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Both direct and long-range interactions between pathogenic Pseudomonas aeruginosa
bacteria and their eukaryotic hosts are important in the outcome of infections. For cell-
to-cell communication, these bacteria employ the quorum sensing (QS) system to pass on
information of the density of the bacterial population and collectively switch on virulence
factor production, biofilm formation, and resistance development.Thus, QS allows bacteria
to behave as a community to perform tasks which would be impossible for individual
cells, e.g., to overcome defense and immune systems and establish infections in higher
organisms. This review highlights these aspects of QS and our own recent research on
how P. aeruginosa communicates with human cells using the small QS signal molecules
N -acyl homoserine lactones (AHL). We focus on how this conversation changes the
behavior and function of neutrophils, macrophages, and epithelial cells and on how the
signaling machinery in human cells responsible for the recognition of AHL. Understanding
the bacteria–host relationships at both cellular and molecular levels is essential for the
identification of new targets and for the development of novel strategies to fight bacterial
infections in the future.
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INTRODUCTION
Pseudomonas aeruginosa is an environmentally highly adapt-
able Gram-negative bacterium that infects different host species,
including higher plants, invertebrates, and vertebrates. In humans,
it elicits acute and chronic infections, typically in critically ill
patients having compromised epithelial barriers and immune
system or the genetic disorder cystic fibrosis. The outcome of infec-
tions and establishment of disease depends on both host defence
and bacterial capacities. The latter include its autonomic efficiency
to grow, divide, and adapt to the environment, and the ability to
sense, and communicate with their neighbors in the population
to accomplish cooperative activities, e.g., biofilm formation and
production of virulence factors. To do this, P. aeruginosa uses
a mechanisms of cell-to-cell communication called quorum sens-
ing (QS). It allows the bacteria to recognize the population density
by sensing and measuring the accumulation of specific small sig-
nal molecules that members of the community secrete. When the
population density is high, the amount of accumulated signals
in the environment is accordingly sufficient to activate signaling
pathways that alter bacterial gene expression and activate coopera-
tive responses (Rutherford and Bassler, 2012; Schuster et al., 2013;
Fazli et al., 2014).

P. aeruginosa QS CONTROL OF VIRULENCE AND BIOFILM
FORMATION
Being equipped with a relatively large genome, P. aeruginosa
harbors three distinct but subordinated QS systems: two of
LuxI/LuxR-type and a third called the Pseudomonas quinolone
signal (PQS) system. The two LuxI/LuxR-type systems are

N-acylhomoserine lactone (AHL) dependent. In the first, the LuxI
homolog LasI produces a freely diffusible N-3-oxo-dodecanoyl-L-
homoserine lactone (3O-C12-HSL) that is detected by the LuxR
homolog cytoplasmic receptor LasR (More et al., 1996; Parsek
et al., 1999). In the second, the LuxI homolog RhlI synthesizes
another AHL, N-butyryl-L-homoserine lactone (C4-HSL) that
binds to the cytoplasmic receptor RhlR (Ochsner et al., 1994;
Pearson et al., 1995); LasR and RhlR are cognate transcriptional
regulators. Together, the AHL–LuxR complexes of both circuits
control the activation of more than 300 genes in the P. aeruginosa
genome. Many of these genes code for production of extracellular
products that may be considered as virulence factors, because they
can damage host tissues and promote infection, and inflammation.
These virulence factors include exotoxin A, elastase, proteases,
pyocyanin, lectins, and toxins (Gambello and Iglewski, 1991;
Toder et al., 1991; Gambello et al., 1993; Schuster et al., 2003).
P. aeruginosa uses the third PQS system to control cooperative
responses and gene expression of rhamnolipid, a critical biosur-
factant in the late stage of biofilm formation (Ochsner et al., 1994;
de Kievit, 2009). The signal molecules of this system are bicyclic
compounds, 2-alkyl-4(1H)-quinolones (PQS), produced by Pqs-
ABCDH and recognized by the receptor PqsR (Deziel et al., 2004;
Diggle et al., 2007). Several of PQS can act not only as a QS sig-
nals, but also possess antimicrobial, anticancer, or antiallergenic
activities. Together with periplasmic components, outer mem-
brane proteins, phospholipids, toxins, lipopolysaccharide (LPS),
and DNA, PQS are typically packed into spherical 50–250 nm
membrane vesicles that P. aeruginosa secrete and deliver to the
environment. In this way, vesicles have a role in communication
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and competion in microbial communities and with host cells
(Heeb et al., 2011; Tashiro et al., 2013). In other cases, P. aerug-
inosa can directly convey its products to other cells using the type
VI secretion system. In addition, bacteria possesses an intracellular
orphan receptor QscR, a LuxR homolog (Lintz et al., 2011) that can
bind to 3O-C12-HSL (Oinuma and Greenberg, 2011). This natu-
ral target forms dimers with other receptors, i.e., LasR and RhlR,
making them inactive and thereby repressing LasRI- and RhlRI-
dependent genes leading to prevention of aberrant QS responses
before the bacteria reach a quorum in a community (Ledgham
et al., 2003). Furthermore, the LasR-3O-C12-HSL, RhlR-C4-HSL,
and PQS-PqsR complexes target the regulation of lasI, rhlI, pqsH,
and pqsR, which creates an autoinducing feed-forward loop and
establishes the tightness and subordination between all three QS
systems (Seed et al., 1995; Latifi et al., 1996; Deziel et al., 2004;
Xiao et al., 2006; Diggle et al., 2007). Thus, with optimal precision
P. aeruginosa QS system directly or indirectly controls the expres-
sion of more than 10% of genes for multiple virulence factors,
secondary metabolites, swarming motility, and biofilm develop-
ment (Schuster and Greenberg, 2006; Wagner and Iglewski, 2008;
Williams and Camara, 2009).

QS-DRIVEN INTER-KINGDOM SIGNALING
Prokaryotes and eukaryotes have coexisted for many years, during
which time they have been exposed to the signals produced and
released by the other. The organisms of two kingdoms have also
learnt to sense their various molecules including QS signals to
influence gene expression and behavior in a process called inter-
kingdom signaling (Pacheco and Sperandio, 2009; Gonzalez and
Venturi, 2013).

The QS signal molecule AHL affects mammalian host cells
and its signaling pathways; this was shown using both in
vivo and in vitro models for immune cells, fibroblasts, and
epithelial cells. For the biological activity of AHL, a long acyl
chain with more than 10 C-atoms, an intact homoserine lac-
tone ring, and oxo- or hydroxyl substitutions are important.
AHL triggers and acts through multiple signaling pathways,
e.g., calcium mobilization, activation of Rho GTPases, MAPK,
and NFκB that control diverse functions and behaviors in
host cells, like cytoskeleton remodeling, chemotaxis, migra-
tion, phagocytosis, epithelial barrier function, differentiation,
proliferation, apoptosis, and production of immune mediators.
This topic has been thoroughly investigated by many research
groups during the last decade and extensively reviewed recently
(Williams and Camara, 2009; Jarosz et al., 2011; Teplitski et al.,
2011).

Many organisms, including bacteria, fungi, plants, and mam-
malian can disturb and inactivate AHL by enzymes in a way called
quorum quenching (Czajkowski and Jafra, 2009; Chen et al., 2013).
Humans have also developed an ability to destroy AHL via a class
of quorum quenching enzymes called paraoxonases (Amara et al.,
2011).

Here, we will further focus on mostly our research on
how bacterial QS conversation changes the behavior and
function of human neutrophils, macrophages, and epithe-
lial cells, and the signaling responsible for the recognition
of AHL.

EPITHELIAL BARRIER INTEGRITY AND 3O-C12-HSL
Epithelial cells are positioned strategically to provide both phys-
ical and immune barriers to pathogens and other environmental
agents. The physical barrier is created by epithelial cell-to-cell
junctions that prevent for instance invasion of pathogens and
food constituents. The junctions are multiprotein associations of
transmembrane proteins connected to cytoplasmic plaque pro-
teins and the actin cytoskeleton (Van Itallie and Anderson, 2004;
Balda and Matter, 2008; Furuse, 2010; Ivanov et al., 2010; Capaldo
et al., 2014). In a model of polarized epithelial cells, 3O-C12-
HSL alters their barrier integrity (Figure 1), as evidenced by
decreased transepithelial electrical resistance and increased para-
cellular flux of different-sized dextrans (Vikstrom et al., 2006).
The cell junction complexes occludin–ZO-1, JAM–ZO-1 and
E-cadherin–β-catenin were disrupted and the expression and dis-
tribution of proteins were affected (Vikstrom et al., 2006, 2009,
2010). Some junctional cytoplasmic proteins play a scaffold-
ing role in linking the actin cytoskeleton and helping to recruit
an array of signaling pathways, for example the MAPK cascade
molecules, protein kinases, and protein phosphatases (Balda and
Matter, 2009; Rodgers and Fanning, 2011). Both p38 and p42/44
MAPK are involved in the 3O-C12-HSL-induced leaky barrier
(Vikstrom et al., 2006). Moreover, the disrupted cell junction
associations and enhanced paracellular permeability are paral-
leled by alterations in the phosphorylation status of TJ and AJ
proteins (Figure 1; Vikstrom et al., 2009, 2010). Ca2+ is another
important component in the regulating of immune and phys-
ical barriers of the epithelium. Mucosal epithelial cells are as
other cells, equipped with Ca2+-dependent signaling which allows
them to initiate immune response to bacteria and their prod-
ucts. The participation of Ca2+ as a second messenger is thus
vital to many physiological processes of the epithelia includ-
ing response to bacteria (Vandenbroucke et al., 2008; Varani,
2011). 3O-C12-HSL can mobilize intracellular calcium through
influx from surrounding and release from thapsigargin-sensitive
stores via inositol 1,4,5-triphosphate receptors, IP3R (Figure 1;
Vikstrom et al., 2010). These receptors are based in the endo-
plasmatic reticulum (ER) and regulated by their messengers IP3

(Ivanova et al., 2014). Together with ER, the actin cytoskeleton is
also critically involved in Ca2+ storage and release as well as in
the regulation of store-coupled Ca2+ entry (Lange and Gartzke,
2006).

3O-C12-HSL-MEDIATED EPITHELIAL MIGRATION AND
WOUND HEALING
Establishing and contributing to both physical and immune bar-
riers, the epithelial cells also have to be constantly renewed
and prepared to move. After injury, caused by for example
oxidative stress, inflammation and infection, the epithelium
undergo a wound-healing process. This is dependent on the
balance of migration, proliferation, and differentiation of the
cells within the wound area (Sturm and Dignass, 2008). Resti-
tution of the epithelium requires extensive reorganization of
the cytoskeleton and cellular junctions, regulated by the Rho
family of small GTPases, like Rho, Rac, and Cdc42 (Kjoller
and Hall, 1999; Evers et al., 2000). 3O-C12-HSL modulates
epithelial cell migration in a dose- and time-dependent manner
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FIGURE 1 | Human intestinal epithelial cells listen to and act on

Pseudomonas aeruginosa 3O-C12-HSL signaling. IQGAP1 is a novel
membrane-associated target for 3O-C12-HSL that helps human
epithelial cell recognize and response to bacterial QS signaling.
Further, 3O-C12-HSL triggers multiple signaling pathways, those include

calcium mobilization, activation of Rho GTPases Rac1/Cdc42, MAPK,
protein kinases, and protein phosphotases. These can control diverse
functions and behaviors in epithelial cells, like cytoskeleton
remodeling, migration, wound healing, barrier integrity, and paracellular
permeability.

(Karlsson et al., 2012b) inducing remodeling of cytoskeletal actin
(Vikstrom et al., 2006). The upstream effectors of this, and thereby
regulators of cell shape and motility are the previously men-
tioned Rho family GTPases Rac1 and Cdc42. The Rho GTPases
cycle between an active and inactive status by binding GTP
and by hydrolysis of GTP to GDP, acting as molecular “on-
off” switch (Wennerberg and Der, 2004). The signaling can
also be modulated by their phosphorylation state via AKT1
kinase (Kwon et al., 2000). Together with the effect of 3O-C12-
HSL on cell migration, low doses of 3O-C12-HSL over shorter
time spans initiated phosphorylation of Rac1/Cdc42, whereas
high concentrations rapidly decrease the level of phosphorylated
Rac/Cdc42 (Karlsson et al., 2012b). Taken together, 3O-C12-
HSL can alter barrier functions and migration in epithelial cells
(Figure 1).

The immune barrier of epithelial cells is potentiated through
detection of antigens and rapid signaling to recruit phagocytes
to the site of infection and tissue damage. They paracellulary
transmigrate across the epithelium, and cell junction protein
JAM mediate this process as it is also receptor for leukocyte
integrins (Zen and Parkos, 2003). Phagocytes, like neutrophils

and macrophages, are key players in the innate immune defenses,
providing protection from invading bacteria and tissue damage.
Bacterial QS conversation may change their behavior and function
and the signaling responsible for the sensing of AHL.

AHL AS A STRONG CHEMOATTRACTANT FOR NEUTROPHILS
Neutrophils are small and rapidly moving phagocytes with a
short life span in circulation, always appearing at the early onset
of infection. They sense the bacteria very well, which gives
them a head start in controlling inflammation, infection, and
biofilm formation. Following activation by bacterial products or
immune stimuli, they execute specialized functions of chemotaxis,
phagocytosis, and generation of reactive oxygen species (ROS). 3-
oxo-C12-HSL and 3-oxo-C10-HSL, but not C4-HSL, can act as
a strong chemoattractants for human neutrophils and induce
their migration to the site of AHL in a dose-dependent man-
ner (Zimmermann et al., 2006; Karlsson et al., 2012a). This put
long chain AHL in a position among potent bona fide chemoat-
tractants, such as chemokines, cytokines (IL-8 and GM-CSF),
leukotriene B4, platelet activating factor, products from bacte-
ria (formylated peptides and LPS), signals from dying cells (such
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as TNF-α), although higher molar concentrations of AHL were
required (Figure 2A). Chemotaxis and migration towards AHL
are paralleled by cytoskeletal F-actin accumulation in the lead-
ing edge of neutrophils, by increased F-actin-to-G-actin ratio
and via activation of Rho GTPases Rac1 and Cdc42 (Karlsson
et al., 2012a). Rac1 regulates the formation of lamellipodia pro-
trusions and membrane ruffles, and Cdc42 triggers filopodial
extensions (Kjoller and Hall, 1999; Evers et al., 2000). Two long
acyl chain AHL with 10 and 12 C-atoms activated phospholi-
pase Cγ1 and mobilized intracellular calcium via the IP3R at

FIGURE 2 | Pseudomonas aeruginosa AHL changes the behavior and

function of human innate immune cells and the signaling machinery

responsible for the recognition of AHL. (A) Long chain AHLs are strong
chemoattractants for neutrophils. Chemotaxis and migration towards these
AHLs are paralleled by cytoskeletal F-actin accumulation in the leading edge
and increased F-actin-to-G-actin ratio via activation of small GTPases
Rac1/Cdc42, phosphorylation of PLCγ1 and mobilization of calcium via
IP3R at ER. (B) 3O-C12-HSL and macrophage activity. 3O-C12-HSL
increases phagocytic capacity of macrophages via the p38, but not p42/44
MAPK, having no influence on their oxidative metabolism, or production of
cytokines. (C) 3O-C12-HSL-mediated water homeostasis in macrophages.
(D) Macrophage phagocytosis of P. aeruginosa wild type and lasI-/rhlI-
mutant lacking production of QS molecules 3O-C12-HSL and C4-HSL.

endoplasmic reticulum, whereas an AHL with a short acyl chain
failed to do this (Karlsson et al., 2012a; Figure 2A). Thus, recog-
nition of AHL QS signals by neutrophils may play a critical role
in their recruitment during infections and early stage of biofilm
formation.

AHL AND MACROPHAGE ACTIVITY
Other important players in the innate immune system are
macrophages, cells differentiated from monocytes in tissues
and stimulated by neutrophils to come to the site of infection
after them. Macrophages harbor the characteristics of innate
immune cells and traits that initiate mechanisms of adaptive
immunity. In response to microbial antigens, they can display
strong phagocytic activity, generation of “killer” anti-microbial
ROS, NO, “tissue repair” ornithine, pro-inflammatory cytokines
stimulating other immune cells to respond to pathogens. In a
macrophage phagocytosis model with Saccharomyces cerevisiae
as preys, 3O-C12-HSL increased phagocytic capacity via the
p38, but not the p42/44 MAPK signaling pathway (Figure 2B).
It had no influence on macrophages oxidative metabolism,
the level of ROS or production of cytokines (Vikstrom et al.,
2005). In P. aeruginosa, two functional QS genes, lasI, and rhlI,
which are responsible for synthesis of signal molecules 3O-C12-
HSL and C4-HSL strongly contribute to effective macrophage
phagocytosis of this pathogen. AQP9 controls cell migration
by accumulation in membrane protrusions and domains pre-
ceding their expansions (Karlsson et al., 2011, 2013a,b). This
trigger actin cytoskeleton to be remodeled and further regulate
macrophage shape, migration, and phagocytosis of microor-
ganisms (Figure 2D). 3O-C12-HSL caused a rapid and pro-
longed cell-volume increase controlled by AQP9 in human
macrophages (Figure 2C), which can be a danger signal and
protection mechanism (Hoffmann et al., 2009; Compan et al.,
2012). AQP9 is involved in Escherichia coli LPS-enhanced
brain water content and blood-brain barrier permeability (Wang
et al., 2009) and has been identified as a one of markers
of chronic inflammation in patients with psoriasis, rheuma-
toid arthritis, and inflammatory bowel disease (Mesko et al.,
2010).

HUMAN CELL TARGETS FOR 3O-C12-HSL
Identifying targets for AHL allows better understanding of QS
communication during host–bacteria interactions. The recog-
nition of 3O-C12-HSL by mammalian cells probably does not
rely on pattern-recognition receptors (PRRs) that usually sense
invariant microbial motifs (PAMPs, pathogen-associated molecu-
lar patterns) present on or shed from bacteria (LPS, lipoteichoic
acid, flagellin, and DNA). The canonical class of PRRs, the
membrane-bound toll-like receptors (TLRs) located on immune
cells, do not interact with 3O-C12-HSL (Kravchenko et al., 2006).
Still, as for TLR activation, AHL can trigger and act through
multiple signaling pathways, which include calcium signaling,
activation of Rho GTPases, MAPK, and transcription factor
NFκB that control expression of pro-inflammatory mediators,
cytokines, chemokines, enzymes, and interferones (Smith et al.,
2002; Shiner et al., 2006; Kravchenko et al., 2008; Mayer et al.,
2011; Karlsson et al., 2012a; Glucksam-Galnoy et al., 2013). These
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mediators are involved in the coordination of innate immune
response and recruit effector cells of the adaptive immune
system to the site of the infection to combat the invading
bacteria.

During the recognition of 3O-C12-HSL by mammalian cells,
this lipophilic molecule with a long acyl chain and an intact
homoserine lactone ring may interact directly with phospholipids
in model membrane systems and in T-cell membranes (Davis et al.,
2010). On entering host cells (Shiner et al., 2004; Ritchie et al.,
2007), 3O-C12-HSL can utilize intracellular nuclear peroxisome
proliferator-activated receptors (PPAR) to affect NF-κB signaling
(Jahoor et al., 2008; Cooley et al., 2010). The binding of 3O-C12-
HSL to nuclear PPAR does not exclude the existence of cell surface
or membrane-associated receptors, which after binding to 3O-
C12-HSL likely help phosphorylate phospholipase C and evoke an
increase in intracellular calcium (Shiner et al., 2006; Davis et al.,
2010; Karlsson et al., 2012a).

Several groups have designed probes and affinity matrixes
which could be utilized to detect the mammalian target of 3O-
C12-HSL (Dubinsky et al., 2009; Garner et al., 2011; Praneenararat
et al., 2011; Dubinsky et al., 2013). Using a biotin-based 3O-
C12-HSL probe, LC-MS/MS, and super-resolution microscopy,
the IQ-motif-containing GTPase-activating protein IQGAP1 was
identified as a putative human target for 3O-C12-HSL in epithelial
cells (Figure 1; Karlsson et al., 2012b). IQGAP1 contains mul-
tiple domains for binding other proteins and localizes in the
leading edge of migrating cells (Briggs and Sacks, 2003; Nori-
take et al., 2004; Bensenor et al., 2007). It directly interacts with
and stabilizes the Rho-family GTPases, Rac1, and Cdc42 in their
GTP-bound state (Swart-Mataraza et al., 2002; Briggs and Sacks,
2003), playing an essential role in cell shape, vesicle trafficking,
and directional migration (Bensenor et al., 2007). It likely medi-
ates these processes through its other domains, linking it to actin,
myosin, β-catenin, E-cadherin, calmodulin, and MAPK (Nori-
take et al., 2005; Brandt and Grosse, 2007), which allows it to
function as a true scaffolding protein (Figure 1). The interaction
of 3O-C12-HSL with the cell membrane, diffusion and enter-
ing into the cytoplasm, targeting of IQGAP1 and PPAR do not
exclude each other. It has, for example been shown that dif-
ferent types of lipids, such as chemoattractant leukotriene B4,
can bind to both the cell surface receptor LTB4, and nuclear
PPAR.

CONCLUDING REMARKS
During the last decade of research remarkable insight has
been gained into the mechanisms of bacterial QS communi-
cation and that P. aeruginosa 3O-C12-HSL plays at least two
distinct roles. Besides regulating bacterial social behavior and
offering density-dependent fitness advantages, expression of vir-
ulence factors, and biofilm development in bacteria, it also
plays a crucial role in the behavior of eukaryotic host cells
regulating various vital functions. Moreover, as QS circuits
often control virulence and biofilm, there is a high inter-
est in interfering with QS as a new strategy to overcome
infectious diseases and biofilm formation (Amara et al., 2011;
Heeb et al., 2011; Jakobsen et al., 2013; LaSarre and Federle,
2013).
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