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Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life
cycles. In plants, defective chromosome segregation caused by gene mutations or other
factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or
polyploid progeny, respectively. Accurate segregation requires the coordinated execution
of conserved processes occurring throughout the two meiotic cell divisions. Synapsis
and recombination ensure the establishment of chiasmata that hold homologous
chromosomes together allowing their correct segregation in the first meiotic division,
which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar
attachment of sister kinetochores to microtubules. In meiosis |l, bi-orientation of sister
kinetochores and proper spindle orientation correctly segregate chromosomes in four
haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of
kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here
we review the current knowledge on the processes taking place during chromosome
segregation in plant meiosis, focusing on the characterization of the molecular factors
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INTRODUCTION

Meiosis is a specialized cell division that generates four haploid
daughter cells from a diploid parent cell after a single round of
DNA replication and two consecutive rounds of nuclear divi-
sion. In the first nuclear division, homologous chromosomes
segregate (reductional cell division), and in the second one, sis-
ter chromatids segregate (equational cell division). As such, each
daughter cell carries half the amount of the parental genetic mate-
rial. The accurate segregation of chromosomes during meiosis
is essential for the formation of haploid gametes. Failure in the
proper execution of chromosome segregation inevitably leads to
the formation of imbalanced gametes and aneuploid or poly-
ploid progeny. In plants, aneuploidy is more tolerated than in
animals and viable aneuploid plants have been observed, espe-
cially among the progeny of triploid individuals (Henry et al.,
2005, 2010). Despite being affected in growth and reproduction
(Birchler et al., 2001), aneuploids may have an evolutionary role,
serving as a bridge to euploid polyploid plant formation through
repeated generations of selfing (Ramsey and Schemske, 1998;
Henry et al., 2005). Polyploid plants generated through aneu-
ploids or by the polyploidization events of somatic doubling and
unreduced gametes, are considered as a prominent driving force
in plant genome evolution (Ramsey and Schemske, 2002; Adams
and Wendel, 2005; Comai, 2005; Otto, 2007).

To ensure the correct completion of the meiotic cell divi-
sion program, a sequence of coordinated steps must take
place during the two phases of meiosis. In meiosis I, homol-
ogous chromosomes must pair and synapse and physically
exchange genetic material through recombination. The result-
ing points of crossing-over, also termed chiasmata, form links

between the two homologs in the bivalent configuration and
ensure proper positioning of the bivalent relative to the divi-
sion spindle and balanced segregation of homologs in anaphase
I. Additionally, to achieve this, sister kinetochores from each
homolog must attach to microtubules emanating from the same
spindle pole, a process called monopolar kinetochore attach-
ment, and cohesion must be lost in a stepwise manner. More
specifically, at anaphase I, cohesion is released at chromosome
arms but not at sister centromeres, allowing homologs to seg-
regate without affecting the physical connection between both
sister chromatids. In meiosis II, chromosome segregation in
the two resulting haploid interphase nuclei occurs in an equa-
tional manner and hence strongly resembles the dynamics of
a mitotic cell division. Cohesion at centromeres is retained
until anaphase II to ensure bipolar attachment of sister kine-
tochores to microtubules and equational segregation of chro-
matids into four haploid daughter cells. Progression through
the meiotic cell division is regulated at determined checkpoints
by the activity of CDK (Cyclin-Dependent Kinase) - cyclin
complexes and the Anaphase Promoting Complex/Cyclosome
(APC/C) (Harper et al., 2002; Cooper and Strich, 2011). In
particular, the Spindle Assembly Checkpoint (SAC) acts dur-
ing the transition between metaphase and anaphase of the two
meiotic cell divisions to ensure correct kinetochore-microtubule
attachments and faithful chromosome segregation (Malmanche
et al., 2006; Yamamoto et al., 2008). In plants, checkpoints
appear to be less stringent compared to yeast and animals,
since completion of meiosis is achieved in several meiotic
mutants creating imbalanced gametes (Wijnker and Schnittger,
2013).
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Most of the knowledge on the molecular biology of mitotic
and meiotic chromosome segregation comes from studies in
yeast (reviewed in Marston, 2014). However, the mechanisms of
chromosome segregation are conserved in eukaryotes, including
plants (Dawe, 1998; Bhatt et al., 2001). In the last decade, the
increasing availability of genomic tools and the development of
Arabidopsis thaliana, but also maize (Zea mays) and rice (Oryza
sativa), as model systems, have led to the identification of a
large number of conserved meiotic genes (Mercier and Grelon,
2008). Phenotypic and cytogenetic analyses of the corresponding
mutants, have unraveled the function of several molecular fac-
tors required for proper chromosome segregation in plants (Bhatt
et al., 2001; Ma, 2006). Therefore, the focus of this review will be
on the major cellular processes that take place to ensure accu-
rate chromosome segregation in plant meiosis and the related
genes that have been yet identified in Arabidopsis, maize and
rice. Other factors having an effect on chromosome segregation
in plant meiosis, such as environmental stresses and changes in
ploidy level have been described in recent reviews (Comai, 2005;
Madlung and Wendel, 2013; De Storme and Geelen, 2014). After
mentioning the importance of homologous chromosome pairing
and recombination, two subjects extensively discussed in other
reviews (Hamant et al., 2006; Edlinger and Schlogelhofer, 2011;
Osman et al., 2011; Tiang et al., 2012; Da Ines et al., 2014), we
describe the relevance of cohesion, focusing on the roles of the
cohesin complex and on the cohesion dynamics (e.g., loading,
release and protection) during meiotic cell division. Next, we
discuss the role of centromeric and kinetochore proteins in estab-
lishing proper spindle attachment during meiosis I and II, and
additionally describe what is currently known on the checkpoint
control mechanisms acting at kinetochores. Finally, we report the
molecular mechanisms underlying microtubule organization and
we focus on the relevance of spindle orientation in plant meiosis.

HOMOLOGOUS PAIRING AND RECOMBINATION AS A BASIS
FOR REDUCTIONAL CELL DIVISION IN MEIOSIS |
HOMOLOGOUS CHROMOSOME PAIRING AND SYNAPSIS

To ensure accurate segregation, chromosomes must first recog-
nize their homologous partners and pair with them during early
meiotic prophase I. This process leads to the formation of biva-
lents, which ensures correct bipolar attachment of homologous
centromeres to the division spindle at metaphase I in a way that
each of the chromosomes in the bivalent moves to a different pole
at anaphase I. Bivalent formation is also required for proper posi-
tioning of chromosomes at the metaphase plate. Consequently,
mutants with chromosome pairing problems exhibit chromo-
some segregation defects (Bozza and Pawlowski, 2008).

It is assumed that chromosome homology recognition is based
on their DNA sequence. Although mechanisms that bring homol-
ogous chromosomes together have yet to be fully elucidated,
studies in a variety of species, including plants, have shown that
chromosome pairing is strongly dependent on their dynamics
in early meiotic prophase as well as the initiation and progres-
sion through the early stages of the recombination pathway.
Chromosome dynamics in prophase I is largely controlled by the
behavior of telomeres, blocks of highly conserved repetitive DNA
sequence at the ends of chromosomes (Siderakis and Tarsounas,

2007). Telomeres attach to the nuclear envelope before the onset
of chromosome pairing, and gather on a small region, form-
ing a unique structure that resembles a flower bouquet, the so
called telomere bouquet (Bass et al., 2000; Golubovskaya et al.,
2002; Harper et al., 2004; Richards et al., 2012). The bouquet
arrangement has been observed in most eukaryotes (Klutstein
and Cooper, 2014). The exact role of the bouquet is still being
debated. However, mutants defective in bouquet formation are
frequently also defective in chromosome pairing, which implies a
role of the bouquet in this process (Harper et al., 2004; Klutstein
and Cooper, 2014). One example of such mutant is plural abnor-
mality of meiosis 1 (paml) in maize, which exhibits significant
reduction in homologous pairing (Golubovskaya et al., 2002).
In this mutant, telomeres attach to the nuclear envelope but fail
to cluster. The bouquet formation has been, therefore, suggested
to promote homologous paring by bringing chromosome ends
together (Harper et al., 2004).

Alternative chromosome interaction mechanisms have been
described in several species, including Caenorhabditis elegans and
Arabidopsis (Armstrong et al., 2001; Phillips and Dernburg, 2006).
In C. elegans, telomeres do not form the bouquet but pairing
centers, short chromosome segments recognized by specific zinc-
finger proteins, that attach to the nuclear envelope during early
prophase I, also bringing homologous chromosomes together
(Phillips and Dernburg, 2006). In Arabidopsis, telomeres cluster in
meiotic interphase on the nucleolus rather than the nuclear enve-
lope (Armstrong et al., 2001). Subtelomeric regions of Arabidopsis
chromosomes start to pair before telomeres dissociate from the
nucleolus, suggesting that the clustering on the nucleolus may
play a role similar to that of the canonical bouquet. Arabidopsis
telomeres establish their connections with the nuclear envelope
during leptotene and zygotene, although without an obvious
bouquet formation (Armstrong et al., 2001).

Interestingly, the connections used to attach chromosomes to
the nuclear envelope in C. elegans and Arabidopsis are homologs of
the same transmembrane proteins that are used in other species
to tether telomeres to the nuclear envelope during bouquet for-
mation. SUN domain proteins, identified in yeast, mammals,
C. elegans, maize, as well as Arabidopsis, cross the inner nuclear
membrane (Chikashige et al., 2007; Schmitt et al., 2007; Penkner
etal., 2009; Sato et al., 2009; Graumann et al., 2010; Murphy et al.,
2010). They interact at their N-termini with telomere binding
proteins while their C-termini bind transmembrane proteins con-
taining a conserved KASH domain that cross the outer membrane
and interact with the cytoskeleton (Miki et al., 2004; Zhou et al.,
2012). The commonality of the structures attaching telomeres
to the nuclear envelope reinforces the notion that the telomere-
nuclear membrane attachments in C. elegans and Arabidopsis
may be functionally similar to the presence of the canonical
bouquet.

It has been shown in several species that the cytoskeleton acts
through the telomere-nuclear membrane attachments to induce
dynamic motility of chromosomes (Bhalla and Dernburg, 2008;
Koszul et al., 2009; Sheehan and Pawlowski, 2009; Woglar and
Jantsch, 2013). The chromosome movements are thought to help
the chromosomes to engage in finding their pairing partners as
well as resolving their entanglements.
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Another process, which is required for proper chromosome
segregation, and closely follows chromosome pairing, is synap-
sis. Synapsis is installation of a proteinaceous structure, the
synaptonemal complex (SC), between the paired homologous
chromosomes, which stabilizes the pairing interactions. The SC
consists of two lateral elements (LEs) which reside at the base
of the chromosome loops and are held together in parallel by
transverse filament proteins. In most eukaryotes, the LEs are
derived from the axial elements (AEs) loaded on the chromoso-
mal axis before synapsis. Installation of the synaptonemal com-
plex is also closely linked with the formation of crossovers (see
the following section), and so synapsis also affects chromosome
segregation through its role in crossover formation. Arabidopsis
mutants defective in synaptonemal complex formation exhibit
univalents at metaphase I and improper chromosome segregation
at anaphase I (Ross et al., 1997; Higgins et al., 2005).

MEIOTIC RECOMBINATION
Meiotic recombination affects segregation of chromosomes in at
least two ways. First, studies in many species, including plants,
mammals, and fungi, have indicated that homologous chro-
mosome pairing is closely connected to meiotic recombination
(Pawlowski and Cande, 2005). Second, crossovers, reciprocal
chromosome segment exchanges formed as a result of meiotic
recombination, form physical connections, known as chiasmata,
between homologous chromosomes in each bivalents. Chiasmata
keep bivalents together to ensure proper orientation and segrega-
tion of chromosomes during the first meiotic division.
Recombination in meiosis is initiated by the formation
of double strand breaks (DSBs) in chromosomal DNA, trig-
gered by Spoll, a conserved topoisomerase type-II-like protein
(Keeney et al., 1997). The MRN complex (MRE11/RAD50/NBS1)
then resects the breaks creating single-stranded DNA overhangs
(Borde, 2007), which then invade appropriate regions on the
homologous chromosomes. This process is promoted by two
recombination proteins, Rad51 and Dmcl (Masson and West,
2001). Rad51 is solely responsible for the repair of DNA breaks
using sister chromatids as templates. However, this process is
restrained and replaced by repair via the homologous chro-
mosome when Dmcl is localized to meiotic DNA break sites
together with Rad51 (Bishop et al., 1992; Niu et al., 2009). In
Arabidopsis, mutating Rad51 results in chromosome fragmenta-
tion (Li et al., 2004). However, fragmentation is not observed in
the dmcl mutant (Couteau et al., 1999). These observations sug-
gest that the function of Dmcl is distinct from Rad51, as Dmcl
promotes interhomolog recombination rather than intersister
recombination (Kurzbauer et al., 2012; Pradillo et al., 2012).
Meiotic recombination results in formation of crossovers and
non-crossovers (which include gene conversions). The number
and location of crossovers are tightly regulated. In most plant
species, only one to four crossovers are formed per bivalent
(Crismani and Mercier, 2012). At least one crossover must be
formed per bivalent to ensure correct chromosome segregation
at anaphase I. However, the number of crossovers per chro-
mosome is limited by crossover interference, a mechanism that
prevents formation of crossovers next to each other (Jones, 1984).
A group of proteins called ZMM, which contains Zipl, Zip2,

Zip3, Zip4, Msh4, Msh5, and Mer3, have been identified as essen-
tial for the formation of interference-dependent crossovers in
yeast (Borner et al., 2004). Homologs of several of these pro-
teins have been studied in Arabidopsis and found to play similar
roles in crossover formation (Higgins et al., 2004, 2005, 2008;
Chen et al., 2005; Mercier et al., 2005; Chelysheva et al., 2007).
Loss of MSH4 in Arabidopsis, results in a reduction in crossover
frequency to 15% of the wild-type level (Higgins et al., 2004).
Similar effect was shown in the Arabidopsis mer3 mutant (Chen
et al., 2005; Mercier et al., 2005). Interestingly, the ZMM group
includes proteins that are primary components of the synaptone-
mal complex, such as ZIP1. This interdependence indicates a link
between crossover formation and synapsis. Overall, about 85%
of Arabidopsis crossovers arise from the interference-dependent
pathway (Higgins et al., 2004). The remaining crossovers are
interference-independent, and are generated by a distinct group
of proteins including MUS81 and EME1/MMS4 (Berchowitz
et al., 2007).

Recombination events, including crossovers are not dis-
tributed randomly along chromosomes. Instead they tend to
appear at certain chromosomal locations known as recombina-
tion hotspots (Drouaud et al., 2006). In plant species with large
genomes, such as maize, barley, or wheat, crossovers are predom-
inantly present in chromosome regions close to the telomeres
(Akhunov et al., 2003; Gore et al., 2009). Crossover distribution
affects the positions of chiasmata and may have implications for
bivalent stability and chromosome segregation. However, neither
mechanisms that control crossover distribution nor implications
of crossover distribution for chromosome behavior in meiosis are
well understood.

EARLY DEFECTS IN CHROMATIN STRUCTURE HAVE AN IMPACT ON
HOMOLOGOUS CHROMOSOME SEGREGATION: ASK1

ASK1 (Arabidopsis SKP1-likel) encodes one of the 21 predicted
Arabidopsis homologs of the yeast and human Skpl proteins
(Yang et al., 1999; Zhao et al., 2003a,b). Skp proteins are an essen-
tial component of the Skpl-Cullin-F-box (SCF) complex, that
belongs to a class of E3 ubiquitin ligases that target a variety of
proteins for ubiquitin-mediated degradation via the 26S protea-
some pathway (Petroski and Deshaies, 2005). ASK1 is the Skp
homolog that has been best characterized in Arabidopsis. askI-1
mutants display defects in plant growth, flower development and
male fertility (Yang et al., 1999; Zhao et al., 2001, 2003b). Male
sterility arises from meiotic defects in prophase I that lead to
erroneous homologous chromosome segregation in meiosis I and
sister chromatid segregation in meiosis II, and to the subsequent
formation of unbalanced spores. During prophase I, chromo-
somes maintain a leptotene-like structure with long and thin
threads that do not synapse, as demonstrated by the absence of
the typical SC structure (Wang et al., 2004). FISH experiments
using a centromeric probe showed the presence of more than 5
signals in askI-1 meiocytes during pachytene, confirming lack of
homologous pairing and bivalents formation (Zhao et al., 2006).
The localization of the a-kleisin subunit of the cohesin com-
plex SYN1 (described in the next paragraph) was also found
to be altered in askl meiocytes from zygotene to anaphase I.
These observations together with a premature sister chromatid
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detachment detected by FISH in anaphase I, suggest that askl
mutation alters cohesin distribution and function, which is nec-
essary for proper pairing and synapsis (Zhao et al., 2006). The
abnormalities detected in askI seem to derive from early defects
in meiotic chromatin structure and chromosome reorganization
in leptotene that cause a prolonged attachment of chromosomes
to the nuclear membrane and the nucleolus, alterations in rDNA
structure, prolonged attachment of the telomeres to the nucle-
olus, and defects in histone 3 acetylation, overall leading to the
absence of homologous chromosome pairing (Yang et al., 2006).
Hence, ASK1 is most likely required for chromosome conforma-
tion and remodeling of meiotic chromosomes by controlling the
release of chromatin from the nucleolus and nuclear membrane
starting from leptotene (Yang et al., 2006). Several hypotheses
have been currently proposed to explain the potential role of
ASK1 in meiosis, consistent with the meiotic defects observed
in the mutant and the homology of ASK1 to Skp proteins (Yang
etal., 2006; Zhao et al., 2006). ASK1 may control the degradation
of a protein which inhibits the leptotene to zygotene transition,
so that the alterations observed in chromatin structure and orga-
nization would be a consequence of the block of this transition.
Alternatively, ASK1 might regulate the interaction of chromo-
somes to the nuclear membrane by degrading one or more
proteins that link chromatin to the nuclear matrix, thus allow-
ing a nuclear reorganization during leptotene and zygotene. ASK1
may also control chromatin structure by regulating chromatin
remodeling proteins, as suggested by the alterations detected in
histone 3 acetylation. However, the specific function of ASK1 in
male meiosis is not yet defined.

SISTER CHROMATID COHESION IS ESSENTIAL FOR
FAITHFUL CHROMOSOME SEGREGATION

THE COHESIN COMPLEX

Sister chromatids must be held together from the moment of
their synthesis in S-phase until their separation in anaphase to
ensure correct attachment of chromosomes to the spindle and
accurate chromosome segregation in dividing cells. Cohesin is
the multi-subunit protein complex that mediates sister chromatid
cohesion in meiosis and mitosis by physically trapping them in
a tripartite ring structure (Haering et al., 2008). The complex
is highly conserved in eukaryotes and is composed of a core of
four evolutionary conserved proteins, extensively studied in yeast
and animals. In mitosis, the cohesin complex is composed of two
members of the SMC family (structural maintenance of chromo-
somes), SMC1 and SMC3, and two auxiliary SCC subunits (sister
chromatid cohesion), the a-kleisin RAD21/SCC1 and SCC3. In
meiosis, the structure of the cohesin complex is highly similar,
except for the RAD21/SSC1 component, which is replaced by its
counterpart Rec8 (Stoop-Myer and Amon, 1999; Watanabe and
Nurse, 1999). SMC1 and SMCS3 consist, in their folded configura-
tion, of a globular head and a hinge domain, connected by a long
anti-parallel coiled coil. The proposed model of action of cohesin,
the embrace model, requires the connection of the SMC hinge
domains to form a SMC1/SMC3 heterodimer with a V-shaped
structure, that can bind across sister chromatids and close, form-
ing a ring, through a physical connection of the a-kleisin subunit
to the C-terminal domain of SMCI and the N-terminal domain of

SMC3 (Gruber et al., 2003). The complex is stabilized by recruit-
ment of SCC3 by the a-kleisin subunit (Figure 1) (for reviews on
cohesin complex: Nasmyth and Haering, 2005; Onn et al., 2008;
Peters et al., 2008).

SMC proteins

Similar as in yeast and animals, the sister chromatid connection in
plants is also established through the cohesin complex. Homologs
of the cohesin complex have been identified in some plant species
and major progress on the understanding of their function has
been achieved in the model plant Arabidopsis thaliana, in which
all the components have been described. The Arabidopsis genome
contains single copies of SMC1 and SMC3 cohesin subunits.
Genetic studies revealed that loss of AtSMC1 or AtSMC3 func-
tionality causes seedling lethality, hence impairing functional
characterization (Liu et al., 2002). Localization studies using a
specific antibody revealed that AtSMC3 is present in the cyto-
plasm and nucleus, on chromosomes and in the nuclear matrix
of meiotic and mitotic cells, indicating a function in both types
of cell divisions (Lam et al., 2005). At meiotic prophase, AtSMC3
localizes along sister chromatids to axial elements and lateral ele-
ments, similar to the Arabidopsis a-kleisin subunit SYN1. This
observation confirms the conserved role of the cohesin com-
plex in sister chromatid cohesion but also supports an additional
function in SC formation, as proposed in yeast and mammals
(Klein et al., 1999; Eijpe et al., 2000). By metaphase I, AtSMC3
localizes only to chromosome centromeres and, in addition, co-
localizes to the spindle at metaphase I and anaphase I and II.
The spindle localization is independent of SYN1 functionality and
suggests that AtSMC3 might play an additional role as spindle
associated protein, distinct from its conserved role in sister chro-
matid cohesion. This novel localization pattern is also conserved
in mitosis and could be related to a role of AtSMC3 in spindle
assembly and/or in the chromosome association with the spindle
(Lam et al., 2005). A similar novel function has been suggested
in human mitosis for the entire cohesin complex (Gregson et al.,
2001).

Immunolocalization studies in tomato meiocytes (Solanum
lycopersicum) revealed that SMC1 and SMC3 show a similar
localization pattern as AtSMC3. In prophase I, SMC1 and SMC3
antibodies display a signal along AEs of the SC from leptotene
to diplotene and a weak and diffuse signal on chromosomes at
metaphase I and telophase II (Lhuissier et al., 2007). However, no
localization to the spindle was documented, suggesting that the
novel spindle function might be specific for Arabidopsis AtSMC3
and not conserved in other plant species.

Rec8 and SCC3

More intensive studies have been undertaken on the role of the
meiotic a-kleisin subunit Rec8 in Arabidopsis (named SYNI1
but also DIF1 and AtRec8), maize (AFD1), and rice (OsRad21-
4/OsRec8) meiosis. In Arabidopsis, the homolog of Rec8, SYN1,
is required for sister chromatid cohesion in meiosis (Cai et al.,
2003; Chelysheva et al, 2005). SYNI fully co-localizes with
AtSCC3 at pachytene and is necessary for its proper loading
on sister chromatids, confirming that they are indeed part of
a complex (Chelysheva et al., 2005). FISH (fluorescence in situ
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FIGURE 1| Overview of the events that allow the establishment of
the cohesin complex on chromosomes, necessary for the
successive steps of chromosome segregation, including homologous
pairing and recombination in meiosis I. (A) Loading of cohesin on
chromosomes requires the SCC2/SCC4 complex, only AtSCC2 has been
characterized in Arabidopsis. (B) The establishment of chromosome
cohesion takes place during DNA replication in S phase when
Eco1/CTF7 acetylates SMC3 residues, effectively closing the cohesin

C Prophase I: HOMOLOGOUS PAIRING AND RECOMBINATION
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Mitosis -> Meiosis '9:%
6% I COHESIN
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ring. AtCTF7 has acetylatransferase activity in vitro and is required for
the establishment of chromosome cohesion in Arabidopsis. SWI1 is an
Arabidopsis protein with a role in cohesin establishment even if the
mechanism of action is not yet known. Its maize homolog AM1 is
required for the switch from mitosis to meiosis and for a putative
checkpoint between leptotene and zygotene in prophase I. (C) Cohesion
is required for SC elongation and polymerization and for meiotic
recombination in prophase |I.

hybridization) analysis on synl meiocytes using chromosome
arm and centromeric probes show defective sister chromatid arm
and centromere cohesion in meiosis I, confirming that SYN1
functions in cohesion (Cai et al., 2003).

In addition, SYN1 is required for synapsis of homologous
chromosomes, being necessary for SC polymerization and elon-
gation (Chelysheva et al., 2005). In synl meiocytes, synapsis is
blocked and chromosome condensation and pairing are almost
completely absent, leading to the presence of univalents at
metaphase I (Bai et al., 1999; Bhatt et al., 1999). Localization
of ASY1, a protein required for chromosome synapsis, recom-
bination and SC assembly and widely used as a marker for

chromosome axes in meiosis (Sanchez-Moran et al., 2008), is
impaired in synl mutants, confirming the requirement of SYN1
for AE polymerization and elongation but not for their forma-
tion (Chelysheva et al., 2005). Synapsis is known to be closely
related to meiotic recomblnatlon. Therefore, it is not surpris-
ing that SYN1 plays also a role in recombination, specifically in
DSBs repair. Indeed, chromatin bridges and chromosome frag-
mentation are observed in synl meiosis I. They are suppressed
by introducing into the synl mutant background the Atspoll
mutation, which abolishes DSBs formation and prevents recom-
bination, confirming that SYN1 is required for DSBs repair
(Chelysheva et al., 2005). Involvement of the cohesin complex
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in homologous chromosome pairing, assembly of the SC, and
in meiotic recombination has been shown previously in other
organisms. In yeast, Rec8 and SMC3 are required for SC forma-
tion and for repairing DSBs (Klein et al., 1999). In mouse, loss
of Rec8 affects homologous recombination but does not affect SC
formation and assembly. However, synapsis occurs between sister
chromatids instead of homologous chromosomes, suggesting that
Rec8 might define the chromosome unit and limit the SC binding
sites to one single chromosome surface of a sister-chromatid pair
in mammals (Xu et al., 2005).

Support for an additional role of Rec8 in homologous pair-
ing and recombination in plants comes from studies on the
maize a-kleisin subunit AFD1 and the rice OsRad21-4/OsRec8.
A study on different afd1 alleles has revealed that AFD1 is required
for AE installation, affecting the deposition of the recombina-
tion machinery on chromosomes (Golubovskaya et al., 2006).
The rice OsRec8 regulates AE formation and may have a role
in DNA DSBs repair, since localization of PAIR2 (homolog of
Arabidopsis ASY1), ZEP1 (ZYP1 homolog), and MER3, involved
in the formation of crossovers, is affected in Osrec8 mutants. As a
consequence, no proper homologous pairing occurs (Zhang et al.,
2006; Shao et al., 2011). Moreover, defective telomere bouquet
formation is observed in Osrec8 and afdl mutants, also prevent-
ing proper pairing of homologous chromosomes. Hence, OsRec8
regulates AE formation, homologous recombination and synapsis
by affecting downstream proteins PAIR2, ZEP1, and MER3 (Shao
etal., 2011).

Rec8 has a crucial role in the determination of kinetochore
geometry for monopolar orientation in fission yeast, since rec8
mutants display loss of monopolar orientation at meiosis I
and chromosome segregation defects (Yokobayashi et al., 2003;
Sakuno et al., 2009). Similarly, Arabidopsis SYN1 is necessary
for the monopolar attachment of sister kinetochores in meiosis
I, as indicated by the observation of bipolar sister kinetochore
attachment in meiosis I in the double synl Atspoll mutant,
in which synl chromosome fragmentation is suppressed allow-
ing a clearer observation of chromosome segregation. However,
the same defect in kinetochore orientation is observed for the
other SCC cohesin subunit, AtSCC3, indicating that SYNI is
not sufficient for monopolar kinetochore orientation or, most
likely, is inactive when the other members of the complex are not
present. These data suggests that Rec8-containing cohesin com-
plex is responsible for defining kinetochore geometry in meiosis
I in plants, as proposed in yeast, Drosophila and mammals
(Chelysheva et al., 2005; Watanabe, 2012).

AtSCC3 is the sole SCC3 homolog investigated in plants so
far. It is required for normal plant growth and fertility and has
a conserved role in proper sister chromatid cohesion, confirmed
by the combination of univalents and bivalents observed in Atscc3
mutants (Chelysheva et al., 2005). However, in contrast to SYN1,
AtSCC3 is not required for AE formation, since ASY1 localiza-
tion in Atscc3 is normal and synapsis does not show major defects
in the mutant. Moreover, only a low level of fragmentation is
observed in Atscc3 and recombination is not defective, suggesting
that the two SCC subunits, although being part of the same com-
plex, may fulfill different additional functions (Chelysheva et al.,
2005).

While AtSCC3 has no paralogs in the Arabidopsis genome,
three a-kleisin homologs, SYN2, SYN3, and SYN4, are present
that share about 38 % sequence similarity at their N-termini and
20 % at their C-termini with SYN1, and could partially com-
pensate for each other (Schubert et al., 2009a). Two observations
raise the hypothesis that the a-kleisin paralogs may be involved
in cohesion in meiosis. First, in the synl Atspol1 double mutant,
sister chromatid cohesion is only lost at anaphase I, suggesting
that other homologs of the SYN1 family might be responsible
for cohesion before that stage (Chelysheva et al., 2005). Second,
SYN1 localization is only observed along chromosome axes but
not at the core centromeres at metaphase I and metaphase II
(Chelysheva et al., 2005; Cromer et al., 2013; Zamariola et al.,
2013). It is known that SYN1, SYN2 and SYN4 may partially
compensate for each other whereas SYN3 is required for plant via-
bility, it localizes to the nucleolus and might have evolved a role
in rDNA transcription and/or processing. A specific function in
DNA repair in somatic cells has been suggested for SYN2, while
SYN4 is required for centromere cohesion in mitosis (Schubert
etal., 2009b). However, the role of the different paralogs is, at this
time, not clear, and the creation of double or triple mutants might
help unravelling their specific functions (Schubert et al., 2009b).

LOADING AND ESTABLISHMENT OF CHROMOSOME COHESION

The loading of the cohesin complex onto chromosomes starts at
telophase in humans and at the end of G1 in yeast and requires
the evolutionary conserved SCC2/SCC4 complex (for reviews see
Uhlmann, 2009; Ocampo-Hafalla and Uhlmann, 2011). Cohesin
loading has been shown to be enriched at centromeric and peri-
centromeric regions promoting high fidelity chromosome seg-
regation (Eckert et al., 2007). Recent studies in budding yeast
have revealed that the observed enrichment is defined by the
presence of the kinetochore subcomplex Ctf19, that promotes
SCC2/SCC4 centromere association (Fernius et al., 2013). Also
in Angiosperms, interphase nuclei show a preferred alignment of
sister chromatids at centromeres, which might facilitate kineto-
chore bipolar orientation in mitosis, essential for correct chro-
mosome segregation (Schubert et al., 2007). In plants, only the
Arabidopsis homolog of the adherin SCC2 has been described.
AtSCC2 is essential for plant viability and Atscc2 plants show
defects in embryogenesis and endosperm development (Schubert
et al., 2009b; Sebastian et al., 2009). Using an inducible RNAi
(RNA interference) system, Sebastian et al. (2009) demonstrated
that AtSCC2 is required for sister chromatid cohesion and load-
ing of the cohesin complex in meiosis, as indicated by defects
in AtSCC3 localization. Furthermore, Atscc2 mutants show an
irregular localization of ASY1 and chromosome fragmentation,
indicating that AtSCC2 is required for axial development and
most likely for repair of DNA DSBs, supporting the notion that
sister chromatid cohesion is a prerequisite for axial development
and DSBs resolution (Sebastian et al., 2009).

The loading of cohesin is the first step through the estab-
lishment of sister chromatid cohesion that takes place during
DNA replication. After the loading, cohesin is unstable due to the
activity of the Wapl-Pds5 complex that promotes cohesin disso-
ciation (Rowland et al., 2009). In yeast, cohesion is established
during S-phase by the Ecol/CTF7 protein, that acetylates the
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SMC3 residues, effectively closing the cohesin ring (Rowland
et al., 2009). In Arabidopsis, AtCTF7 exhibits acetyltranferase
activity in vitro like its yeast and human homologs (Jiang et al.,
2010). Atctf7 homozygous mutants display a dwarf phenotype
and aberrant microsporogenesis due to defects in chromosome
segregation in mitosis and PMCs (pollen mother cells). FISH
performed with a centromeric and a chromosome 4 arm probes
on male meiocytes of Atctf7 and AtCTF7 RNAI plants, revealed
that the protein is required for both centromere and arm cohe-
sion in meiosis (Bolanos-Villegas et al., 2013; Singh et al,
2013). Furthermore, localization of the cohesin complex sub-
units AtSMC3, AtSYN1 and AtSCC3 is impaired in Afctf/ male
meiosis, indicating that AtCTF7 is necessary for association of
cohesin on chromatin in meiosis (Bolanos-Villegas et al., 2013;
Singh et al., 2013). In addition, the level of expression of genes
required for DNA repair is significantly altered in Atctf7 mitotic
and meiotic tissues, and the mutant plants show a lower ability to
repair DNA double strand breaks in vivo in mitotic cells (Bolafios-
Villegas et al., 2013). Taken together, these observations suggest
that AtCTF7 is also required for DNA repair in Arabidopsis, as
shown for Ecol in yeast mitosis (Lu et al., 2010).

SWITCH1/DYAD (SWI1/DYAD) is an Arabidopsis protein
with an essential role in the establishment of sister chro-
matid cohesion during early meiosis (Mercier et al., 2001,
2003). Different allelic mutations have been investigated for the
SWII/DYAD gene, all of them showing an impact on fertility
due to different mechanisms affecting megasporogenesis (swil-
1 and dyad; Motamayor et al., 2000; Siddiqi et al., 2000; Mercier
et al., 2001; Agashe et al., 2002) or both mega and microsporo-
genesis (swil-2 and dsyl10; Mercier et al., 2003; Boateng et al,,
2008). Swil-1 and swil-2 alleles have been shown to have an
effect on the female mitosis-meiosis switch, so that meiosis is
converted into a mitotic cell division (Motamayor et al., 2000;
Mercier et al., 2001). However, analysis of the dyad allele by
Agashe et al. (2002) and Siddiqi et al. (2000) with a meiotic
marker, provided evidence that the female megaspore enters the
meiotic programme but does not progress into further meiotic
divisions. Detailed studies of male meiosis for swil-2 and dsy10
alleles, have shown that the mutants loose cohesion in a stepwise
manner already in meiosis I, leading to the presence of 20 chro-
matids at metaphase I which segregate randomly in meiosis II,
forming polyads (Mercier et al., 2001). Furthermore, the mutant
lacks AE formation, leading to incorrect pairing and synapsis, and
does not initiate recombination. These defects probably all derive
from defective establishment of cohesion before the initiation of
meiosis, since the protein is expressed exclusively in meiotic G1
and S phase (Mercier et al., 2003). Specifically, the localization
of SYN1 in swil-2 meiocytes, indicates that SWI1 performs its
function after the loading of the cohesin complex (Mercier et al.,
2003). However, its specific function in chromosome cohesion is
not yet understood.

Maize AM1 and rice OsAMI1 are proteins closely related to
SWI1. Mutants in AM1 and OsAMI genes show defective sister
chromatid cohesion, absence of homologous pairing and synap-
sis, and lack of homologous recombination (Pawlowski et al.,
2009; Che et al., 2011). However, while Arabidopsis swil mutants
affect meiotic processes downstream of meiotic initiation and do

not affect entrance in meiosis, maize aml mutants show typical
features of mitotic division in the early steps of meiosis, indicat-
ing that AMI is required for the transition from the mitotic cell
cycle into meiosis. Meiocytes of a specific am1 allele arrest during
early meiotic prophase at the transition between leptotene and
zygotene, suggesting the presence of a novel checkpoint in maize
required for progression through prezygotene (Pawlowski et al.,
2009). Similarly, in rice, OsAM1 is also likely involved in a check-
point mechanism that regulates the transition from leptotene to
zygotene (Che et al., 2011).

A schematic overview of the processes of cohesin loading
and establishment and homologous chromosome pairing and
recombination, is shown in Figure 1.

RELEASE OF CHROMOSOME COHESION: SEPARASE

Cleavage of the a-klesin subunit occurs in a stepwise manner dur-
ing meiosis. In meiosis I, Rec8 is cleaved at chromosome arms,
allowing the resolution of chiasmata and homologous chromo-
some segregation in meiosis I, whereas in meiosis II cohesin
is released at centromeres, enabling sister chromatid separation
(Nasmyth, 2001). Cleavage of Rec8 is performed by the cys-
teine protease Separase, which is conserved in various organisms,
including yeast and vertebrates (Kitajima et al., 2003; Kudo et al.,
2009). Separase function is inhibited by a protein called Securin,
which is degraded at the onset of anaphase by ubiquitylation by
the APC/C (Uhlmann, 2001). Homologs of separase are present
in many plant species. However, the studies undertaken so far
have only focused on the Arabidopsis separase AESP (Liu and
Makaroff, 2006). AESP is an essential gene but RNA interference
of AESP under the control of the meiotic DMCI1 promoter, and
the finding of the temperature permissive mutant rsw4 (radially
swollen 4), have allowed to investigate AESP function in meio-
sis (Liu and Makaroff, 2006; Wu et al., 2010; Yang et al., 2011).
Aesp and rsw4 mutants display defective chromosome segregation
in meiosis I, in which entangled chromosomes and chromosome
fragments are observed, and in meiosis II, where bivalents are
still present, indicating persistence of cohesion (Liu and Makaroff,
2006; Yang et al., 2011). In support of this, SYN1 and SMC3 sig-
nals persist on aesp and rsw4 chromosomes at later stages after
metaphase I, demonstrating that AESP is responsible for removal
of the cohesin complex from chromosomes. The creation of a
double mutant between aesp and askl, in which homologous
chromosomes prematurely separate in meiosis I due to defects
in homologous synapsis, showed that sister chromatids did not
separate in meiosis II. This observation confirms that AESP is
responsible for sister chromatid separation also in anaphase II
(Yang et al., 2009). In Arabidopsis, a large amount of cohesin is
released from chromosome arms in prophase I and the residual
arm cohesin is released at anaphase I (Cai et al., 2003). While
AESP is required for the release of cohesin at anaphase I and in
meiosis 11, it does not participate in the first step of release in
prophase I, suggesting that a separase-independent mechanism
might exist at early stages in Arabidopsis, similar to budding yeast,
in which the condensin complex SMC2/SMC4 and a Polo kinase
are responsible for cohesin removal at chromosome arms before
metaphase I (Sumara et al., 2002; Yu and Koshland, 2005; Liu and
Makaroff, 2006).
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Separase is a multifunctional protein that in various organ-
isms possesses additional roles to sister chromatid separation
mechanistically less understood, such as proteolytic cleavage of
other target proteins in yeast and spindle assembly in humans
(Moschou and Bozhkov, 2012). Also in Arabidopsis additional
functions of separase have been reported (Yang et al., 2009, 2011).
Aesp mutants show alterations in non-homologous centromere
associations at zygotene, suggesting that AESP might play a role
in the control/release of the transient centromere associations that
occur during zygotene in Arabidopsis (Armstrong et al., 2001).
Furthermore, in aesp male meiocytes the radial microtubule array
(RMA) is disturbed at telophase II and phragmoplast-like struc-
tures are observed, suggesting that AESP might have a function
in microtubule organization or cell polarity (Yang et al., 2009).
Absence of AESP also causes the formation of multinucleate
microspores as a consequence of defective RMA (Yang et al,
2009). In contrast to yeast, where separase is required for normal
meiotic spindle formation (Jensen et al., 2001; Baskerville et al.,
2008), in Arabidopsis only RMA formation is defective while AESP
might be required for the proper interaction of microtubules with
the nuclear envelope at the tetrad stage (Yang et al., 2009).

PROTECTION OF CENTROMERE COHESION: SHUGOSHIN AND
PATRONUS

In meiosis, sister chromatid cohesion is controlled in a time-
and space-dependent manner, with chromosome arm cohesion
release at the start of anaphase I, and maintenance of cen-
tromeric cohesion up till anaphase II. Meiosis-specific protection
of Rec8 at pericentromeric regions from anaphase I to anaphase
IT is performed by Shugoshin (Sgo), a protein first described in
Drosophila (MEI-S332; Kerrebrock et al., 1995), and successively
identified in yeast, mammals and plants (Yao and Dai, 2012).
Studies from yeast and vertebrates have elucidated the mech-
anism of action of Sgo, which is recruited at pericentromeric
heterochromatin regions where it associates with the phosphatase
PP2A to dephosphorylate Rec8 and prevent its cleavage in meio-
sis I (Lee et al., 2008a; Xu et al., 2009). In yeast, Sgo1 localizes at
centromeres until the end of anaphase I (Kitajima et al., 2004),
whereas in vertebrates SGOL2 persists on the chromosomes also
in meiosis IT (Lee et al., 2008a). Currently, two hypotheses are
postulated to explain the dynamic association of Shugoshin with
centromeres. On the one hand, Sgo function may be controlled
by microtubule attachment and deactivated by a spatial change of
its localization in the peri-centromeric domain in response to a
change in microtubule tension (Lee et al., 2008a). Alternatively,
a PP2A inhibitor may block dephosphorylation thereby confer-
ring loss of protection of centromeric cohesion in meiosis II
(Chambon et al., 2013). Flies and budding yeast possess a single
copy of Sgo, while fission yeast, mammal and plant genomes have
two Sgo paralogs, Sgo1 and Sgo2. In Drosophila, yeasts and plants,
Sgol is responsible for the protection of centromere-specific sister
chromatid cohesion in meiosis I, while in mammals SGOL2 per-
forms the function of protector (Gutiérrez-Caballero et al., 2012).
Though they are homologs, Sgo genes share limited sequence sim-
ilarity and display in the different organisms somewhat different
functions which have been acquired during evolution (for a recent
review on the Shugoshin protein family and the additional roles

of Shugoshin see Clift and Marston, 2011; Gutiérrez-Caballero
et al., 2012). The Sgol paralog Sgo2 possesses different proper-
ties depending on the species examined. In fission yeast, Sgo2
plays a role in chromosome segregation in mitosis (Kitajima et al.,
2004), in particular it has been shown to control the localiza-
tion of the CPC, a protein complex that senses lack of tension
between kinetochores and microtubules (Kawashima et al., 2007;
Vanoosthuyse et al., 2007; Tsukahara et al., 2010). In addition, fis-
sion yeast Sgo2 also plays a role in meiosis, as Sgo2 deletion leads
to a modest increase in non-disjunction of homologs at meiosis I
(Kitajima et al., 2004). In humans, hSGOL1 protects centromeric
cohesion in mitosis (Salic et al., 2004; McGuinness et al., 2005),
whereas hSGOL?2 is dispensable for sister chromatid cohesion in
mitotic cell division but is essential for correcting erroneous kine-
tochore attachments by recruiting the microtubule depolymerase
MCAK to the centromeres (Huang et al., 2007), a role that is
consistent with the one shown for fission yeast Sgo2 (Kawashima
et al., 2007).

In plants, the role of Sgo as protector of centromere cohesion
in meiosis has been described for the maize ZmSGO1, the rice
OsSGOL1 as well AtSGO1 and AtSGO2 of Arabidopsis (Hamant
et al., 2005; Wang et al., 2011; Cromer et al., 2013; Zamariola
et al., 2013, 2014). FISH analysis performed on sgol meiocytes
with a centromeric probe revealed a premature detachment of
sister chromatid centromeres in anaphase I, resulting in random
chromosome segregation in meiosis II. However, monopolar ori-
entation of sister kinetochores in meiosis I is not affected in
the mutants and chromosomes normally segregate in the reduc-
tional division, indicating that SGO proteins are required for
protection of cohesion at anaphase I but not for monopolar
orientation of sister kinetochores. In fission yeast and mam-
mals, which possess two Sgo homologs, one copy is generally
required for protection of sister chromatid cohesion in meiosis,
while the other has evolved additional roles, as previously men-
tioned. So far, no function in somatic cells has been described for
any of the plant Sgo proteins. Arabidopsis is the only species in
which the role of both Sgo paralogs has been investigated. Single
mutants show no vegetative phenotype and a meiotic phenotype
is detected exclusively for Atsgol. However, Atsgol Atsgo2 dou-
ble mutants reveal a partially redundant role for the two SGOs,
opposite to yeast and vertebrate (Cromer et al., 2013; Zamariola
et al., 2014). Immunolocalization of ZmSGO1 and OsSGO1 has
revealed that SGOL1 is loaded on chromosomes at leptotene, ear-
lier than in other organisms such as yeast or mammals in which
loading occurs during late prophase I or at diplotene, respec-
tively (Kitajima et al., 2004; Gémez et al., 2007). Thus, plant SGO
proteins might have a function in prophase L. In support of this
hypothesis, ZEP1 localization is defective in Ossgol mutants in
about 21% of meiocytes, indicating that OsSGO1 may be required
for the timely assembly of the SC, even if not for its initial assem-
bly (Wang et al., 2011). In contrast, Arabidopsis ZYP1 localizes
normally in Atsgol mutants (Zamariola et al., 2013).

Recently, a novel protein involved in the protection of sis-
ter chromatid cohesion during meiosis II has been identified in
Arabidopsis, named PATRONUS (PANS1) (Cromer et al., 2013;
Zamariola et al., 2014). PANSI is a plant specific protein that
shares homology with genes belonging to the Eudicots family.

Frontiers in Plant Science | Plant Genetics and Genomics

June 2014 | Volume 5 | Article 279 | 8


http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

Zamariola et al.

Chromosome segregation plant meiosis

Pansl meiocytes show a premature release of sister chromatid
cohesion at metaphase II but not at meiosis I, indicating that
the protein is required for protection of cohesion during interki-
nesis, at a later stage than SGOs. Moreover, similar to SGOs,
PANSI is not required for monopolar attachment of sister kine-
tochores in meiosis I. TAP-TAG and Y2H experiments have
revealed that PANSI may be a regulator of the APC/C complex
because of the interaction with some of the APC/C subunits. In
addition, the presence of two destruction boxes in the PANS1
sequence may indicate that PANSI is at the same time also tar-
geted by the APC/C complex. Currently, three hypotheses have
been suggested to explain how PANS1 maintains sister chromatid
cohesion at interkinesis: (1) by protecting SGOs from destruction
by the APC/C; (2) by protecting sister chromatid cohesion from
Separase independently of SGOs, in the case SGOs are no longer
present after anaphase I, and (3) by inhibiting via APC/C reg-
ulation the Wapl-dependent process of cohesin release, which is
usually activated at the end of mitosis/G1 phase to allow dynamic
cohesin renewal and that could be present also at the end of mei-
otic telophase I (Cromer et al., 2013). At the moment, AtSGOs
and PANSI localization, that could help unraveling the func-
tion of PANSI in meiosis and the relation among the protectors,
is lacking. Besides its role as protector of cohesion, PANSI has
also been shown to be required for spindle organization in meio-
sis since pansl meiocytes display defective spindles starting from
telophase I. Defective spindles is probably the cause of the for-
mation of an aberrant internuclear organelle band at interkinesis,
detected in 7% of pansl meiocytes. Taken together, these pheno-
types and the premature separation of sister chromatids observed
in meiosis II, suggest a function of PANS1 in ensuring the coor-
dinate organization of the cell organelles in accordance with the
meiotic cell cycle phase and chromosome cohesion (Zamariola
etal., 2014), which is in agreement with the interaction of PANS1
with the APC/C.

CENTROMERES AND KINETOCHORES

ROLE OF CENTROMERES AND KINETOCHORES IN CHROMOSOME
SEGREGATION

Centromeres are DNA-protein structures necessary to direct
chromosome movement in cell division. Centromere DNA
sequences are fast evolving and highly variable among species.
However, centromeric regions in most plant species encom-
pass mainly two domains. One is the core centromere, which
contains satellite tandem repeats, usually 150-180 bp long, and
specialized nucleosomes in which histone H3 is replaced by a
centromere-specific H3 histone variant, CENH3. This region is
required for the assembly of the kinetochore, a protein structure
that binds to spindle microtubules allowing faithful chromosome
segregation. The core centromere is flanked by pericentromeric
heterochromatin domains containing retroelements and other
transposons. In yeast the pericentromeric domains have been
shown to have mainly a role in the recruitment of Shugoshin
(Pidoux and Allshire, 2005; Yamagishi et al., 2008). In addition,
epigenetic mechanisms may be involved in the specification of
centromeric chromatin and propagation of centromeres (Houben
and Schubert, 2003; Ekwall, 2007; Torras-Llort et al., 2009; Wang
et al., 2009).

The specific centromeric variant Histone 3, CENH3, was first
identified in human as CENP-A and subsequently in all eukary-
otic model systems (De Rop et al., 2012), including Arabidopsis
(also called HTR12; Talbert, 2002). Despite its essential and con-
served role in ensuring proper chromosome segregation, CENH3
proteins are highly variable in their sequences and fast evolving,
especially their N-terminal tail domain and a loop 1 region at
the C-terminal domain, which are necessary for CENH3 local-
ization to centromeres in Arabidopsis (Ravi et al., 2010; Moraes
et al., 2011). The C-terminal part of the protein is sufficient
for the centromeric localization of CENH3 in mitotic cells even
when the N-terminal part is absent (Lermontova et al., 2006). In
meiosis, a different loading mechanism for CENH3 is present, in
which the N-terminal tail plays a critical role. Arabidopsis plants
transformed with a N-terminally truncated YFP-CENH3(C) pro-
tein show meiotic defects and partial sterility and the YFP signal
cannot be detected in meiotic nuclei (Lermontova et al., 2011).
Similarly, the replacement of the N-terminal tail with a GFP
tagged variant, GFP-tailswap, causes sterility due to defects during
sporogenesis (Ravi et al., 2011). In GFP-tailswap plants, meiosis
is disturbed starting from metaphase I, in which bivalents align
on the division plate but are not subjected to tension from the
spindle, which is confirmed by decreased interkinetochore dis-
tance and by defective spindles (Ravi et al., 2011). CENH3 protein
signal is reduced or not detected in GFP-tailswap meiocytes and
is again detected after meiosis on mitotic chromosomes at the
microspore stage, indicating the existence of distinct mechanisms
for CENH3 loading in meiosis and mitosis (Ravi et al., 2011). The
work of Lermontova et al. (2011) also suggests a different load-
ing mechanism in meiosis and mitosis, since the YFP-CENH3(C)
variant is deposited to the centromeres in mitosis but not in
meiotic nuclei.

Recently, the Arabidopsis homolog of KNL2 has been iden-
tified. It represents one of the components of the Mis18 com-
plex, responsible for the initiation of CENH3 deposition at the
centromeres in humans (Hayashi et al., 2004), C. elegans (De
Rop et al, 2012) and fission yeast (Hayashi et al., 2004). In
Arabidopsis, KNL2 is associated with centromeres at all stages of
the cell cycle except from metaphase to mid-anaphase. Arabidopsis
KNL2 knockout mutants show defects in mitosis and meiosis and
reduced CENH3 loading at the centromeres (Lermontova et al.,
2013). Furthermore, CENH3 gene expression is decreased in knl2
mutants but KNL2 expression is stable in CENH3 RNAI trans-
formants, indicating that KNL2 acts upstream of CENH3 and
has a function in the assembly of CENH3 at the centromeres
(Lermontova et al., 2013). Moreover, KNL2 is co-expressed with
H3K9 histone methyltransferases genes, whose expression is
reduced in knl2 mutants. Also DNA methylation levels are lower
in knl2 mutant plants. The requirement of KNL2 for CENH3
expression and for DNA methylation, suggests that KNL2 may
interact with methyltransferases to allow the maintenance of
DNA methylation, in order to control the epigenetic status of cen-
tromeric chromatin and to control CENH3 loading (Lermontova
etal., 2013).

Sister kinetochores must behave differently in meiosis I and
I: in meiosis I are oriented toward the same pole (mono-
orientation) to allow homologous chromosomes segregation,
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while in meiosis II they face opposite poles (bi-orientation) (Brar
and Amon, 2009). The tension exerted at the kinetochores by
microtubules during division, and the kinetochore geometry,
defined in meiosis and mitosis by cohesion, are fundamental
for stabilizing the monopolar attachment in MI and the bipo-
lar in MII (for review see Watanabe, 2012). In contrast to the
high variability of centromeric sequences, more than 20 active
kinetochore proteins are conserved between humans and yeasts
(Lampert and Westermann, 2011), and are specific either for the
inner kinetochore, where they directly recognize and bind DNA,
or for the outer kinetochore, being responsible for the interaction
with microtubules (Santaguida and Musacchio, 2009; Wang et al.,
2009). However, to date, only 7 kinetochore proteins have been
reported to be conserved in A. thaliana, the majority of which
has not been yet functionally characterized (Murata, 2013). The
inability to identify homologs of many human and yeast kineto-
chore proteins in plants, may suggest the existence of different
kinetochore structure in plants (Murata, 2013).

Kinetochore functionality depends on the presence of a func-
tional centromere in meiosis. Indeed MIS-12, a kinetochore pro-
tein which co-localizes with CENH3 at the centromere regions
(Sato et al., 2005), does not do it in Arabidopsis GFP-tailswap
meiocytes. In contrast, CENP-C, another kinetochore protein
which localizes at the centromeres in mitotic cells (Ogura et al.,
2004), is not affected in CENH3 RNAIi transformants, suggest-
ing that its localization does not depend on the presence of a
functional CENH3 (Lermontova et al., 2011).

In maize, kinetochore proteins have been more thoroughly
investigated. CENPC is part of the inner kinetochore and inter-
acts at one side with the DNA repeats located at the centromeric
regions, and, on the other side, with the members of the outer
kinetochore (Dawe et al., 1999; Zhong et al., 2002). At the
outer kinetochore NCD80 and MIS12 are present. Homologs of
these two proteins are known to be parts of the KMN (KNL-
1/Mis12/Ndc80) complex that constitutes the core microtubule-
binding site of the kinetochore in C. elegans (Cheeseman et al.,
2006). NDC80 is a constitutive kinetochore protein which local-
izes at kinetochores in all meiotic and mitotic stages (Du and
Dawe, 2007). It does not bind DNA directly and interacts with
MIS12, which is also present at kinetochores during all stages
of the cell cycle. NCD80 and MIS12 form at metaphase I a
bridge structure that links sister kinetochores, while CENH3 and
CENPC appear at the inner side of sister kinetochores as two dis-
tinct signals (Li and Dawe, 2009). MIS12 has an important role in
sister chromatid connection at meiosis I and is required for the
initiation of reductional division (Li and Dawe, 2009). Knock-
down of MIS12 by RNAI leads to a weakening of the MIS12-
NCD80 bridge and aberrant chromosome segregation in meiosis
I, where in 30% of the cells sister kinetochores separate and seg-
regate in an equational division instead of reductional (Li and
Dawe, 2009). In MIS12 RNAI cells, the signal of the centromere
protector ZmSGOI1 does not weaken (Li and Dawe, 2009). The
protein lies between sister kinetochores but cannot restore kineto-
chore co-orientation, confirming that Shugoshin is not required
for the monopolar orientation of kinetochores (Hamant et al.,
2005; Li and Dawe, 2009). A model, in which axial elements
and cohesin hold sister chromatids together during prophase I

and create the base for fused sister kinetochore formation pro-
moted by the MIS12-NCD80 bridge has been proposed (Li and
Dawe, 2009). This structure would cooperate with Shugoshin
to induce reductional segregation by co-orienting sister kineto-
chores (Figure 2). MIS12 and NCD80 are thought to be similar
to the monopolin complex, which promotes sister kinetochore
co-orientation in budding yeast (Corbett and Harrison, 2012).

CHECKPOINT MECHANISMS ACTING AT KINETOCHORES

In eukaryotes, checkpoint mechanisms are present in meiosis and
mitosis to prevent chromosome mis-segregation that would result
in aneuploidy or apoptosis (Murray, 1994). The SAC is a con-
served protein complex that controls proper attachment of micro-
tubules to kinetochores in the metaphase to anaphase transition.
In case of lacking or improper kinetochore-microtubule attach-
ment, SAC creates a “wait anaphase” signal that stops anaphase
progression. This response is promoted by APC/C together with
its co-activator Cdc20 protein (for reviews see Peters, 2006; Vader
et al., 2008; Musacchio, 2011). When all kinetochores are prop-
erly attached to microtubules, APC/C targets the destruction
of Securin, the inhibitor of Separase as well as other cyclins,
promoting chromosome segregation and exit from meiosis or
mitosis. Evolutionary conserved proteins of SAC are MADI,
MAD?2 (mitotic arrest deficient), Bubl, Bub3 (budding unhib-
ited by benomyl), BubR1 kinase (bub-relatedl, Mad3 in yeast),
and Mpsl (Monopolar kinasel) (May and Hardwick, 2006). The
SAC proteins BubR1, Bub3, and MAD?2 are also members of the
Mitotic Checkpoint Complex (MCC), which is the effector of
SAC that physically inhibits APC/C by binding to its co-activator
Cdc20 until the moment all chromosomes are properly attached
to kinetochores (Sudakin et al., 2001). SAC function has been
investigated in depth in mitosis. However, a similar control mech-
anism is active also during meiosis (Malmanche et al., 2006; Sun
and Kim, 2012).

ANAPHASE |

SISTER CHROMATIDS

y S

\
(r \,. 2

7 CENH3 M MIS12-NCD8O bridge
CENPC . SGO1
Spindle

FIGURE 2 | Model proposed in maize by Li and Dawe (2009) for
reductional segregation in meiosis l. Sister kinetochores are fused in
meiosis | by formation of the MIS12-NCD80 bridge that, together with
SGO1, allows monopolar attachment of sister chromatids to the spindle
pole. The inner kinetochore proteins CENPC and CENH3 are visualized as
two distinct signals.
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Homologs of SAC proteins have been described in plants.
MAD?2 was first identified in maize where it localizes to the outer
kinetochore in prometaphase I and II of meiosis, next to the inner
kinetochore protein CENPC (Yu et al., 1999). During meiosis I
and II, microtubule attachment is not sufficient for MAD2 dis-
sociation from kinetochores, and the dissociation might occur in
response to tension applied to the kinetochores (Yu et al., 1999).
This hypothesis is supported by the concomitant staining of the
MAD?2 and 3F3/2 antibodies in maize meiosis. 3F3/2 recognizes a
kinetochore phosphoepitope that is known to disappear in ani-
mal cells when tension is applied to the kinetochore (Nicklas
et al., 1995). MAD2 homologs have been identified also in wheat
and Arabidopsis, and their roles have been mainly investigated
in mitotic checkpoint control. In wheat, intense MAD2 signal
was observed at all centromeres in colchicine treated cells but
not in untreated cells, confirming the function of MAD?2 in the
spindle checkpoint (Kimbara et al., 2004). In Arabidopsis, MAD2
localization was studied together with BubR1 and Bub3.1, the
others SAC proteins identified in the model plant (Caillaud et al.,
2009). Interactions between the three proteins were observed in
the nuclei of tobacco cells using bimolecular fluorescence com-
plementation (Caillaud et al., 2009). During normal mitosis,
localization of the SAC proteins to the kinetochores was not
detected. However, by application of microtubule destabilizing
drugs or of the proteasome inhibitor MG132, MAD2, BubR1,
and Bub3.1 localized at the kinetochores, suggesting that SAC
proteins are only recruited at kinetochores in case of defective
spindle assembly in Arabidopsis (Caillaud et al., 2009). In con-
trast, a study by Ding et al. (2012) on the Arabidopsis MAD2
protein, showed that MAD2-GFP localizes at kinetochores also
during normal mitotic progression from prophase to metaphase,
as shown in maize. Moreover, AtMAD2 binds to AtMAD]1, which
interacts with the nucleoporin NUA, showing that SAC compo-
nents interact with the nuclear pore. This interaction has been
found in several other organisms, and it seems that the pres-
ence of SAC proteins at the nuclear pore mediates mitotic spindle
checkpoint (Lee et al., 2008b).

Mpsl (Monopolar kinase 1) is also required for SAC func-
tion in the mitotic checkpoint in several eukaryotes and has been
shown to be responsible for the recruitment of Madl and Mad2
at kinetochores in humans (Hewitt et al., 2010). Mps1 Arabidopsis
homolog has conserved motifs which could mediate its interac-
tion with MAD2 but also with cyclins, the APC/C and MAPK
(mitogen-activated protein kinases), however, proof of its biologi-
cal role in the checkpoint mechanism is still required (De Oliveira
etal., 2012).

In most organisms, SAC is controlled by the chromosome pas-
senger complex (CPC). In general, the CPC consists of the core
enzyme Aurora B kinase, and three non-enzymatic subunits that
control the targeting, enzymatic activity and stability of Aurora
B: inner centromeric protein (INCENP), borealin and survivin
(for review see Ruchaud et al., 2007). The major role of CPC is
sensing incorrect kinetochore-microtubule attachments and gen-
erating, in response, unattached kinetochores, which allows new
rounds of attachment until the correct configuration is obtained.
The presence of unattached kinetochores activates the SAC that
blocks the progression of cell divisions until all chromosomes are

under tension. In plants, little is known about the role of the
CPC in meiosis and few components of the complex have been
identified. Like animals, Arabidopsis possesses three Aurora kinase
homologs, which share a similar structure to the ones of other
species (Kawabe et al., 2005). AtAuroral and AtAurora2 display
similar localization dynamics to Aurora B kinase in Arabidopsis
mitosis, suggesting that they could function as chromosomal pas-
senger proteins (Demidov et al., 2005). AtAuroral interacts with
SAC proteins BubR1 and MAD?2 in vivo and phosphorylate them
in vitro, which suggests that it functions in checkpoint mech-
anisms (Demidov D., personal communication). Furthermore,
deregulation of AtAurora kinases activity, either by mutagenesis
or by chemical treatment, results in defects in microsporogenesis
and generation of polyploid and aneuploid progeny, suggesting
that AtAurora may regulate correct chromosome segregation in
Arabidopsis meiosis (Demidov D., personal communication).

A putative ortholog of the CPC subunit INCENP, WYR,
has been identified in Arabidopsis (Kirioukhova et al., 2011).
WYR shares with the INCENP homolog proteins a characteris-
tic C-terminal domain, a coiled coil domain and a IN-box at the
C-terminus, required for the binding of Aurora kinase. WYR is an
essential gene with a role in cell cycle control and, independently,
in cell fate and differentiation in Arabidopsis, since is required for
both female and male gametogenesis. Similar functions have been
reported also for the orthologs of INCENP in animals (Ruchaud
et al., 2007). However, further genetic and biochemical analyses
on WYR and Aurora kinases are required to establish the role of
CPC proteins in plants.

MICROTUBULE ORGANIZATION AND SPINDLE DYNAMICS

In all eukaryotic cells, faithful chromosome segregation is accom-
plished by microtubule-based movement and requires a bipolar
structure, the spindle, which consists of an antiparallel array of
microtubules. The microtubules have their minus-end anchored
at the spindle pole and their plus-end toward the chromosomes
(Wittmann et al., 2001). They are highly dynamic polar polymers
of noncovalently bound a and B tubulin heterodimers and rep-
resent the major components of the cytoskeleton in eukaryotic
cells (Nogales, 2000). They rapidly polymerize and depolymer-
ize while being continually translocated toward the poles. In
animal and yeast cells, microtubules nucleate from microtubule-
organizing centers (MTOC), such as the centrosome and the
spindle pole body, which are responsible for the organization
of the cortical astral arrays in interphase and mitotic spindles
during cell division (Pereira and Schiebel, 1997; Jaspersen and
Winey, 2004). y-tubulin is enriched at the nucleation centers
where it is recruited as a ring-shaped complex together with
associated proteins, enhancing the nucleation of microtubules
(O’'Toole et al., 2012). In contrast to animals and yeast, plant
microtubules lack conspicuous organizing centers. However, they
are organized into ordered arrays that are associated with a
growth pattern of the plant cell and relocate in a cell-cycle spe-
cific manner (Azimzadeh et al., 2001). During cell division, a
succession of microtubule arrays is identified: radial arrays from
the nuclear surface and cortical arrays of interphase, preprophase
bands, spindles, and phragmoplasts (Wasteneys, 2002; De Storme
and Geelen, 2013a). Like in animal and yeast, y-tubulin is also
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required for microtubule nucleation in plants, being essential
for the organization of the microtubule structures in interphase
and cell division (Canaday et al., 2000; Shimamura et al., 2004;
Pastuglia et al., 2006).

Microtubule motor proteins have an essential role in spin-
dle assembly in both centrosomal and acentrosomal systems
(Walczak et al., 1998). The best studied class of microtubule
motor proteins are kinesins, proteins that participate in a variety
of biological processes, including transport of vesicles, chromo-
somes or organelles, and organization of spindle microtubules,
and chromosome segregation (Woehlke and Schliwa, 2000). They
move unidirectionally along microtubules toward their plus or
minus-ends. They use energy derived from ATP hydrolysis, in a
processive or non-processive way, depending on their capacity of
moving cargo long or only short distances before detaching from
the microtubules. Several kinesins are known to be required for
the structure, assembly and positioning of the mitotic and meiotic
spindles in animals and fungi (Endow, 1999; Sharp et al., 2000).
The Arabidopsis genome contains 61 predicted kinesins, one-third
of them belonging to the kinesin-14 family that includes minus
end-directed motor proteins (Reddy and Day, 2001). ATKI is a
member of this family and has been shown to support micro-
tubule movement in an ATP-dependent manner and to be a
non-processive, minus-end motor protein (Marcus et al., 2002).
ATK]1 has a specific role in male meiosis, in which atkl-1 meio-
cytes display defective chromosome alignment and segregation
in meiosis I and II due to aberrant formation of metaphase
and anaphase spindles, leading to spore and pollen abortion and
decreased plant fertility (Chen et al., 2002). ATK1 is involved in
the assembly of the meiotic spindle and is needed for organiz-
ing microtubules at the two poles at metaphase and anaphase I
and II, but not for the organization of microtubules for other
structures, such as the interzonal microtubule array formed at
telophase I (Chen et al., 2002). Studies in yeast and Drosophila
have suggested that minus and plus-ended motor proteins could
produce counteracting forces within the spindle to maintain its
structure (Sharp etal., 1999, 2000). Thus, ATK1 might have a sim-
ilar function in plant male meiosis, by producing inward-acting
forces necessary for the assembly and maintenance of a bipolar
spindle (Chen et al., 2002). The creation of a double heterozy-
gote mutant between ATK1 and its homolog ATKS5 (also named
AtKIN14a and AtKIN14b, respectively), has shown that both pro-
teins are required for proper chromosome segregation in female
and male meiosis and for normal spindle morphogenesis in male
meiosis (Quan et al., 2008). In addition to its male meiotic func-
tion, ATK1 localizes to the midzone of the mitotic spindle from
metaphase through anaphase, suggesting a function also in the
mitotic spindle apparatus (Liu et al., 1996).

AtPRD2/MPS1 (Multi-polar spindlel) is a putative Arabidopsis
coiled-coil protein with homologs only among Embryophytes.
Although having been identified as AtPRD2, an essential pro-
tein for DSBs formation, due to the presence of univalents in
Atprd2 mutant meiosis (De Muyt et al., 2009), the protein has
also been found to be required for spindle organization and
determination of spindle polarity in male meiosis (MPSI; Jiang
etal., 2009). MpsI meiocytes display multiple focused spindles at
metaphase I, indicating that spindle assembly is not defective, in

contrast to atkl and atkl/atk5 mutants, but spindle bipolarity is
compromised in meiosis I and II, and chromosome segregation
results more affected than in the kinesin mutants. This observa-
tions suggest that MPS1, ATK1, and ATKS5 play a role in different
mechanisms in plant meiosis. It has been proposed that MPS1
might guide microtubule minus-end migration in meiosis, maybe
through binding to an unknown MAP (microtubule associated
proteins) or, alternatively, could be a component of the spin-
dle pole transmitting the signal to attract the minus-end of the
spindle microtubules before spindle assembly (Jiang et al., 2009).
However, whether the spindle defects observed in mpsI meiocytes
correspond to a primary function of the protein in spindle organi-
zation and polarity, or to a secondary effect caused by univalents
formation in meiosis I, is not clear since conflicting observations
on the relationship between unpaired chromosomes and spindle
aberrations have been reported (Chan and Cande, 1998; Dawe,
1998).

In rice, a Kinesin-1-like protein, Pollen Semisterility 1 (PSS1),
has been shown to have microtubule-stimulated ATPase activity
and to be required for proper chromosome alignment and segre-
gation in meiosis. However, spindle morphology is only slightly
affected in pssI mutants, indicating that PSS1 might have a minor
and not essential role in the formation of the meiotic spindle
or alternatively might be involved in the regulation of chromo-
some movements along the spindles, as suggested by the delayed
chromosomes observed in meiosis in pssI (Zhou et al., 2011).

Recently, the identification of a MATH-BTB domain protein,
MABI1 (MATH-BTB1) in maize has been reported. This protein is
required for organizing microtubule spindles and nuclei position-
ing in meiosis IT and in the first mitotic division in both male and
female germlines. Since no direct interaction between MAB1 and
the spindles has been observed, it has been proposed that MAB1
may act through the control of a spindle apparatus regulator(s)
(Jurani¢ et al., 2012). Six MATH-BTB proteins have been cur-
rently identified in the Arabidopsis genome, however, no similar
function has been reported (Weber and Hellmann, 2009).

The correct orientation of spindles in the second meiotic
division is an essential requirement for faithful chromosome
segregation. Alterations in the orthogonal configuration of the
division planes in meiosis II lead to co-orientation of the spin-
dles producing unreduced gametes, that represent the major route
to polyploidization in plants (Brownfield and Kohler, 2011). Co-
orientation can lead to the formation of three types of MII spindle
defects which usually occur together in cells: parallel, tripolar or
fused (Conicella et al., 2003; De Storme and Geelen, 2013b). This
phenomenon only takes place in PMCs (pollen mother cells) of
plants with simultaneous cytokinesis. In this type of cytokinesis,
as opposed to the successive type, no cell plate is formed at the
end of meiosis I and the two sets of chromosomes stay in the same
cytoplasm and need to be perpendicularly oriented to create the
tetrahedral configuration observed at the end of meiosis II (De
Storme and Geelen, 2013a). They have been documented in many
plant species, however, the molecular mechanisms behind their
occurrence are still largely unknown. Two proteins involved in
spindle orientation specifically in male meiosis II have been iden-
tified in Arabidopsis: AtPS1 and JASON (D’Erfurth et al., 2008;
FErilova et al., 2009; De Storme and Geelen, 2011). Mutations in
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these genes produce at the end of meiosis II a high number of
unreduced gametes (i.e., dyads and triads) instead of normal hap-
loid gametes, leading to diploid pollen formation and triploid off-
spring. The biological mechanism causing 2n gamete formation
in the mutants has been elucidated by tubulin immunostainings,
which have shown the formation of parallel, tripolar and fused
spindles in meiosis II. The defective spindles lead to 2n spores
that retain parental heterozygosity at the centromeres, indicative
of a FDR-type (first division restitution) of meiotic restitution
(D’Erfurth et al., 2008; De Storme and Geelen, 2011). The intro-
duction of Atspl or jason mutations into the Atspoll mutant
background has confirmed the model of 2n gametes formation
through co-oriented spindles, since the unbalanced segregation
caused by Atspoll at meiosis I is nullified by parallel spindles in
meiosis II, leading to the formation of mainly balanced dyads as
result of meiosis in the double mutants. AtpsI and jason meio-
cytes lack the characteristic interzonal microtubule array (IMA)
observed in simultaneous PMCs at telophase I, which physically
separates the two new formed nuclei. They mostly show fused
nuclei at metaphase II. In potato, the absence of IMA has also
been proposed to cause alterations in cell polarity and the for-
mation of fused spindles (Conicella et al., 2003), suggesting that
also in the Arabidopsis mutants depending on the total, partial,
or unipolar loss of IMA fused, parallel or tripolar spindles are
formed (De Storme and Geelen, 2013b).

AtPS1 is a protein conserved in the plant kingdom (Cigliano
et al., 2011), which contains two conserved domains in its

structure: an N-terminal Forkhead-associated (FHA) domain
required for phosphoprotein interaction in many signaling path-
ways (Li et al., 2000) and a PINc domain that has RNA-binding
properties associated with RNAse activity, and which is generally
found in proteins involved in RNAi and in nonsense-mediated
mRNA decay (NMRD) (Clissold and Ponting, 2000). JASON
encodes a protein of unknown function and no known domains
that is conserved in plants (Erilova et al., 2009). Expression anal-
ysis have demonstrated that JASON controls the AtPSI transcript
level specifically in meiotic flower buds, suggesting the exis-
tence of a regulatory mini-network for the control of spindle
orientation in meiosis IT (De Storme and Geelen, 2011).

Defects in spindle orientation in the second meiotic division
have been also reported in mutants in one of the Arabidopsis
formins, AFH14 (Li et al., 2010). Formins are a class of proteins
known to regulate the microfilament cytoskeleton (Blanchoin and
Staiger, 2010), but have been recently shown to have also a promi-
nent role in microtubule regulation and in the crosstalk between
actin filaments and microtubules in higher eukaryotes (Bartolini
and Gundersen, 2010). Indeed, microtubules and microfilaments
have been shown to co-distribute and interact in the meiotic
spindle and in the phragmoplast in maize (Staiger and Cande,
1991). AFH14 co-localizes with MTs and MFs arrays during cell
division in Arabidopsis suspension cells and with MTs in mei-
otic cells, affecting their arrangement during microsporogenesis.
Afh14 mutants display abnormal MTs structures including defec-
tive RMS at telophase I, parallel spindles at metaphase II and the
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FIGURE 3 | Overview of chromosome segregation in Arabidopsis
meiosis. (A) At metaphase |, homologous chromosomes are connected
by chiasmata and SHUGOSHINs (AtSGOs) are present at the
centromeres. (B) At anaphase |, Separase AESP is activated and cleaves
the cohesin at chromosome arms but not at centromeres, allowing
resolution of chiasmata and homologous chromosomes segregation by
monopolar attachment to the spindles. (C) At interkinesis, an internuclear
microtubule array (IMA) is formed at the site of the organelle band, to
physically separate homologous chromosomes. PANS1 is active and
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protects centromere cohesin, probably in conjunction with SGOs. PANS1
also interacts with the APC/C, and it is probably also an APC/C target. In
addition, PANS1 plays a role in spindle organization from telophase | to
telophase Il. (D) At metaphase Il, the chromosomes orient
perpendicularly to the metaphase plate through the perpendicular
orientation of spindles regulated by Jason and AtPS1. Also the formin
AFH14 influences spindle orientation by linking MTs and MFs. (E)
Releasing or degradation of SGOs and PANS allows cleavage of
centromeric cohesin by separase and sister chromatids segregation.
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absence of phragmoplast structures at late cytokinesis. AFH14
has been shown to preferentially bind MTs and to link MTs and
MFs in vitro, thus playing a key role in cytoskeletal dynamics
and organization required for cell division, including MII spindle
orientation (Li et al., 2010; De Storme and Geelen, 2013b).

An overview of the process of chromosome segregation
between metaphase I and anaphase II, and of the molecular
factors playing an essential role in Arabidopsis chromosome seg-
regation, is displayed in Figure 3.

CONCLUSIONS AND PERSPECTIVES

In the past 15 years the identification and characterization of
plant meiotic genes has seen a remarkable acceleration due to
the forward and reverse genetics strategies used in the model
plants Arabidopsis, maize and rice. In addition, investigation of
the molecular mechanisms regulating meiosis in other kingdoms
has enormously contributed to the development of plant research
in this field. The coordinate events leading to accurate chro-
mosome segregation have been elucidated in budding yeast and
studies in plants have confirmed the conserved role of many
proteins in the steps of meiotic chromosome segregation, such
as cohesin and the dynamics of cohesin removal and protec-
tion, the machinery of homologous pairing and recombination,
and the function of kinetochores and microtubules. However,
even if the main genes have been identified and their func-
tion in chromosome segregation confirmed, not much is known
about their regulation in accordance with the cell cycle. Further
research should focus on investigating the molecular mechanisms
regulating protein functions and the interaction between the pro-
teins to define their role in the broader context of chromosome
segregation.
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