data analysis (Knief, 2014;
Sharpton, 2014). How might these rec-
ommendations be implemented for future
projects? In this opinion, I provide some
areas to consider, especially in experimen-
tal design and full-data-cycle planning,
and in expertise areas of value to metage-
nomics projects. This opinion is struc-
tured as a hypothetical conversation that
reviews state-of-the art in these areas and
brings out the various aspects of metage-
nomics project design.

Let’s consider an example project in
plant-microbe metagenomics—analysis of
microbial metagenome functional genes
that predict plant yield differences in a
horticultural crop species. I’ve framed a
discussion of key points as a conversa-
tion, perhaps at the third or fourth meet-
ing, after participants have described their
range of expertise.

Biologist: We are here today because we’re
all interested in doing a great research
project in the rapidly growing area of
metagenomics. We’ve heard about this
in human biology and health (Human
Microbiome Project Consortium, 2012;
Morgan et al., 2013), now we’d like to be
sure we think through the research aspects
for crop biological systems. Let’s consider
some biological characteristics, such as
homeostasis—resilience to disturbance—
and adaptation, as general background.
Homeostasis, or robustness, is the ability
to respond transiently, and then go back to
something that functions like the original
measured state. In biology, we usually

talk about this in the simplest examples
using an X-Y line graph with a peak
(Calabrese and Blain, 2005; Paine et al.,
2012). For example, responses to plant
hormones often show a peak at a certain
concentration (Taiz and Zeiger, 2006). For
communities of organisms, this is often
described as ecological resilience and may
be measured at multiple levels of organiza-
tion. We’d like to understand if resilience
is happening and if it is important.

Statistician: There are some interesting
statistical implications for defining your
important questions as curves. Let’s relate
this to recent “design-of-experiment”
research, which is about how to create
the most efficient experiment. For curves,
you will need to think about how few
points can be used to fit such curves (you
will need several amounts from your X
and Y axes), and how the replicates should
be arranged. . . for example, should there
be more replicates on the steep sections
of a curve or at the tails. This is an area
of research called response surface design.
Current approaches in this field include
low-dimensional Bayesian (Ryan et al.,
2014) and Gaussian models (Harari and
Steinberg, 2013).

Biologist: Another biological aspect to
consider is adaption, the ability to detect a
stimulus after the system stabilized, which
is usually graphically illustrated as a step-
shaped X-Y plot, with the adaptive pro-
cess happening in the “step” phase, with
the response in the “riser” sections (Lim
et al., 2013). So, in my particular plant-
microbe research area/model system, I

am interested in analyzing metagenome
changes that can capture these patterns
and determine if they are different in low-
yield and high-yield plants.

Statistician: Another applied statistical
topic is the effect of assumptions behind
various analysis methods, from more clas-
sical assumptions of normality to choos-
ing a specific possible distribution as a
Bayesian prior. This is especially impor-
tant to consider as a metagenomic sam-
ple is highly multivariate (there are many
gene sequences within each sample), and
underlying assumptions about distribu-
tions will constrain what you can reliably
detect. There can be useful information
for understanding your biological system
in the higher-order correlation and auto-
correlation (Gallagher et al., 2014) within
the samples, so it is worth spending time
thinking about how to incorporate what
you already know about your system into
your analysis choices.

Bioinformatician: It does no good to have
data that you can’t analyze in a reason-
able time frame! We will need to plan for
storage of the raw data and feeding of the
raw data into the quality control programs
(Knight et al., 2012). How much data and
how complex is the analysis going to be?

Statistician: It’s quite a balancing act to
determine the number of samples. We will
need to ensure that we have the resources
to do a careful walk-through and thorough
testing of the data analysis, with the same
seriousness we would use for pilot tests of
lab procedures, for various options. For
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example, we should locate any existing
known-truth data and develop software
code to produce known-truth data—
this is where we embed a known pattern,
such as a particular gene present in large
amounts, in a background of other genes.
This known-truth generation process is
usually called simulation in statistics. We
would also want to use the most similar
already-available real data for testing of
our analysis methods. We want to know as
much as possible about accuracy and pre-
cision before beginning the experimental
data collection.

Biologist: I am hearing that we need to
focus the question or we will have a huge
number of samples. What kinds of pilot
tests can we do that would help us keep
the sample numbers low but have the max-
imum power to make predictions?

Bioinformatician: For processing raw
reads before doing statistical tests, we
will need to test the options for qual-
ity control processing (the parameters);
it’s important to understand how these
work before selecting ranges to test, to
avoid wasting time testing things that don’t
affect the output much and to define
how some parameter choices depend on
other parameter choices (Zhou and Rokas,
2014). This is a place where the known-
truth simulations that were mentioned can
be helpful. We will also want to track the
current best practice in the field using list-
servs and web resources (Li et al., 2012),
as optimal methods can be updated very
quickly.

Statistician: We would want to leverage
the multivariate aspects of the data for
statistical comparison. Typically I would
use R packages for this and I’d like your
opinion on the computational feasibility.
I would also like more details on pre-
processing—how extensive is the data
cleaning?

Bioinformatician: We would want to
assemble sequences from the reads that
come from the sequencing machine to
reduce the error and increase the infor-
mation in each “sequence unit,” but there
is no single best assembly method; using
combinations of methods will increase
the computational demand substantially.

Another important computational con-
sideration is minimizing the trafficking
across the network and doing data trans-
fers efficiently. With large numbers of
large samples, we will need to use effi-
cient code for data analysis. If the anal-
ysis code is written in R, we need to
ensure that certain key parts are in C,
determine if high performance computing
resources are needed and how most easily
access those resources. Running statisti-
cal R code on a computing cluster or the
national XSEDE resource does not guar-
antee speedup, so we would need to figure
out how to optimize the analysis enough
to finish it in an acceptable length of time.
Another consideration is how to deter-
mine how many times the analysis will be
tested/re-run, to decide how to organize
the code for re-use.

Biologist: Another aspect of metagenomic
sequence data is that it can be consid-
ered at multiple levels, with annotations of
function that come from sources ranging
from ontologies (Ashburner et al., 2000)
to literature citations (Raychaudhuri et al.,
2009), and can be placed in groups ranging
from one annotation per sequence to one
annotation category that includes thou-
sands of sub-category sequences.

Statistician: Multilevel, or hierarchical,
models can be used to handle data labels
that have subgroups like the GO anno-
tations, but they can be computationally
challenging to fit. We will need to con-
sider these ways of labeling groups and the
resulting constraints on comparing sam-
ples as we test different analysis methods,
in order to choose models that can han-
dle these types of graphs. Different levels
of nesting, correlation and comparisons of
sets from different parts of an acyclic graph
present challenges, for example (Tryputsen
et al., 2014).

Biologist: Let me summarize what I see as
the dimensions of data analysis we are con-
sidering. . . experimental design tradeoffs,
quality control, model fit, assumptions,
and their interactions and dependencies.
This certainly requires true collaboration,
and we should think about formalizing
what we’ve discussed in high-level sys-
tems modeling tools http://insightmaker.
com/, (North et al., 2013) to explore the

costs and benefits and thus optimize our
experimental plan.

Statistician: This kind of high-level mod-
eling is sometimes called decision support,
and it certainly could help us convince
ourselves and our reviewers and colleagues
that we have the best possible experimental
plan. We do seem to have a good start on
synthesis across our different fields from
this conversion and these suggestions.

Bioinformatician: We also need to con-
sider metadata, storage, and classroom or
citizen use—it’s not just the publication,
it’s the impact, the reuse as well as cita-
tions (Piwowar and Vision, 2013; Roche
et al., 2014). In fact, there are people who
specialize in this—let’s add an information
science librarian to the mix to advise us on
curation (Whyte and Allard, 2014). Now
that all the pieces of a great project are on
the table, the whiteboard, and the shared
computer files, we can think more about
the details for our next project meeting,
and we have an excellent background to do
superb metagenomic science.

This conversation highlights current
recommendations and considerations for
efficient metagenomics data collection and
data analysis. I recommend that project
teams consider these general topic areas
and involve experts in all these areas when
they next develop project plans.
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