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Sucrose is the main form of assimilated carbon which is produced during photosynthesis
and then transported from source to sink tissues via the phloem. This disaccharide is
known to have important roles as signaling molecule and it is involved in many metabolic
processes in plants. Essential for plant growth and development, sucrose is engaged in
plant defense by activating plant immune responses against pathogens. During infection,
pathogens reallocate the plant sugars for their own needs forcing the plants to modify their
sugar content and triggering their defense responses. Among enzymes that hydrolyze
sucrose and alter carbohydrate partitioning, invertases have been reported to be affected
during plant-pathogen interactions. Recent highlights on the role of invertases in the
establishment of plant defense responses suggest a more complex regulation of sugar
signaling in plant-pathogen interaction.
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INTRODUCTION
Cash and subsistence crops are susceptible to a large num-
ber of diseases caused by plant pathogens. Among pathogenic
organisms: fungi, oomycetes, viruses and bacteria are the most
important ones. The direct consequence of pathogen attack is
the decrease of the crop yield. In addition to economic loss,
consumer health may be compromised due to risks in ingesting
toxins produced from secondary metabolites of these pathogens.
Mycotoxins are probably the most known factors produced by
fungi, which are not only poisonous but also carcinogenic for
human (Maresca, 2013).

The plant response is mediated by a sophisticated immune
system divided into two different pathways. The first is microbial-
associated molecular-patterns-triggered immunity (MTI), consti-
tuted by elicitors recognized by the plant innate immune systems
via pattern recognition receptors (PRRs) (Ausubel, 2005; Katagiri
and Tsuda, 2010). The second is the effector-triggered immunity
(ETI) stimulated on the basis of the perception of pathogen effec-
tors by plant disease resistance proteins (Dangl and Jones, 2001;
Jones and Dangl, 2006).

Pathogens modify the host metabolism which results in
an energy increase and production of carbon sources (Thines
et al., 2000) including sucrose and its cleavage products, glu-
cose and fructose (Roitsch and Gonzalez, 2004; Rolland et al.,
2006). Sucrose hydrolysis is catalyzed by invertases, and the
consequence is the shifts of the apoplastic sucrose/hexose

ratio in favor of hexoses. The aim of this paper is to
review recent evidence on the crucial roles of invertases dur-
ing plant pathogen attacks and how the invertase activity is
regulated.

FROM CARBOHYDRATE PARTITIONING TO PLANT DEFENSE
RESPONSE
SUCROSE SIGNAL MOLECULE
In higher plants, sucrose is the major transport form of carbo-
hydrates. Sucrose is produced during photosynthesis in source
tissues (leaves), and then transported via the phloem to the differ-
ent sink tissues (roots, stem, reproductive organs and vegetative
storage organs) to provide the carbon and energy needed for
growth and synthesis of storage reserves.

The role of sucrose as signaling molecule is well established
(for reviews see Koch, 2004; Rolland et al., 2006; Wind et al., 2010;
Tognetti et al., 2013). It affects plant development processes such
as plant growth, regulation of flowering, differentiation of vas-
cular tissue and development of storage organs (for review see
Tognetti et al., 2013). Sucrose cleavage products, glucose and fruc-
tose, also act as signaling molecules. Of the two hexoses, glucose
has been better described in relation with the hexokinase signaling
pathway (Moore et al., 2003; Cho et al., 2009) while for fructose
a specific pathway has been proposed involving the abscisic acid
(ABA)- and ethylene-signaling pathway (Cho and Yoo, 2011; Li
et al., 2011).
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Gomez-Ariza et al. (2007) observed that the pre-treatment of
rice plants with sucrose drastically reduced symptoms of fun-
gal Magnaporthe oryzae infection and they proposed sucrose as
a signal molecule in plant immunity.

PLANT INVERTASES
Invertases (EC.3.2.1.26) hydrolyze irreversibly sucrose into glu-
cose and fructose. Three groups were identified: alkaline/neutral
invertases (A/NInv) localized in the cytosol, mitochondria and/or
in plastids, and two types of acid invertases, insoluble bound to
the cell wall (cell wall invertase, CWI) and soluble found in the
vacuole space (vacuolar invertase, VI), respectively.

ACID INVERTASES AND PROTEINACEOUS INHIBITORS
Acid invertases, CWIs and VIs, belong to the GH32 family.
CWIs play a key role in sucrose partitioning, plant develop-
ment and cell differentiation while VIs are involved in cell
expansion, sugar storage and regulation of cold induced sweeten-
ing (Roitsch and Gonzalez, 2004). Both are post-translationally
regulated by proteinaceous inhibitors (INHs) which belong,
with pectin methylesterase inhibitors (PMEIs), to the pectin
methylesterase inhibitor related protein (PMEI-RP) family (Pfam
04043) (Hothorn et al., 2004).

During plant infection, the level of VI modulation is poorly
understood with contradictory reports in the literature that leads
to an unclear functional assignment (Table 1). On the one hand,
a reduction of VI expression has been observed during the infec-
tion of Vicia faba by Uromyces fabae and Vitis vinifera by Erysiphe
necator and Plasmopora viticola (Voegele et al., 2006; Hayes et al.,
2010). This down-regulation was attributed to a decrease in
the availability of sucrose in the storage compartment (Voegele
et al., 2006; Hayes et al., 2010). By contrast, a high VI activity
was observed during the first stage of infection of castor beans
by Agrobacterium tumefaciens that might suggest a supportive
function during invasion (Wachter et al., 2003). Moreover, the
expression of a VI (TIV-1) is not affected in tomato infected
by Botrytis cinerea (Hyun et al., 2011). Finally, when Essmann
et al. compared wild type tobacco plants and transgenic plants
silenced for CWI after infection by Phytophthora nicotianae, they
noticed no significant changes in the VI activity (Essmann et al.,
2008a,b) suggesting that the VI is not involved in the plant defense
response. These results reinforce the doubts concerning the exact
role of VIs in plant immunity.

By contrast, the link between plant response against pathogen
and CWI activity has been widely studied (Table 1). A com-
mon trend is observed for the rapid increase of the CWI mRNA
level after infection by bacterial, fungal, viruses, oomycetes and
nematodes (for detailed references see Table 1). Indeed, the
up-regulation of CWI activity is essential to modulate sugar
partitioning and provide the sugars which are necessary for
the pathogen development. A clear example has been demon-
strated for gall development in A. thaliana (Siemens et al., 2011).
Moreover, it was shown that during infection CWI activity also
triggers plant defense responses such as induction of defense-
related gene expression, callose deposition and reduction of pho-
tosynthesis or cell death. CWI silencing disrupts the ability of
transgenic plants to answer correctly to the pathogen attacks and

impairs the defense induced reaction (Essmann et al., 2008a).
In rice, the loss-of-function mutant of the CWI gene GRAIN
INCOMPLETE FILLING 1 (GIF1) has been demonstrated to
be hypersusceptible to postharvest pathogens while the consti-
tutive expression of GIF1 enhances the resistance to pathogens
by activating the plant defense response (Sun et al., 2013). In
the particular case of symbiosis (such as arbuscular mycorrhiza),
the expression of CWI is finely controlled by the partner to
prevent the induction of pathogenesis-related (PR) genes and
promote “long-term” interaction (Schaarschmidt et al., 2006,
2007).

Invertase activity is potentially modulated by proteinaceous
inhibitors (INHs) in a pH-dependent manner (Tauzin et al.,
2014). Greiner et al. (1998) demonstrated that tobacco INH
didn’t affect invertases purified from two fungi, Candida utilis and
Saccharomyces cerevisiae, supporting the idea that INHs are not
involved in plant defense mechanisms. However, a strong repres-
sion of the expression of one of the three INHs from A. thaliana
after infection by Pseudomonas syringae pv. tomato DC3000 was
documented (Bonfig et al., 2010). The invertase activity was
detectable only in infected plants while the enzyme was present
in infected and uninfected crude extract cells, indicating that the
enzyme activity was repressed by a specific inhibitor. This result
was corroborated by the utilization of the pseudo tetrasaccharide
acarbose which inhibits invertase activity in planta resulting in an
increased susceptibility of the infected plant compared to the wild
type (Bonfig et al., 2010).

ALKALINE/NEUTRAL INVERTASES
A/NInvs are non-glycosylated proteins and they belong to the
GH100 family (Lammens et al., 2009). They have different subcel-
lular localizations such as cytosol, mitochondria, chloroplast and
nuclei (Vargas and Salerno, 2010). A/NInvs are involved in plant
growth and development, flowering and seed germination (Jia
et al., 2008; Barratt et al., 2009; Welham et al., 2009). Xiang et al.
(2011) demonstrated that A/NInvs are part of the antioxidant
system involved in cellular reactive oxygen species homeostasis.
Moreover, exogenous application of gibberellic acid (GA) rescued
the delay of germination in the seeds of the A/NInv mutants sug-
gesting a communication between A/NInv and phytohormones
(Xiang et al., 2011; Martin et al., 2013).

Correlated with the increase of the CWI activity, an increase of
the A/NInv activity has been observed in Pisum sativum, tobacco
and A. thaliana during infection by powdery mildew (Storr and
Hall, 1992), oomycetes (Essmann et al., 2008a), and the beet
curly top virus (Park et al., 2013), respectively. Interestingly, in
transgenic tobacco plants silenced for CWI, the A/NInv activity
remained unchanged during the interaction with the oomycetic
phytopathogen (Essmann et al., 2008a). The authors suggested
that the CWI activity increased first and by consequence the avail-
ability of carbohydrate changes and triggers the A/NInvs activity
as a secondary phenomenon in the plant immunity (Essmann
et al., 2008a). By contrast, the infections of A. thaliana by two dif-
ferent nematodes Heterodera schachtii and Meloidogyne javanica
led to the down-regulation of A/NInv gene (AtCINV1) reflected
by a decrease of activity (Cabello et al., 2013). Thus, the impor-
tance of A/NInv might vary depending on the pathosystem.
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Table 1 | Summary of plant pathogen interaction studies referring to invertase modulations.

Microorganism Plant Effects on invertase Additional features References

BACTERIA

Erwinia carotovora Carrot CWI (+) Induction of PAL Sturm and Chrispeels,
1990

Agrobacterium
tumefaciens

Ricinus communis CWI (+) VI (+) Change in sugar content, ABA synthesis Wachter et al., 2003

Xanthomonas
campestris pv
vesicatoria

Tomato CWI (+) Change in sugar content, induction of
senescence-associated and PR genes

Kocal et al., 2008

Xanthomonas
campestris pv
vesicatoria

Pepper CWI (+) Induction of defense response PR-Q Sonnewald et al., 2012

Bois noir Grapevine CWI (+) Callose deposition, modulation of SUC genes Santi et al., 2013a,b
Xanthomonas oryzae
pv. oryzae

Rice CWI (+) Change in sugar content, callose deposition,
induction of PR genes, ROS accumulation

Sun et al., 2013

FUNGI

Biotrophic

Erysiphe pisi Pisum sativum CWI/VI (+) A/NInv (+) Decrease of starch content Storr and Hall, 1992
Puccinia hordei Barley CWI/VI (+) ND Tetlow and Farrar, 1992
Blumeria graminis Barley CWI (+) VI (+) Change in sugar content, down-regulation of

photosynthesis, callose deposition, induction of
defense response PR-1

Scholes et al., 1994; Wright
et al., 1995; Swarbrick
et al., 2006

Blumeria graminis Wheat CWI (+) VI (+) ND Greenshields et al., 2004
Blumeria graminis Wheat CWI (+) VI (+) A/NInv (+) Change in sugar content Sutton et al., 2007
Albugo candida A. thaliana CWI (+) VI (/) Change in sugar content, decrease of starch

content, down-regulation of photosynthesis,
decrease chloropyll content, induction of
defense proteins

Chou et al., 2000

Erysiphe
cichoracearum

A. thaliana CWI (+) Induction of HXT genes Fotopoulos et al., 2003

Uromyces fabae Vicia faba CWI (+) VI (−) ND Voegele et al., 2006
Erysiphe necator Vitis vinifera CWI (+) VI (−) Induction of HXT and ABA

biosynthesis-associated genes
Hayes et al., 2010

Hemibiotrophic

Magnaporthe grisea Rice CWI (+) Change in sugar content, callose deposition,
induction of PR genes, ROS accumulation

Cho et al., 2005; Sun et al.,
2013

Necrotrophic

Fusarium oxysporum Tomato CWI (+) ND Benhamou et al., 1991
Botrytis cinerea Tomato CWI (+) VI (/) ND Hyun et al., 2011
Symbiotic

Glomus intraradices Tomato CWI (+) ND Schaarschmidt et al., 2006
Glomus intraradices Tobacco CWI (+) Change in sugar content, exchange of nutrients,

decrease chloropyll content, induction of PR
genes

Schaarschmidt et al., 2007

OOMYCETES

Phytophthora
nicotianae

Tobacco CWI (+) VI (/) A/NInv (+) Down-regulation of photosynthesis, callose
deposition, induction of PR and PAL genes

Scharte et al., 2005;
Essmann et al., 2008a,b

Plasmopara viticola Vitis vinifera CWI (+) Induction of HXT and ABA
biosynthesis-associated genes

Hayes et al., 2010

RHIZARIA

Plasmodiophora
brassicae

A. thaliana CWI (+) VI (+) ND Siemens et al., 2011

NEMATODE

Heterodera schachtii A. thaliana CWI (−) VI (−) A/NInv (−) Change in sugar content Cabello et al., 2013
Meloidogyne javanica A. thaliana CWI (−) VI (−) A/NInv

(+/−)
Change in sugar content

VIRUS

Potato virus Y Tobacco CWI (+) VI (/) Down-regulation of photosynthesis, induction of
PR genes, callose deposition

Herbers et al., 2000

Beet severe curly top
virus

A. thaliana CWI (+) Callus-like structures, induction cell cycle-related
genes

Park et al., 2013

Abbreviations: (+), up-regulation; (−), down-regulation; (/), no change; ABA, abscisic acid; HXT, hexose transporter; PR, pathogenesis-related; ROS, reactive oxygen

species; SUC, sucrose transporter; ND, not described.
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DEFENSE-INDUCED FEATURES AFFECTED BY SUCROSE AND
INVERTASES
CLOCK, PHOTOSYNTHESIS, AND SUGAR CONTENT
The connections between the clock, the sugars and the immunity
have been previously presented (Roden and Ingle, 2009; Bolouri
Moghaddam and Van Den Ende, 2013) and here we discuss the
latest updates on this interconnectivity. Exogenous sucrose is able
to stimulate the circadian clock by inhibiting photosynthesis and
to coordinate answers during the light-dark cycles (Knight et al.,
2008; Dalchau et al., 2011; Haydon et al., 2013). A new metabolic
feedback loop involving the morning-expressed pseudo response
regulator 7 (prr7) gene was proposed by Haydon et al. (2013). At
dawn, the light activates PRR7 and photosynthesis, then the pho-
tosynthetically produced derived sugars accumulate and repress
the PRR7 promoter which causes the de-repression of the molec-
ular oscillator component circadian clock associated 1 (CCA1)
(Haydon et al., 2013). The clock-related genes (cca1 and lhy)
affect stomatal aperture after pathogen infection and suggest a
crucial role of circadian clock in plant defense response (Wang
et al., 2011; Zhang et al., 2013). Diurnal rhythm has been shown
to regulate a CWI (LIN6) from tomato and that both CCA1
and LHY activate the Lin6 promoter (Proels and Roitsch, 2009).
During pathogen attack, the increase of CWI activity leading to
an accumulation of hexoses is associated with a down-regulation
of photosynthesis and expression of genes-related to photosyn-
thesis (Table 1). It is noteworthy that transgenic infected plants
silenced for CWI showed a delay in the reduction of photosyn-
thesis (Kocal et al., 2008). Thus, the cross-talk between clock,
sucrose and invertases tends to illustrate that a fine regulation of
the sucrose/hexose ratio is crucial in defense regulation (Haydon
et al., 2013).

During the day, both sucrose and starch are produced dur-
ing photosynthesis. During the night, the starch, accumulated
in the chloroplasts, is subsequently degraded to provide sub-
strates for sucrose synthesis. Starch synthesis can be regulated by
sucrose and clock by modulating the expression of starch syn-
thase (Wang et al., 2001). After pathogen infection, a decrease
in the starch content is observed in the infected region suggest-
ing that the degradation of starch provides more substrates to
sucrose synthesis. Interestingly, Engelsdorf et al. tested the sus-
ceptibility of starch-free A. thaliana mutants against biotrophic,
hemibiotrophic and necrotrophic pathogens and pointed out that
depending on the studied pathosystem the diurnal carbon avail-
ability is a susceptibility factor (Engelsdorf et al., 2013). Their
results imply that sugar availability might impact the ability of
plants to trigger defense responses.

One of the other possibilities for changing the sugar content
is the regulation of the expression of the sucrose transporter.
Sucrose acts on carbohydrate partitioning and phloem loading by
modulating the sucrose transporter expression, such as inducing
the expression of SUT2 in tomatoes or repressing the expres-
sion of BvSUT1 in beet (Barker et al., 2000; Vaughn et al., 2002).
Depending on the stage of infection, the expression of sucrose
transporters can be altered and as a consequence the sucrose par-
titioning can be modified. In rice infected by Xanthomonas oryzae
pv. Oryzae, SWEET proteins are upregulated and sucrose accu-
mulates in apoplast ready to be used for the pathogen growth

(Chen et al., 2010, 2012). Santi et al. reported a sequential regu-
lation of sucrose transporter genes which are first downregulated
during infection of grapevine by stolbur to limit the spread and
then upregulated during the recovery stage providing necessary
nutrients (Santi et al., 2013a,b). It is noteworthy that during
fungal infection the expression of CWI and hexose transporters
displayed a correlation enhancing the hexoses supply from the
phloem to the surrounding tissues during the transition from
source to sink (Fotopoulos et al., 2003; Hayes et al., 2010).
Moreover, Hayes et al. reported a relationship between CWI, hex-
ose transporters and ABA biosynthesis during the transition from
source to sink after infection (Hayes et al., 2010).

PHYTOHORMONES
For different phytohormones such as ABA, gibberellins, ethylene
and jasmonate, it was shown that they interact with the sucrose
signaling pathway (Finkelstein et al., 2002; Leon and Sheen, 2003;
Gibson, 2004; Heil et al., 2012). Their implication in plant defense
response and the relationship with sugars have been widely dis-
cussed in various reviews (Bolouri Moghaddam and Van Den
Ende, 2012, 2013).

PATHOGENESIS RELATED PROTEINS
PR proteins are synthesized in response to plant pathogen attack.
Their classification and their properties have been well described
(for reviews see Kitajima and Sato, 1999; Van Loon et al., 2006;
Sels et al., 2008). As reported in several studies, the up-regulation
of CWI due to the infection goes along with the induction of
PR genes (Table 1) such as PR-1a, PR-1b, PR3, PR10, WRKY45,
and NPR1 in rice (Sun et al., 2013), PR-1b and PR-Q in tobacco
(Herbers et al., 1996; Schaarschmidt et al., 2007; Essmann et al.,
2008b) and PR-Q, Pin-II and GluB in tomato (Kocal et al.,
2008). During transgenic approaches the overexpression of CWI
in tobacco or in rice presented constitutively high levels of PR
transcripts compared to the wild type plants (Herbers et al., 1996;
Sun et al., 2013). To support this idea, in different cases of infected
transgenic plants silenced for CWI, the induction of PR genes
was abolished (Schaarschmidt et al., 2007; Essmann et al., 2008b;
Kocal et al., 2008). Thus CWI activity is required to enhance
the expression of PR genes mediated by the accumulated hexoses
which act as signal molecules. Besides, exogenous sucrose induced
the expression of PR genes (Thibaud et al., 2004; Gomez-Ariza
et al., 2007) confirming the idea of sucrose as an important signal
molecule for plant defense response.

PHENYLPROPANOID PATHWAY
The phenylalanine ammonia-lyase (PAL), a key enzyme which is
involved in the phenylpropanoid pathway, leads to the biosyn-
thesis of lignin and the production of many other important
compounds such as the flavonoids, coumarins and lignans (for
review see Dixon and Paiva, 1995). During infection of lupine
by Fusarium oxysporum, sucrose induced the phenylpropanoid
metabolism by stimulating the activity of PAL (Morkunas et al.,
2005, 2011). Sturm and Chrispeels showed an accumulation of
PAL mRNA subsequently to the increase of CWI mRNA in car-
rot infected by Erwinia carotovora (Sturm and Chrispeels, 1990).
Moreover when tobacco plants are silenced for CWI, the PAL
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activity is delayed after infection compared with the wild type
plants (Essmann et al., 2008b). Hence, the regulation of PAL is
mediated by the variation of the sucrose/hexose ratio. All in all,
these results demonstrate that the regulation of the expression of
PAL is sugar-related.

Anthocyanin (a flavonoid) has an antimicrobial potential
reducing the spread of the pathogens. The synthesis of antho-
cyanin is regulated by sucrose signaling pathway (Solfanelli et al.,
2006) through the induction of the PAP1/MYB75 transcription
factor (Teng et al., 2005) and ABA and jasmonate pathways have
a synergic effect (Loreti et al., 2008). This induction is repressed
by gibberellins. At concentrations of sucrose higher than 2% the
anthocyanin synthesis is induced independently of the ABA sig-
naling pathway (Dai et al., 2014). Recently, a key positive regulator
in the sucrose signaling pathway controlling the anthocyanin syn-
thesis has been identified as the DELLA protein which targets
PAP1/MYB75 (Li et al., 2014).

In potato tubers, a transcription factor (AN1) was proposed
to up-regulate the phenylpropanoid pathway. The authors sug-
gested that PAL might be induced by AN1 after sucrose feeding.
Moreover they proposed a loop in which sucrose increases AN1
expression while AN1 induces sucrolytic enzymes which release
hexoses used by the phenylpropanoid pathway (Payyavula et al.,
2013). By the synthesis of secondary metabolites such as pheno-
lic compounds or later on lignin, plants produce chemical and
physical barriers against pathogens.

CELL WALL REINFORCEMENT
As another physical barrier, there is the deposition of callose, a
β-(1,3)-glucan cell wall polymer, which is a stress related process
limiting invasion by regulating the plasmodesmata and the sieve
plates permeability (Chen and Kim, 2009; Luna et al., 2011). In
tobacco plants overexpressing a yeast invertase in the apoplast or
in the vacuole, the increase of callose deposition was comparable
to that observed in wild type plants infected with potato virus Y
(Herbers et al., 1996). These results were consistent with a posi-
tive regulation of callose deposition by GIF1 in rice after infection
by both, bacterial and fungal pathogens (Sun et al., 2013), leading
to a regulation mediated by CWI activity. Increasing concentra-
tions of the exogenous sucrose repressed the callose deposition
in A. thaliana cells (Luna et al., 2011) suggesting that hexose
cleavage products of sucrose are responsible for the formation of
the physical barrier against invading pathogens through cell wall
reinforcement.

CONCLUSION AND PERSPECTIVES
Due to a high demand in carbohydrates during infection, plants
evolved strategies to modulate their carbohydrate availability and
trigger to defense responses. In most of the studied pathosystems,
sucrose seems to act as a “priming” agent activating a cascade
of signaling pathways such as the modulation of circadian clock
genes, phytohormones, cell wall strength and cellular signaling
pathways.

A rapid induction of CWIs after infection increases the hexose
content and modulates sink strength. It has been demonstrated
that CWIs are essential for triggering an appropriate answer dur-
ing pathogen invasion. The accumulation of hexoses leads to an

induction of the PR genes, a down-regulation of the photosynthe-
sis, and an establishment of the chemical and physical barriers.
A/NInvs, which are induced afterwards, might be involved in
providing more energy during infection. The exact function of
the VIs remains unclear but they might release stored carbohy-
drates and allow reserves mobilization. Moreover, the specificity
of plant response depending on the studied pathosystem might be
interesting points to investigate.

A better understanding of the “sweet immunity” and the
complex network between sucrose, circadian clock and phyto-
hormones might be useful to avoid substantial losses in yield
and quality of crops every year. Recently, these biotic elicitors
were proposed as interesting elements to generate ready-to-
eat cruciferous vegetables and maximize their health-promoting
compounds (Baenas et al., 2014).
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