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Potassium (K+) is one of the most abundant elements of soil composition but it’s very
low availability limits plant growth and productivity of ecosystems. Because this cation
participates in many biological processes, its constitutive uptake from soil solution is
crucial for the plant cell machinery. Thus, the understanding of strategies responsible of
K+ nutrition is a major issue in plant science. Mycorrhizal associations occurring between
roots and hyphae of underground fungi improve hydro-mineral nutrition of the majority
of terrestrial plants. The contribution of this mutualistic symbiosis to the enhancement
of plant K+ nutrition is not well understood and poorly studied so far. This mini-review
examines the current knowledge about the impact of both arbuscular mycorrhizal and
ectomycorrhizal symbioses on the transfer of K+ from the soil to the plants. A model
summarizing plant and fungal transport systems identified and hypothetically involved in
K+ transport is proposed. In addition, some data related to benefits for plants provided by
the improvement of K+ nutrition thanks to mycorrhizal symbioses are presented.
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INTRODUCTION
Potassium (K+) is one of the most important macronutrient for
all organisms. In plants, K+ represents 2–10% of the dry biomass,
its optimal cytoplasmic concentration for enzyme activities being
around 100–200 mM (Leigh and Wyn Jones, 1984). This cation
participates to various crucial processes such as plasma mem-
brane polarization, growth, stomatal aperture, or adaptation to
environmental changes (Broadley and White, 2005; Wang and
Wu, 2013; Anschütz et al., 2014; Shabala and Pottosin, 2014).
Maintaining an elevated K+ concentration in plant cells is vital for
the smooth running of such physiological processes (Benito et al.,
2014; Shin and Adams, 2014). Although K+ ions are extremely
abundant in soil, their availability is very low due to their strong
mineral adsorption. Depending on soil type, the K+ concen-
tration in soil solution is approximately 0.1–1 mM (Asher and
Ozanne, 1967). This low availability combined to the constitu-
tive demand of plants lead to the formation of depletion areas
around roots (Drew and Nye, 1969). Consequently, plants need
to develop efficient strategies to improve the K+ uptake from
soil (Nieves-Cordones et al., 2014; Zörb et al., 2014), such as
the acquisition of high-affinity transport systems or the establish-
ment of plant-microbe associations.

Mycorrhizal symbioses are mutualistic interactions between
the root systems of around 80% of land plants and the mycelium
of various fungi (Wang and Qiu, 2006). Among mycorrhizal asso-
ciations, two forms are mainly studied due to their ecological

importance, arbuscular mycorrhizae (AM) and ectomycorrhizae
(ECM). Mycorrhizal fungi participate actively to plant develop-
ment (Smith and Read, 2008) by improvement of access to nutri-
ents, particularly when resources become scarce. In turn, vegetal
partners provide up to 20–25% of photosynthetic carbohydrates
to their symbionts (López et al., 2008). The improvement of plant
nutrition through mycorrhizal symbioses and the molecular bases
of nutrient transfer are currently well studied for phosphorus
(Javot et al., 2007; Plassard and Dell, 2010) and nitrogen (Müller
et al., 2007; Jin et al., 2012). However, only few data concern the
possible mycorrhizal contribution to K+ acquisition (Benito and
Gonzalez-Guerrero, 2014).

Herewith, we compiled and summarized the current knowl-
edge concerning the role of AM and ECM symbioses in plant
K+ nutrition. An overview of transport systems acting putatively
in transfer of K+ from soil to fungal cells and from fungi to
plant cells is highlighted. Finally, improvement of K+ acquisition
by mycorrhizal associations will lead to benefits for the plant in
diverse environmental conditions.

EVIDENCE OF PLANT POTASSIUM NUTRITION BY
MYCORRHIZAL SYMBIOSIS
ARBUSCULAR MYCORRHIZAL SYMBIOSIS
Plant K+ nutrition through the arbuscular mycorrhizal path-
way has been rarely studied. However, assessment of potas-
sium distribution in AM fungi (Rhizophagus irregularis) using
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particle-induced X-ray emission (PIXE) experiments (Johansson
and Campbell, 1988) revealed a strong K+ accumulation in spores
(Pallon et al., 2007), hyphae (Olsson et al., 2008), and vesi-
cles (Olsson et al., 2011). Interestingly, PIXE analyses showed a
higher K+ concentration in root-sections of Aster tripolium myc-
orrhized by R. irregularis than non-inoculated plants, suggesting
a possible increase of K+ acquisition due to the AM coloniza-
tion (Scheloske et al., 2004). Such a K+ enrichment of plants
mycorrhized by various AM fungi was also observed in Zea mays
root steles (Kaldorf et al., 1999), in Pelargonium peltatum shoots
(Perner et al., 2007) and in Lactuca sativa leaves (Baslam et al.,
2013). K+ transport was commonly visualized by the utilization
of rubidium (Rb+) as an analog tracer. Measuring AM fungi
mediated Rb+ uptake from the soil, Hawkes and Casper (2002)
showed putative competition mechanisms for four herbaceous
species.

ECTOMYCORRHIZAL SYMBIOSIS
Potassium fluxes from ECM fungi to host plants were first
observed by determination of Rb+ contents (Rygiewicz and
Bledsoe, 1984; Jongbloed et al., 1991). Quantification of K+ in
Picea abies cultivated in a medium with 230 µM of K+ resulted in
around 5–6% of total K+ that came from the ECM fungus Paxillus
involutus (Jentschke et al., 2001). Regarding the cellular distribu-
tion of K+ within fungal hyphae, X-ray microanalysis showed
localization mainly in vacuoles of the ECM fungus Pisolithus
tinctorius (Orlovich and Ashford, 1993; Ashford et al., 1999).
PIXE experiments on P. sylvestris / Suillus luteus mycorrhizae
revealed a high K+ concentration in ectomycorrhizae vascular
tissues (Turnau et al., 2001). Excitingly, data obtained in mul-
tiple Rhizopogon sp. isolates from field showed an important
K+ sequestration in rhizomorphs, that could be vital for forests
subjected to long periods of K+ deprivation (Wallander et al.,
2002; Wallander and Pallon, 2005). Another fungus that can be
considered as an important K+ accumulator is Suillus granulatus
(Wallander et al., 2003). Strong mineral degradation capacities of
these two latter ECM fungi were suggested by the identification
of calcium-rich crystals originating from K+-rich mineral apatite
on rhizomorph surfaces. Thus, Rhizopogon sp. and S. granulatus
could be considered as key facilitators between soil and trees for
K+ fluxes in temperate forest ecosystems. Recently, an increase of
K+ contents of about 35% was observed in Pinus pinaster myc-
orrhized by Hebeloma cylindrosporum upon 2 months culturing
in K+ deficiency, suggesting that this fungus plays a crucial role
in pine adaptation to limiting conditions (Garcia et al., 2014).
K+ assimilation was improved also in shoots of Acacia spiror-
bis and Eucalyptus globules mycorrhized by Pisolithus albus up to
38% (Jourand et al., 2014). By contrast, Quercus ilex and Quercus
faginea colonized by Tuber melanosporum displayed a signifi-
cant reduction of K+ concentrations (Dominguez Nunez et al.,
2006). However, in another experiment, no difference in K+ con-
tents was observed between control plants of Pinus halepen-
sis, Q. faginea, and Quercus petraea, and those inoculated with
T. melanosporum (Dominguez Nunez et al., 2008). These con-
tradictory data highlighted once again that K+ allocation from
soil to plants through ECM fungi need complementary functional
investigations.

TRANSPORT OF POTASSIUM IN MYCORRHIZAL
INTERACTIONS
TRANSPORT SYSTEMS ON THE FUNGAL SIDE
Recent access to genomes of ECM fungi Laccaria bicolor (Martin
et al., 2008), T. melanosporum (Martin et al., 2010) and many oth-
ers (http://genome.jgi.doe.gov/Mycorrhizal_fungi/Mycorrhizal_
fungi.info.html) allows the identification of new candidate genes
involved in mycorrhizal resource exchanges (Casieri et al., 2013).
Consequently, four families of putative K+ transport systems
could be identified in ECM fungi (Figure 1) on the basis of their
homology to yeast Trk transporters (Ko and Gaber, 1991), to
yeast TOK channels (Ketchum et al., 1995), to bacterial and yeast
KT/KUP/HAK transporters (Bossemeyer et al., 1989; Bañuelos
et al., 1995) and to animal Shaker-like channels (SKC) (Papazian
et al., 1987; Jan and Jan, 1997). Before availability of these
genomes, a Trk-type transporter and a Shaker-like channel were
identified in an EST library of H. cylindrosporum (Lambilliotte
et al., 2004). The member of the Trk/Ktr/HKT family (Corratgé-
Faillie et al., 2010) was functionally characterized. HcTrk1 was
shown to restore partially the wild-type phenotype of a yeast
strain deficient in K+ uptake (Corratgé et al., 2007). Moreover,
electrophysiological analyses performed by expression of cRNA in
Xenopus oocytes argued that HcTrk1 might function as a Na+-K+
transporter. More recently, the use of H. cylindrosporum trans-
genic lines allowed the localization of this transporter exclusively
in external hyphae of P. pinaster mycorrhizae (Garcia et al., 2014),
suggesting a specialized reorganization of HcTrk1 to uptake sites.
The other candidate identified in the H. cylindrosporum EST
library belongs to the SKC family representing voltage-dependent
K+-selective channels (Lambilliotte et al., 2004). Interestingly,
SKC channels were found exclusively in Basidiomycota fungi and
in some members of basal fungi, whereas they are absent in
sequenced Ascomycota, suggesting a loss of these K+ channels in
this clade. Excitingly, the H. cylindrosporum genome accession
provides now two additional types of transport systems, three
HcTOK channels and a HcHAK transporter. The analysis of these
new candidates is currently in progress in order to dissect the
whole K+ transportome of H. cylindrosporum.

Transporters and channels of AM fungi are still the miss-
ing part of the K+ transport from soil to host. Four sequences
of R. irregularis from an EST library (http://mycor.nancy.inra.
fr/IMGC/GlomusGenome/index3.html) were identified as K+
transport systems (Casieri et al., 2013). Three of them are cod-
ing for SKC-type channels and one for a KT/KUP/HAK trans-
porter. Interestingly, no Trk and TOK members were identi-
fied from this library, and even from the sequenced nuclear
genome (http://genome.jgi.doe.gov/Gloin1/Gloin1.home.html).
Functional characterization and analysis of these new candi-
dates will provide more precise information on fungal molecular
players involved in AM plant K+ nutrition.

Future research on AM and ECM K+ transport systems need
to precise their putative involvement in K+ uptake from the
soil or in K+ release toward plant cells. Based on homology,
it is tempting to argue that transporters of the Trk/Ktr/HKT
and KT/KUP/HAK families could take up K+ from the soil.
Similarly, Shaker-like K+ and TOK channels could be probably
involved in the transfer of K+ from the arbuscule or Hartig net to
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FIGURE 1 | Continued
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FIGURE 1 | Phylogenetic trees of potassium transport systems from

sequenced mycorrhizal fungi. Four families of K+ transport systems
were identified in sequenced mycorrhizal fungi. Two of them code for
putative transporters, for the (A) Trk and (B) HAK families, and the two
others for putative ion channels, for the (C) TOK and (D) Shaker-like
(SKC) families, respectively. (A) Two sub-families of Trk transporters
were identified in Basidiomycota. (C) Two subfamilies of TOK channels
were found in Asco- and Basidiomycota. Neither of these two families
were identified in the Glomeromycota species Rhizophagus irregularis.
(D) No SKC channel was found in Ascomycota fungi (mycorrhizal or
not), suggesting the loss of this channel in this clade. Structure models
of each family are represented. Transmembrane domains are symbolized
by rectangles and pore domains by a P. The voltage-dependent domain
of SKC proteins (D) is indicated by a red rectangle (+ + +). Trees were

constructed using maximum likelihood method with 100 bootstraps.
Green, yellow and red circles indicate successful published, successful
unpublished (Zimmermann et al., unpublished data) or failed unpublished
functional characterization, respectively. Am, Amanita muscaria; Be,
Boletus eludis; Cgeo, Cenococcum geophilum; Cglau, Cortinarius
glaucopus; Cv, Choiromyces venosus; Hc, Hebeloma cylindrosporum; Gl,
Gyrodon lividus; La, Laccaria amethystina; Lb, Laccaria bicolor ; Mb,
Meliniomyces bicolor ; Mc, Morchella conica; Mv, Meliniomyces variabilis;
Om, Oidiodendron maius; Pc, Piloderma croceum; Pi, Paxillus involutus;
Pm, Pisolithus microcarpus; Pr, Paxillus rubicundulus; Pt, Pisolithus
tinctorius; Ri, Rhizophagus irregularis; Sb, Suillus brevipes; Sc,
Scleroderma citrinum; Sl, Suillus luteus; Sv, Sebacina vermifera; Tb,
Terfezia boudieri; Tc, Tulasnella calospora; Tmat, Tricholoma

(Continued)
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FIGURE 1 | Continued

matsutake; Tmel, Tuber melanosporum; Wm, Wilcoxina mikolae.
Lengths of aligned sequences are around 1000, 800, 900, and
500 amino acids for Trk, KUP, TOK, and SKC proteins,
respectively. Saccharomyces cerevisiae [SaccTrk1 and SaccTrk2 (A),

SaccTOK (C)], Debaryomyces occidentalis [DoHAK1 (B) and
Xenopus laevis XlKV2.1 (D)] protein sequences were selected as
outgroups to root trees. All sequences were picked up on the
mycorrhizal fungi JGI genome portal: http://genome.jgi.doe.gov/
Mycorrhizal_fungi/Mycorrhizal_fungi.info.html.

host plant cortical cells (Figure 2; Benito and Gonzalez-Guerrero,
2014). However, caution must be taken on these predictions due
to the possible bidirectional behavior of some transport sys-
tems in specific conditions and due to their unknown subcellular
localization.

TRANSPORT SYSTEMS ON THE PLANT SIDE
The direct pathway of woody plant K+ uptake (Figure 2A)
is poorly studied so far in contrast to model plants as, e.g.,
Arabidopsis thaliana (Alemán et al., 2011; Dreyer and Uozumi,
2011; Coskun et al., 2014; Nieves-Cordones et al., 2014).
However, some K+ transport systems in woody plants able to
form ECM associations have been identified. For example, two
channels expressed in roots of Populus euphratica (PeKC1 and
PeKC2) were characterized (Zhang et al., 2010). Interestingly,
their over-expression led to complementation of the A. thaliana
akt1 mutant. Because AKT1 is involved in K+ acquisition in
A. thaliana (Hirsch et al., 1998), this finding strongly suggests that
these two transport systems could play a role in K+ nutrition in
poplar trees. However, their role in context of mycorrhizal associ-
ations has not been dissected. Their expression analysis upon AM
and ECM symbioses would be a good starting point for the identi-
fication of transport systems required in K+ nutrition, as already
shown for phosphate transporters of Populus trichocarpa (Loth-
Pereda et al., 2011). In turn, in AM plants, the direct pathway of
K+ uptake is well known since many years (Figure 2B), several
transport systems were identified, functionally characterized and
their role in K+ nutrition in various conditions was investigated.
These proteins belong to the transporter families Trk/Ktr/HKT
(Corratgé-Faillie et al., 2010) and KT/KUP/HAK (Grabov, 2007),
as well to the Shaker-like channels (Dreyer and Uozumi, 2011).

Very few studies investigated so far the plant K+ transportome
of the mycorrhizal pathway (Figures 2C,D). Recently two ESTs
of P. sylvestris representing the SKOR-type outward Shaker-like
channel were found to be highly up-regulated during ECM inter-
action with Ceonococcum geophilum, and less up-regulated upon
interaction with S. granulatus and Rhizopogon roseolus (Martina
Peter, pers. comm.). A KT/KUP/HAK transporter was found to be
44-fold up-regulated in Lotus japonicus mycorrhized by the AM
fungus Gigaspora margarita (Guether et al., 2009). More recently,
a SKOR channel of Z. mays was identified to be up-regulated by
AM colonization in response to salinity (Estrada et al., 2013).
Future analyses of these first plant candidates are needed to dissect
the molecular bases of K+ uptake from the plant-fungus interface.

BENEFITS OF MYCORRHIZAL POTASSIUM UPTAKE FOR
PLANTS
IMPROVEMENT OF SALT AND DROUGHT STRESS TOLERANCE
Advantages conferred by K+ originating from mycorrhizae
include improved stress tolerance of the host plant. Acquisition

of plant salinity tolerance by AM symbiosis has been described for
several decades (Hirrel and Gerdemann, 1980; Ojala et al., 1983),
very little is known about physiological and molecular mech-
anisms enhancing this adaptation. AM colonization enhances
the plant K+ uptake whereas the Na+ content is maintained at
low levels in salt stress conditions applied to Vicia faba (Rabie
and Almadini, 2005), Acacia nilotica (Giri et al., 2007), Ocimum
basilicum (Zuccarini and Okurowska, 2008), Glycine max (Sharifi
et al., 2007), Olea europaea (Porras-Soriano et al., 2009), or
Z. mays (Estrada et al., 2013). These data indicate that AM sym-
biosis improves salt tolerance of the host plant through the mod-
ification of the K+/Na+ balance. This finding was corroborated
by high internal K+ concentrations in several AM fungi collected
in natural saline sites (Hammer et al., 2011a). Recently, Estrada
et al. (2013) demonstrated differential expression levels during
AM colonization for three K+ transport systems of Z. mays puta-
tively involved in phloem loading/unloading (ZmAKT2), xylem
release (ZmSKOR), and Na+/K+ homeostasis (ZmSOS1). These
exciting findings open the way to the elucidation of plant proteins
involved in transport of K+ originating from mycorrhizal fungi,
especially under salt stress conditions.

Input of AM symbiosis on drought stress resistance of plants
has been well studied (Harley and Smith, 1983; Al-Karaki, 1998;
Porcel and Ruiz-Lozano, 2004). Improvement in hydric stress
tolerance is accompanied by an elevation of K+ concentrations
observed, e.g., in Citrus tangerine (Wu and Xia, 2006), indicating
a role of AM symbiosis through K+ uptake required for osmotic
adjustment. Interestingly, El-Mesbahi et al. (2012) demonstrated
that hydraulic conductivity of AM-colonized Z. mays growing
under hydric stress was enhanced by supply of K+ in external
medium. Moreover, the expression level of the plant aquaporin
ZmPIP2;6 was modulated by K+ supply in hydric stress, sug-
gesting a tight link between adaptation of mycorrhized plants to
drought stress and K+ resource availability.

Salt and drought stress tolerance linked to potassium nutri-
tion has been so far less studied in ECM plants. However, recently,
Danielsen and Polle (in press) have been shown an increase of K+
in ECM poplar under drought conditions suggesting also in this
symbiotic interaction a role of mycorrhizal K+ for environmental
stress adaptation.

INTERACTION BETWEEN PLANT POTASSIUM AND PHOSPHORUS
NUTRITION
Interestingly, a strong correlation between K+ and phosphorus
(P) during AM symbiosis was reported. Olsson et al. (2008, 2011)
highlighted a co-distribution and a linked ratio of K+ and P
in R. irregularis spores, hyphae and vesicles. When spores were
enriched in P, an increase of K+ content was observed (Olsson
et al., 2011). Several studies on ECM symbiosis reported simi-
lar results. Indeed, a strong correlation in K+ and P distribution
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FIGURE 2 | Current knowledge about potassium transport systems in

mycorrhizal associations. (A,B) The transfer of potassium (K+) from the soil
to plant cells by the direct pathway needs plant transport systems in root
uptake and release sites. (A) Shaker type channels from Populus euphratica
(PeKCs) and a KUP transporter of Populus trichocarpa (PtKUP) could be
involved in K+ uptake in poplar trees (Zhang et al., 2010). (B) Members of
HKT, HAK and Shaker families were identified and characterized in various
AM plants as transport systems involved in K nutrition. (C) To our knowledge,
only K+ transport systems of the fungus Hebeloma cylindrosporum are
currently analyzed in ECM symbiosis, and just one, HcTrk1, is already
characterized (Corratgé et al., 2007; Garcia et al., 2014). Few transcriptomic
data suggest the role of some plant proteins allowing K+ uptake from the

apoplasm. (D) EST library of Rhizophagus irregularis allows the identification
of several K+ transport related proteins (Casieri et al., 2013), and
transcriptomic analysis revealed an high overexpression of a K+ transporter in
inoculated Lotus japonicus (Guether et al., 2009). Full lines indicate transport
systems whose capability in K+ transport was verified. Dotted lines indicate
transport systems whose involvement in K+ transport during mycorrhizal
symbioses is suggested. ECM fungal structures: Extraradical hyphae (ERM),
fungal mantle and Hartig net. AM fungal structures: ERM, spore,
hyphopodium and arbuscule. Plant root cells: roots hair, epidermal cells and
cortical cells, central cylinder. Hc, Hebeloma cylindrosporum; Ri, Rhizophagus
irregularis; Pe, Populus euphratica; Pt, Populus tremula; Ps, Pinus sylvestris;
Lj, Lotus japonicus.

was described in rhizomorphs of Rhizopogon sp. using PIXE
analyses (Wallander and Pallon, 2005). Other studies showed
that the decrease of P availability in soil could lead to either a
decrease or an increase of K+ content in ECM with Pinus rigida
(Cumming, 1993) or in AM with Trifolium subterraneum (Smith
et al., 1981), respectively. Moreover, K+ and P were found in same
fungal compartments of P. involutus such as vacuoles (Orlovich
and Ashford, 1993; Ashford et al., 1999). Interestingly, it is
assumed that K+ is one of the major counter-ions of polyphos-
phate (polyP) granules, especially of soluble polyP short-chains
mainly located in fungal vacuoles (Bücking and Heyser, 1999).
Recently, elemental analysis of spherical electron-opaque gran-
ules in the vacuoles of Scleroderma verrucosum hyphae associated
with Quercus acutissima using TEM-EDS (Transmission electron
microscopy-energy-dispersive Xray Spectroscopy) showed major

correlated peaks for P and K (Jung and Tamai, 2013). In addi-
tion, we have revealed recently that the over-expression of a K+
transporter of H. cylindrosporum led to an alteration of K+ and
P translocation from roots to shoots of mycorrhized P. pinaster
under K+ deprivation (Garcia et al., 2014), providing new evi-
dences for K+ and P interaction during their transport in ECM
symbiosis. All these data demonstrating the strong link between
these two elements suggest that K+ seems to be a more impor-
tant component of mycorrhizal symbiosis than formerly sus-
pected. Therefore, K+ needs to be considered not only as a direct
trophic element involved in plant K+ nutrition, but also as an
“indirect-trophic” component required for homeostasis and cor-
rect transfer of other nutrients to the host plant, such as inorganic
phosphate. Moreover, Hammer et al. (2011b) described a K+
accumulation in an AM fungus related to low C supply from the
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plant. Consequently, we can imagine that in conditions of low
availability of C originating from the host plant, the high con-
centration of K+ observed in the fungus could be related to the
accumulation of P (in polyP form) which is not transferred to the
plant. However, additional investigations are needed to validate
or not this hypothesis and to get more insight on the interaction
occurring between K+, P and C in mycorrhizal symbioses.

PROTECTION AGAINST RADIOCAESIUM POLLUTION
Radiocaesium isotopes (134Cs, 137Cs) are important soil contam-
inants that can enter the food chain by the intermediate of plant
uptake (Delvaux et al., 2001). It is well known that external K+
affects the acquisition of radiocaesium by plants (Tamponnet
et al., 2008). Involvement of mycorrhizal symbiosis on radio-
caesium uptake was reported. Evaluation of the Cs+/K+ ratio
in P. abies showed a lower acquisition of 134Cs by plants inoc-
ulated with Hebeloma crustuliniforme due to its retention in
the outer hyphae and to a better transfer of K+ to the plant
(Brunner et al., 1996). By contrast, P. pinaster mycorrhized by
R. roseolus displayed more elevated concentrations in 134Cs than
non-mycorrhized plants, whereas the K+ content remained sta-
ble (Ladeyn et al., 2008), highlighting the importance of the
considered host-symbiont couple. The influence of K+ on 134Cs
accumulation was also investigated in AM symbiosis, in Medicago
truncatula colonized by R. irregularis. Radiocaesium accumula-
tion of plants seems to be inversely correlated to K+ contents
in the external medium (Gyuricza et al., 2010a). Based on these
results, AM symbiosis combined with high K+ concentrations in
external medium would be crucial to avoid 134Cs accumulation
in plants growing on contaminated soil. Interestingly, external P
elicits the same effects as K+ on 134Cs uptake during AM col-
onization of M. truncatula (Gyuricza et al., 2010b), reinforcing
the idea of a close relationship between K+ and P via polyP syn-
thesis, storage and transport. In contrast to these studies, pot
experiments by Joner et al. (2004) with different external K+
concentrations, three host plants and two AM fungal species indi-
cated that AM effects on plant 134Cs and 137Cs accumulation
could be negligible. Further investigations will be needed to con-
clude whether mycorrhizal associations play a direct, via transport
processes, or an indirect role on plant protection to radiocaesium
contaminated soils.

CONCLUSION
Although the role of K+ is still poorly investigated in mycorrhizal
studies, it appears that plant K+ nutrition is clearly improved
by mycorrhization, especially under K+ limiting conditions as,
e.g., found in forest ecosystems. Moreover, this improvement
could act on abiotic stress tolerance, P homeostasis maintenance,
or exclusion of soil contaminants such as radiocaesium. Thanks
to genome and transcriptome access, the dissection of molecu-
lar mechanisms involved will be unraveled in the coming years,
strengthening our knowledge on the mycorrhizal contribution to
plant K+ nutrition.
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