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Histone H3 lysine 4 trimethylation (H3K4me3) has been shown to be involved in
stress-responsive gene expression and gene priming in plants. However, the role
of H3K4me3 resetting in the processes is not clear. In this work we studied the
expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show
that the expression of JMJ15 was relatively low and was limited to a number of
tissues during vegetative growth but was higher in young floral organs. Over-expression
of the gene in gain-of-function mutants reduced the plant height with accumulation
of lignin in stems, while the loss-of-function mutation did not produce any visible
phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas
the loss-of-function mutant was more sensitive to salt compared to the wild type.
Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many
genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the
down-regulated genes encode transcription regulators involved in stress responses. The
data suggest that increased JMJ15 levels may regulate the gene expression program that
enhances stress tolerance.
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INTRODUCTION
Histone lysine methylation is an important epigenetic modifica-
tion for gene expression in eukaryotic cells (Martin and Zhang,
2005; Kouzarides, 2007). Genome-wide analysis has revealed
that about two-thirds of Arabidopsis genes are marked by
mono-, di- or tri-methylation of histone H3 at residue lysine 4
(H3K4me1/2/3) (Zhang et al., 2009). H3K4me3 is predominantly
found at the promoter and 5′ end of genes and is strongly asso-
ciated with transcriptional activation in plants. H3K4me3 level
was found to be increased on responsive genes upon stress treat-
ment, but in some cases the increase was found to be lagged
behind gene activation (Kim et al., 2008; Hu et al., 2011), suggest-
ing that H3K4me3 may have a function to mark the active gene
state. In addition, H3K4me3 in gene body has been suggested to
play a role in transcriptional memory of stress-responsive genes in
Arabidopsis (Alvarez-Venegas et al., 2007; Jaskiewicz et al., 2011).
Recent results indicated that the H3K4me3 level in gene body was
decreased after stress recovery but remained higher than basal
state, suggesting that a regulated resetting mechanism is involved
in partial removal of H3K4me3 and that remaining H3K4me3
may contribute to the transcriptional memory in Arabidopsis
(Ding et al., 2012; Kim et al., 2012).

Histone methylation marks are established by evolutionar-
ily conserved SET-domain proteins (named after 3 Drosophila
genes: Su(var)3–9, Enhancer of zeste and Trithorax). H3K4

methylation is mediated by the Trithorax group proteins (TRX).
Arabidopsis Trithorax ATX1 and ATX2 respectively trimethylate
and dimethylate H3K4 (Saleh et al., 2008). ATX1 was found to
be necessary for stress-induced gene expression (Alvarez-Venegas
and Avramova, 2005; Alvarez-Venegas et al., 2007; Ding et al.,
2011). Other SET-domain genes (SDG) such as SDG4 and SDG2
are also involved in H3K4 methylation and control of many
aspects of plant development (Cartagena et al., 2008; Berr et al.,
2010; Guo et al., 2010).

Histone methylation is reversed by histone demethylases.
Lysine Specific Demethylase 1 (LSD1) is the first identified his-
tone demethylase to remove mono- and di-methyl groups from
H3K4 (Shi et al., 2004). In Arabidopsis there are 4 LSD1-like genes
including FLOWERING LOCUS D (FLD), LSD1-LIKE 1 (LDL1),
and LSD1-LIKE 2 (LDL2) that are shown to be involved in flow-
ering time control (Jiang et al., 2007). The second class of histone
demethylases that contain the jumonji C (JmjC) domain cat-
alyze histone lysine demethylation through a ferrous ion (Fe(II))
and α-ketoglutaric acid (α-KG)-dependent oxidative reaction
(Tsukada et al., 2006). Multiple JmjC domain-containing histone
demethylases are identified in animal cells, which are divided into
distinct groups including JARID/KDM5, JMJD1/JHDM2/KDM3,
JMJD2/KDM4, JMJD3/UTX/KDM6, JHDM1/FBX/KDM2 and
the “JmjC domain-only” group. Members of each group tar-
get to specific histone lysine residues at different methylation
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states (Klose et al., 2006). About 20 JmjC domain-containing
protein genes are found in Arabidopsis (Lu et al., 2008; Sun
and Zhou, 2008; Chen et al., 2011). Most animal and plant
JmjC proteins are conserved, while some animal proteins, such
as the JMJD3/UTX/KDM6 group that has the H3K27 demethy-
lase activity is not found in plants. Recent data have shown that
plant JMJD2/KDM4 homologs can demethylate H3K27 (Lu et al.,
2011; Li et al., 2013).

The JARID/KDM5 group catalyzes H3K4me2/3 demethylation
in mammalian cells. Arabidopsis genome has one JARID/KDM5-
like gene (JMJ17), whose function is presently unknown. There
is a specific group in plants which includes Arabidopsis JMJ14,
JMJ15, JMJ16, JMJ18, and JMJ19. The JmjC domains of this
group are more closely related to that of the JARID, but struc-
turally similar to that of JMJD2/KDM4 (Chen et al., 2013). JMJ14,
JMJ15 and JMJ18 have been reported to have the H3K4me2/3
demethylase activity and to regulate diverse aspects of chromatin
function and plant development (Deleris et al., 2010; Lu et al.,
2010; Searle et al., 2010; Le Masson et al., 2012; Yang et al.,
2012a,b; Cui et al., 2013). However, the function of these H3K4
demethylases in plant stress tolerance has not been evaluated. In
this work we provide evidence that increased expression of JMJ15
preferentially down-regulates H3K4me2/3-marked stress-related
genes and enhances salt stress tolerance.

MATERIALS AND METHODS
PLANT GROWTH
The Arabidopsis thaliana ecotype Columbia (Col-0) was
used throughout this study. T-DNA mutant lines jmj15-
1 (GABI_257F10), jmj15-2 (GABI_876B01) and jmj15-3
(GABI_663C11) were obtained from the Nottingham Arabidopsis
Stock Center (NASC) and confirmed by PCR. Seeds were
surface-sterilized and plants were grown on 0.5 x Murashige and
Skoog (MS) medium after stratification at 4◦C for 2 days. Plants
were analyzed on plates under long-day (LD, 16 h light/8 h dark)
or short-day (SD, 8 h light/16 h dark) photoperiods at 20◦C. Ten
days after germination, plants were transferred to soil and kept in
growth rooms under LD conditions.

To test gene expression in response to salt, experiments were
carried out with 8 day-old plants, treated with 0.5 x MS sup-
plemented with or without 100 to 150 mM NaCl for 1-5 h. For
germination tests, seeds of wild type and jmj15 mutants were
sown on medium containing 130-150 mM NaCl. Images of the
Petri dishes were taken 10 days after germination.

CONSTRUCTS AND TRANSFORMATION
For the histochemical GUS assay, the 2 kb promoter of JMJ15
was amplified from wild type genomic DNA using the follow-
ing primers: 5′-GGATCCAGAGCTTGGCCATTTCTTGA-3′
(forward) and 5′-GGTACCGCACTGAAAGGCTCCATTG-
3′ (reverse). BamHI and KpnI (underlined) were used for
digestions. The JMJ15 promoter fragment was inserted as
translational fusion with the uidA gene into the pPR97 vector.
To generate the 35S-JMJ15-FLAG-HA construct, the full length
cDNA without the stop codon was amplified from total cDNA
isolated from Col-0 plants using primers: TCTAGACCTTTG

GGTTTTGTGGAGTG (forward) and TCTAGACCAATT
CAAATCAACCCCAAA (reverse). Using XbaI site, JMJ15
cDNA was inserted into the binary vector pFA121, which
was modified based on pBI121 and contained 2 × FLAG-HA
tag. The pJMJ15-GUS and 35S-JMJ15-FLAG-HA constructs
were transformed into Agrobacterium tumefaciens strain
GV3101 and then transformed the plants using floral dip
method.

MICROARRAY ANALYSIS
Total RNA was extracted from 12 day-old seedling using Trizol
(Invitrogen) and cleaned using the RNeasy isolation kit (Qiagen).
Hybridization with Affymetrix GeneChip Arabidopsis ATH1
Genome Array was performed at CapitalBio Corporation. Wild
type and both jmj15 over-expression alleles were performed in
two biological repeats. Gene expression changes between the
samples were analyzed by the AffylmGUI package from R soft-
ware. GO annotation was carried out with the GO terms of
the TAIR database (http://arabidopsis.org/tools/bulk/go/index.
jsp). The percentage of significantly gene enrichment in each
TAIR annotated category was calculated as follows: the number
of enriched genes divided by N × 100, where N represents the
total number of genes annotated in each category. Significantly
enriched genes were subsequently analyzed for their H3K4 methy-
lation levels at epigenomics database (http://epigenomics.mcdb.

ucla.edu/H3K4m1m2m3/).

REAL-TIME PCR
For gene expression analysis, two micrograms of total RNA were
reverse transcribed into cDNA by ImPromII reverse transcriptase
(Promega). Real-time PCR was performed with the LightCycler®
480 SYBR Green I Master (Roche) on a LightCycler 480 (Roche).
At least two biological replicates and two technical repeats for
every biological replicate were tested. The primers used in this
study are listed in Supplementary Table 1.

HISTOCHEMICAL GUS AND LIGNIN STAINING
GUS staining was performed as previously described (Bertrand
et al., 2003). Briefly, plant samples were fixed with 90% acetone
on ice for 20 min and were washed with staining buffer (0.2%
Triton X-100, 5 mM potassium ferrocyanide, 5 mM potassium
ferricyanide, 100 mM NaH2PO4 and 100 mM Na2HPO4 pH 7.2).
Then the samples were immersed in GUS staining solution with
1 mM X-Gluc and placed under vacuum for 20 min. After incu-
bation at 37◦C overnight, the staining solution was removed and
samples were cleared by sequential changes of 70% (v/v) ethanol
and stored at 4◦C.

The histological comparative analysis of inflorescence stems
between Col-0 and jmj15 mutants was done at the stage of
newly formed green siliques, about 2 weeks after bolting, when
the inflorescence stems of wild type reach 20 cm in height.
Cross-sections of the inflorescence stems at the basal end were
stained for 3 min in phloroglucinol-HCl reagent (Prolabo, VMR
International, France) and then observed in ethanol 100%: HCl
37% (9/1, v/v) using a light microscope (Nikon, MULTIZOOM
AZ 100).
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RESULTS
EXPRESSION LEVELS OF H3K4 DEMETHYLASE GENES
To investigate whether H3K4 demethylase genes are involved in
plant stress responses, we analyzed the mRNA levels of JMJ14
(At4g20400), JMJ15 (At2g34880), JMJ16 (At1g08620), JMJ17
(At1g63490), JMJ18 (At3g30810), and JMJ19 (At2g38950) genes
in 8 day-old seedlings grown in ½MS media under continuous
light, then transferred to 100 mM NaCl or to ½MS solution for 5
hours. In untreated (½MS) seedlings, the expression levels of the 6
genes varied considerably. The relative expression levels of JMJ17,
JMJ18, and JMJ19 were much higher (>102) than that of JMJ14,
JMJ15, and JMJ16 (Supplementary Figure 1). NaCl treatment did
not dramatically affect the expression of these genes, although
some decrease of JMJ14 and JMJ18 and some increase of JMJ15
transcript levels were detected.

JMJ15 DISPLAYED A HIGHLY TISSUE-SPECIFIC EXPRESSION PATTERN
The relatively low expression level of JMJ15 was in agreement
with previous data showing that the 1.5 kb promoter region
of JMJ15 is weak in vegetative tissues (Hong et al., 2009). To
study the temporal and spatial expression pattern of JMJ15,
we used a larger promoter region of JMJ15 (−2051 to +14 bp
relative to ATG) to make a GUS reporter translational fusion
construct and transformed Arabidopsis Col-0 plants. Three inde-
pendent GUS reporter lines were characterized. All showed a
similar pattern of GUS expression. In seedlings, GUS activity
was detected only at the base of rosette leaves and root vascu-
lar tissues (Figures 1A–C). Interestingly, a higher accumulation of
GUS activity was detected in pericycle cells that initiated to lateral

root meristem (Figures 1B–D). The GUS activity remained to be
detected at the base of the growing lateral roots (Figures 1E–G),
but not in the root tip (Figure 1H). In the inflorescence, GUS
activity was strongly detected in young anthers and was detectable
in carpels, but the activities became weaker in the mature
flower (Figures 1I–L). This temporal and tissue-specific expres-
sion pattern suggested that JMJ15 may have a function in plant
development.

FIGURE 2 | Characterization of JMJ15 T-DNA insertion mutants. The
insertion positions of the 3 alleles are indicated by open arrows. The
exons are represented by black boxes. The positions of forward (F) and
reverse (R) primers are indicated by arrows. The expression levels
(relative to ACTIN2 mRNA) in jmj15-1 and jmj15-2 compared to wild type
were tested by qRT-PCR using the 4 indicated primer sets. The transcript
in jmj15-3 compared to wild type was analyzed by RT-PCR using the
indicated primers.

FIGURE 1 | The 2.0 kb promoter activity of JMJ15 in transgenic plants. In
seedlings, the GUS activity was detected in the base of rosette leaves (A),
root vascular tissues (B), and bases of growing lateral roots (C–G), but not in

root tip (H). In flower buds, the GUS activity was detected in anthers and in
carpels (I,J), which become weak in opened flowers, but remained in stamen
filaments (K,L). Bar = 0.1 mm.
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JMJ15 GAIN-OF-FUNCTION MUTATIONS SHOWED A REDUCED PLANT
HEIGHT PHENOTYPE
The JMJ15 gene contains 10 exons and encodes a polypep-
tide of 806 amino acids with distinct domains, including the
JmjN domain, JmjC domain, a C5HC2 zinc finger, and the FY-
rich N-terminus (FYRN)/FY-rich C-terminus (FYRC) domains,
which are conserved in JMJ14, JMJ16, and JMJ18 (Supplementary
Figure 2) (Lu et al., 2008). To study the function of JMJ15 in gene
expression and plant development, we characterized 3 T-DNA
insertion mutants: jmj15-1(GK-257F10), jmj15-2 (GK-876B01)
and jmj15-3 (GK-663C11). In jmj15-1 and jmj15-2, the T-DNA
was inserted in the 5′ end, and in jmj15-3 the T-DNA was inserted
in the seventh exon of the gene (Figure 2). RT-PCR analysis with

FIGURE 3 | Jmj15 gain-of-function mutations reduced plant height. (A)

Phenotype of hypocotyls of short day-grown (in ½MS medium) seedlings of
jmj15-1 and jmj15-2 compared to wild type col-0 (left). Lengths of
hypocotyls were measured from 30 plants per genotype (right). (B) Plant
height at mature stage of jmj15-1 and jmj15-2 compared to wild type (left)
and of 35S-JMJ15-HA over-expression plants compared to negative
transgenic plants (middle) grown in soil in greenhouse under long day
conditions. Plant heights were measured from 10 plants per genotype
(right). Bar = means ± SD. Asterisks indicate the significance of difference
from wild type by student t-tests (P < 0.01). (C) JMJ15 transcript levels
(relative to ACTIN2 transcripts) in over-expression transgenic positive
(15OE-1 and 15OE-2) and negative plants.

4 pairs of primers that covered the whole coding region of the
gene, revealed that the transcript level of JMJ15 was dramati-
cally increased in jmj15-1 and jmj15-2, but the transcript was
interrupted in jmj15-3 compared to wild-type (Figure 2). The
insertion in jmj15-1 and jmj15-2 did not alter the 5′ end of the
coding region, as the primer set F1 (that cover the 5′end of the
coding region) and R1 successfully amplify the transcripts from
the mutants. The data suggested that jmj15-1 and jmj15-2 were
gain-of-function mutants that overexpressed the gene and that
jmj15-3 was a loss-of-function mutant.

The jmj15-3 loss-of-function mutation did not display any
visible phenotype in normal growth conditions, confirming pre-
vious observations (Yang et al., 2012a). However, in short day (8 h
light/16 h dark)-grown seedlings, jmj15-1 and jmj15-2 mutants
produced slightly shorter hypocotyls compared to wild type
(Figure 3A). At the mature stage, the plant height of jmj15-
1 and jmj15-2 were clearly reduced compared to wild type
(Figure 3B). To study whether the plant height phenotype of
jmj15-1 and jmj15-2 was due to increased expression of the gene,
we made 35S-JMJ15-FLAG-HA construct and obtained JMJ15
over-expression transgenic plants. The transgenic plants also
displayed the reduced plant height phenotype at mature stage
(Figures 3B,C).

The plant height phenotype of the jmj15 gain-of-function
mutants prompted us to further investigate the stem structure
by using histochemical method. Sections of the basal part of
the inflorescence stem of 5 week-old plants (grown in long
day in greenhouse) were stained with phloroglucinol and exam-
ined by light microscopy. Phloroglucinol reacts with conifer-
aldehyde groups in lignin, and the color intensity reflects the
total lignin content. The analysis revealed that jmj15-1 and
jmj15-2 exhibited a significantly deeper red staining in the stem

FIGURE 4 | Lignin accumulation in jmj15-1, jmj15-2, and jmj15-3

mutants compared to wild type. Sections of the basal part of the
inflorescence stem of 5 week-old plants (grown in long day in greenhouse)
were stained with phloroglucinol and examined by light microscopy.
Phloroglucinol reacts with coniferaldehyde groups in lignin, and the color
intensity reflects the total lignin content. Bar = 0.1 mm.
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vascular system and interfascicular fibers compared to that in
wild type and jmj15-3 (Figure 4). This observation suggested
that over-expression of JMJ15 resulted in an increase of the
total lignin content in the stems concurrently with stem growth
reduction.

OVER-EXPRESSION OF JMJ15 PREFERENTIALLY REPRESSED GENES
MARKED BY H3K4 METHYLATION
To determine the effect of JMJ15 over-expression on gene expres-
sion, the transcriptomes of jmj15-1, jmj15-2 and wild type
seedlings (12 day-old, grown in ½MS media) were analyzed by
using the Affymetrix Arabidopsis ATH1 Genome Array. Two bio-
logical replicates for each sample were analyzed. Pair-wise plots of
the microarray data revealed a good correlation of the hybridiza-
tion signals between the biological replicates of each sample and

between the 2 mutant alleles (Figure 5A). The average hybridiza-
tion signals of the replicates of both mutants were normalized and
compared with the wild type signals. Up- and down-regulated
genes in both jmj15-1 and jmj15-2 were filtrated with the thresh-
old >2 fold changes (p-value < 0.01) compared to wild type. The
analysis revealed 23 up-regulated and 164 down-regulated genes
in the mutant lines (Supplementary Dataset 1). In addition, the
analysis revealed a much high expression level of JMJ15 itself (>7-
8 folds) in the mutants compared to wild type (Supplementary
Dataset 1), confirming the over-expression of the gene in the
mutants. The higher number of down-regulated genes compared
to up-regulated ones suggested that elevated JMJ15 expression
mainly repressed genes and that JMJ15 acted as a transcrip-
tional repressor, consistent with its H3K4 demethylase activity
(Liu et al., 2010; Yang et al., 2012a). To validate the microarray

FIGURE 5 | Transcriptomic analysis of jmj15-1 and jmj15-2 (12 day-old)

seedlings compared to wild type grown in ½MS medium. (A) Pair-wise
plots of the microarray hybridization signals between the biological replicates
of each sample and the between wild type and two 2 mutant alleles. Green:

down-regulated genes; red: up-regulated genes. (B) Five down-regulated and
4 up-regulated genes in the two mutants (microarray signals relative to wild
type are indicated below the respective genes) were validated by qRT-PCR.
Bar = means ± SD from 3 replicates.

www.frontiersin.org June 2014 | Volume 5 | Article 290 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Shen et al. Function of H3K4me3 demethylation in stress tolerance

FIGURE 6 | Down-regulated genes are highly enriched for H3K4me2/3.

Up-regulated (21) and down-regulated (163) genes in jmj15-1 or jmj15-2
mutants (changes >2 folds) were compared with genome-wide H3K4

methylation data. Percentages of H3K4me3, H3K4me2, H3K4me1 and their
combinations on the promoter (A) and the gene body (B) regions are
presented.

data, we checked 5 down-regulated and 4 up-regulated (includ-
ing JMJ15) genes by RT-qPCR. The relative transcript level
changes in the mutants compared to wild type detected by RT-
qPCR were in agreement with that from the microarray analysis
(Figure 5B).

To evaluate whether there was any enrichment of the deregu-
lated genes for H3K4me2/3, we compared the deregulated genes
with the genome-wide H3K4me2/3/1 data obtained from wild
type seedlings (Zhang et al., 2009). The analysis revealed that
about 83% of the down-regulated genes were marked by the
H3K4 methylation (mostly by H3K4me2, H3K4me3, or both)
in the gene bodies, compared to about 52% of up-regulated
genes (Figure 6, Supplementary Dataset 1). About 58% of the
down-regulated genes were marked by H3K4me3, H3K4me2, or
H3K4me2/3 in the promoter region (in the −500 bp region rel-
ative to TSS), compared to about 32% of up-regulated genes.
Compared to up-regulated genes, the down-regulated ones were
clearly enriched for the H3K4me2/3 double methylation marks.
This analysis suggested that JMJ15-mediated gene repression
might be achieved by demethylating H3K4 and indicated that
JMJ15 preferentially repressed genes that have the H3K4me2/3
double methylation marks.

OVER-EXPRESSION OF JMJ15 PREFERENTIALLY REPRESSED STRESS
REGULATORY GENES
Gene ontology (GO) analysis of the deregulated genes
using the GO Slim Classification (http://www.arabidopsis.
org/help/helppages/go_slim_help.jsp) revealed that a large
proportion of the deregulated genes (23.73%) in the jmj15
mutants had a function in the nucleus (Supplementary Figure
3A). Interestingly, 36 out of the 164 down-regulated genes
were transcriptional regulators (Supplementary Dataset 1).
Remarkably, about 50% (82/164) of the down-regulated genes
belonged to the stress-responsive categories (Supplementary
Figure 3B, Supplementary Dataset 1), suggesting that JMJ15 may
have a function in stress-responsive gene expression. We noticed
that among the greater than 5 fold down-regulated genes (31),
about 50% (15) encode transcription factors (Supplementary

Dataset 1). These included the stress-responsive zinc fin-
ger protein STZ/Zat10 (At1g27730) (Sakamoto et al., 2000),
the stress-responsive WRKY proteins WRKY40 (At1g80840)
and WRKY33 (At2g38470) (Jiang and Deyholos, 2009), the
cold-responsive factor CBF2 (At4g25470) (Vogel et al., 2005),
the ethylene-responsive-element binding proteins ATERF6
(At4g17490) and ATERF11 (At1g28370) (Li et al., 2011; Dubois
et al., 2013) (Supplementary Dataset 1). Among them, the
decreased expression of WRKY33 and ERF6 was validated by
RT-qPCR (Figure 5B).

JMJ15 GAIN-OF-FUNCTION MUTATIONS ENHANCED SALT STRESS
TOLERANCE
To study whether jmj15 mutations affected plant tolerance to
stress, we germinated seeds of wild type, jmj15-1, jmj15-2 and
jmj15-3 mutants on ½MS media containing 130 mM or 150 mM
NaCl. The seedling growth phenotype shown in Figure 7A indi-
cated that the gain-of-function mutations (jmj15-1 and jmj15-2)
enhanced plant tolerance to salt stress, whereas the loss-of-
function mutation (jmj15-3) reduced the stress resistance. To
study whether JMJ15 over-expression affected stress-responsive
gene expression, we analyzed the transcript levels of several stress-
responsive marker genes (i.e., RD29A, RD29B, RD22, COR15A,
COR47, P5CS1, and P5CS2) in the gain-of-function mutants
grown in normal conditions then treated with or without 150 mM
NaCl for 1 h. Without treatment, the expression of these genes
was not clearly affected by JMJ15 over-expression. After 1h treat-
ment with 150 mM NaCl, the expression of the marker genes was
induced in both wild type and the gain-of-function mutants, but
the induction of RD29A, RD22, and COR15 was clearly higher
in the mutants (Figure 7B). The higher induction of the stress-
responsive genes might be associated with the enhanced salt
tolerance phenotype of the mutants.

DISCUSSION
FUNCTION OF JMJ15 IN STRESS TOLERANCE
In this work we have shown that JMJ15 displayed a temporal and
tissue-specific expression pattern. Constitutive or over-expression
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FIGURE 7 | Comparison of sensitivity to NaCl and stress-responsive

gene expression between jmj15 mutants with wild type. (A) Wild type,
jmj15-1, jmj15-2, and jmj15-3 seeds were germinated for 12 days on ½MS
supplemented with indicated concentrations of NaCl. Images of the Petri

dishes were taken 10 days after germination. (B) Transcript levels (relative
to ACTIN2) of indicated stress-responsive marker genes in wild type and
jmj15-1 and jmj15-2 mutant seedlings treated with or without 150 mM NaCl
for 1 h.

of the gene, as a result of T-DNA insertions in the 5′ region,
preferentially repressed genes marked by H3K4me2/3, suggest-
ing that JMJ15-mediated gene repression may be achieved mainly
through demethylation of H3K4me2/3. The observation that
about a third of the down-regulated genes are related to stress
implies that JMJ15-dependent H3K4me2/3 levels are important
for the expression of this category of genes. This is consistent
with numerous observations that H3K4me3 is associated with
the induction of biotic and abiotic stress-responsive genes (van
Dijk et al., 2010; Hu et al., 2011; Jaskiewicz et al., 2011; Zong
et al., 2013; To and Kim, 2014), and that ATX1 that trimethy-
lates H3K4 in the genic region is required for stress-responsive

gene expression (Ding et al., 2009, 2011). Microarray analysis of
atx1 mutant seedlings revealed that 424 genes were up-regulated
and 328 genes were down-regulated more than 2 folds compared
to wild type (Alvarez-Venegas et al., 2006). Similarly, 271 genes
were found to be up-regulated and 321 genes down-regulated
in mutant seedlings of another H3K4 methyltransferase gene
SDG2 (Guo et al., 2010). However there was no clear correla-
tion between transcription changes in sdg2 and atx1 (Guo et al.,
2010), suggesting that the two enzymes may regulate different tar-
gets. Comparison of the deregulated genes did not reveal a clear
overlap, although there was a relatively higher number of over-
lapped genes between jmj15 and atx1 than between jmj15 and
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sdg2 (Supplementary Figure 4). These proteins may targets to dif-
ferent loci. In addition, the present data showing that the mostly
down-regulated genes encode transcription factors involved in
stress responses raise the hypothesis that JMJ15 might be a higher
hierarchical regulator primarily to regulate stress-responsive gene
transcription programs in Arabidopsis. Since JMJ15 is closely
related to JMJ14, JMJ16, and JMJ18 (Lu et al., 2008; Sun and
Zhou, 2008), the ectopically expressed JMJ15 may also regulate
the targets of the other related demethylases.

The observations that the jmj15 gain-of-function mutants
showed enhanced salt tolerance at seedling stage and that the loss-
of-function mutant was more sensitive to salt stress than wild
type, suggest that JMJ15 is required for salt tolerance. The data
showing that the gain-of-function mutants displayed reduced
growth and increased stem lignification, which are suggested to
be associated with stress responses (Moura et al., 2010; Golldack
et al., 2013), support the hypothesis that increased JMJ15 levels
may regulate the gene expression program that integrates plant
growth to stress tolerance. Among the mostly repressed genes in
jmj15 gain-of-function mutants was STZ/Zat10 that encodes a
C2H2-zinc finger protein associated with the ERF amphiphilic
repression (EAR) domain (Supplementary Dataset 1). STZ/Zat10
has been shown to be a transcriptional suppressor of stress-
responsive genes (Sakamoto et al., 2004). Knockout and RNAi of
the gene could enhance plant tolerance to abiotic stress (Mittler
et al., 2006). As the STZ locus displays a high level of H3K4me3
(Supplementary Figure 5), it is possible that the repression of
STZ/Zat10 by JMJ15 through H3K4me2/3 demethylation is asso-
ciated with the enhanced salt tolerance phenotype of the mutants.
STZ/Zat10 may be a major player in JMJ15-mediated regulatory
network of stress tolerance. However, the observations that sev-
eral tested stress-responsive marker genes were not changed in
the over-expression plants under normal conditions but showed
a greater induction during salt stress (Figure 7B), suggest that
they might be among the target genes of the transcription repres-
sors ST/Zat10 and AtERF11 under salt stress. However, among
the repressed transcription factor genes, some are likely activators
(WRKY33). The mechanism of JMJ15-mediated salt tolerance is
complex, which may be resulted from a combination of different
functions of JMJ15 in gene regulation.

DEVELOPMENTAL FUNCTION OF JMJ15
Consistent with previous results (Yang et al., 2012a), the loss-of-
function mutation identified in this study (jmj15-3) did not pro-
duce any visible phenotype. JMJ15 was first identified as Maternal
Effect Embryo Arrest 27 (MEE27) in a genetic screen for mutants
defective in female gametophyte development (Pagnussat et al.,
2005). However, no embryonic defect was observed in jmj15 loss-
of-function mutants (Yang et al., 2012a). Either the mutation
was compensated by highly expressed homologs (e.g., JMJ18,
Hong et al., 2009) or JMJ15-dependent H3K4 demethylation is
not sufficient to lead to any morphological change. In addition,
another study has identified JMJ15 as a maternally imprinted gene
(Hsieh et al., 2011), however, our data showing the high promoter
activity of JMJ15 in anthers do not support that observation.

It is reported that JMJ14 demethylates H3K4me2/3 at the
Flowering Locus T (FT) locus and represses expression of the gene

and that jmj14 loss-of-function mutants display an early flower-
ing phenotype (Jeong et al., 2009; Lu et al., 2010). Conversely,
JMJ18 directly binds to and represses the flowering repressor
gene, Flowering Locus C (FLC), through H3K4me2/3 demethy-
lation. Consequently, loss-of-function mutations of JMJ18 result
in a weak late-flowering phenotype, while JMJ18 overexpres-
sors exhibit an early flowering phenotype (Yang et al., 2012b).
These observations support the notion that members of this
H3K4 demethylase group target to different loci and have dis-
tinct functions in plant development. However, Yang et al have
shown that, like JMJ18, JMJ15 over-expression plants showed
repressed FLC expression and produced an early flower phe-
notype (Yang et al., 2012a). But unlike jmj18 mutants (Yang
et al., 2012a), the jmj15-3 loss-of-function mutation did not alter
the flowering phenotype. Possibly, JMJ15 at elevated levels may
demethylate and repress genes that normally targeted by JMJ18
in wild type plants. However, the jmj15-1 and jmj15-2 gain-of-
mutation mutants did not show any clear flowering phenotype.
This discrepancy may be due to difference in expression levels or
tissue-specificity of JMJ15 in the over-expression plants and the
mutant alleles.
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