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Among post-translational modifications, there are some conceptual similarities between
Lys-Nε-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-
based overview of reversible protein Lys-acetylation, including some comparisons with
reversible protein phosphorylation. The study of Lys-acetylation of plant proteins has
lagged behind studies of mammalian and microbial cells; 1000s of acetylation sites have
been identified in mammalian proteins compared with only hundreds of sites in plant
proteins. While most previous emphasis was focused on post-translational modifications
of histones, more recent studies have addressed metabolic regulation. Being directly
coupled with cellular CoA/acetyl-CoA and NAD/NADH, reversible Lys-Nε-acetylation has
the potential to control, or contribute to control, of primary metabolism, signaling, and
growth and development.
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INTRODUCTION
Protein regulation is highly choreographed, and encompasses
multilayered and interconnected transcriptional and translational
processes. Subsequent PTM allow the fine-tuning of function.
Many PTM are reversible, and modulate the activity, local-
ization, turnover, and interactions of proteins (Mann and
Jensen, 2003). The dynamics of PTM allow a much more rapid
response to cellular signals than transcriptional or translational
regulation.

More than 461 distinct PTM have been described1 (Khoury
et al., 2011), and it is increasingly clear that many, perhaps most,
proteins are decorated with multiple PTM (Hunter, 2007). This
yields a proteome vastly larger and more diverse than the trans-
lated genome (Khoury et al., 2011; Minguez et al., 2012). The
combinatorial diversity of PTM results in enormous flexibility
for control of structure, function, and interaction. For example,
Ser/Thr/Tyr-phosphorylation introduces a negative charge while
Lys-Nε-acetylation neutralizes a positive charge.

REVERSIBLE O-PHOSPHORYLATION
Reversible protein phosphorylation was first reported in 1954, and
has remained the hallmark of PTM-based regulation and signal-
ing (Pawson and Scott, 2005). Approximately 130 protein kinases
are encoded by the Saccharomyces cerevisiae genome, 518 in Homo
sapiens, 1085 in Arabidopsis thaliana, and as many as 2500 in some
land plants (Lehti-Shiu and Shiu, 2012). In yeast there are >2500
known phosphoproteins (P-proteins; Rao and Møller, 2012), more
than 31,480 phosphosites (P-sites) have been described in 7280
Rattus norvegicus proteins (Lundby et al., 2012b), and ∼14000

Abbreviations: BRD, bromodomains; HAT, histone acetyltransferase; ISD, intrin-
sic sequence disorder; KAC, Nε-acetyl-Lys; KAT, protein Lys-Nε-acetyltransferases;
KDAC, protein Lys-Nε-deacetylases as KDACs; MS, mass spectrometry; PKA,
protein Lys-Nε-acetylation; PTM, post-translational modifications.
1http://www.uniprot.org/docs/ptmlist

P-sites in >4000 proteins have been described from the refer-
ence eudicot plant A. thaliana2. Considering all plants, these
numbers swell to ∼33,300 sites on ∼11,700 P-proteins2, and
more are discovered virtually daily. The recent reports of thou-
sands of Lys-Nε-acetylation sites in bacterial, yeast, and animal
proteins have led to the suggestion that this PTM could be as
common as phosphorylation (Kouzarides, 2000; Choudhary et al.,
2009; Hu et al., 2010; Filippakopoulos and Knapp, 2012; Lundby
et al., 2012a,b; Xiong and Guan, 2012). An overview compari-
son between these two major systems for PTM is presented in
Table 1.

REVERSIBLE LYS-Nε-ACETYLATION
There are multiple forms of protein acetylation; O-acetylation
of Ser/Thr residues, non-reversible Nα-acetylation of protein
N-termini (Martinez et al., 2008), and reversible protein Nε-
acetylation of internal Lys residues (Soppa, 2010; Xing and
Poirier, 2012). While important in their own right, the first
two types of Lys-acetylation will not be further addressed
herein. Instead, “acetylation” should be understood to mean
protein Lys-Nε-acetylation (PKA). Histones were first reported
to be acetylated nearly 50 years ago (Phillips, 1963). It was
more than two decades later that the first cytoplasmic pro-
tein, α-tubulin, was identified as being Lys-acetylated (Piperno
and Fuller, 1985). Recently, a plethora of acetylated pro-
teins have been described encompassing all subcellular com-
partments (Choudhary et al., 2009; Table 2). During these
few years, PKA has changed from an obscure histone PTM
to a mechanism for controlling (or contributing to control
of) many aspects of primary metabolism, gene expression,
signaling, and development (Zhao et al., 2010; Rao et al.,
2014).

2http://p3db.org
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Table 1 |The components of the Ser/Thr/Tyr O-phosphorylation and Lys-Nε-acetylation systems from Homo sapiens, Saccharomyces cerevisiae,

and Arabidopsis thaliana.

Phosphorylation Acetylation

Number Reference Number Reference

Acetylated-proteins

Phospho-proteins (sites) (sites)

H. sapiens 19800 (208500) www.phosphosite.org 2859 (5011) Choudhary et al. (2009),

Kim et al. (2006),

Zhao et al. (2010)

S. cerevisiae 2552 (11481) Rao and Møller (2012) 1059 (4000) Henriksen et al. (2012)

A. thaliana 4081 (13933) http://p3db.org 221 (329) Finkemeier et al. (2011),

König et al. (2014a)

Wu et al. (2011)

Kinases Acetyltransferases

H. sapiens 518 Manning et al. (2002) 22 Xiong and Guan (2012)

S. cerevisiae 130 Breitkreutz et al. (2010) 11 Yang (2004b)

A. thaliana 1085 Hrabak et al. (2003) 16 Earley et al. (2007),

Tyler et al. (2006),

http://uniprot.org/

Phosphatases Deacetylases

H. sapiens 147 Moorhead et al. (2007) 18 Xiong and Guan (2012)

S. cerevisiae 38 Breitkreutz et al. (2010) 4 Bernstein et al. (2000)

A. thaliana 150 Kerk et al. (2008) 18 Hollender and Liu (2008)

SH2-/14-3-3-proteins YEATS-/BRD-proteins

H. sapiens 111/207 Liu et al. (2011)

Tinti et al. (2012)

4/46 Schulze et al. (2009)

Filippakopoulos et al.

(2012)

S. cerevisiae 1/2 Liu et al. (2011)

van Heusden and Steensma (2006)

3/9 Schulze et al. (2009)

Zhang et al. (2010)

A. thaliana 2/13 Williams and Zvelebil (2004)

DeLille et al. (2001)

2/29 Zacharaki et al. (2012)

http://supfam.cs.bris.ac.uk

Use of high-throughput, high-resolution tandem MS has
led to detection of PKA in all three domains of life; archaea,
bacteria, and eukaryotes (Yang, 2004a; Hu et al., 2010; Soppa,
2010; Jones and O’Connor, 2011). Recent MS-based studies
revealed 1070 acetylation sites in 349 proteins in Escherichia
coli (Zhang et al., 2013), and 332 acetylation sites on 185
proteins in Bacillus subtilis (Kim et al., 2013). In S. cere-
visiae, more than 4000 sites of Lys-Nε-acetylation of 1059
proteins have been described (Henriksen et al., 2012), and in
mammalian systems >21,000 sites on >7000 proteins have been
described (Choudhary et al., 2009; Zhao et al., 2010; Lundby
et al., 2012a). A large majority of the yeast and mammalian

Lys-acetylation sites have been described since 2009 (Choud-
hary et al., 2009; Smith and Workman, 2009), suggesting that our
understanding and appreciation for this PTM is in a relatively early
stage especially in comparison with phosphorylation (Tables 1
and 2).

The results from large-scale secondary structure analyses have
led to the conclusion that O-phosphorylation is substantially
enriched in regions of ISD (Iakoucheva et al., 2004). It has been
reported that PKA sites are significantly enriched in ordered
regions of mammalian proteins and depleted in regions of ISD
(Choudhary et al., 2009), that PKA sites are equally distributed in
ordered and disordered regions (Gao and Xu, 2011), and that PKA
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Table 2 | Identification of Lys-Nε-acetylated proteins in various taxa.

Taxa Proteins Sites Reference

Plants

A. thaliana 74 91 Finkemeier et al. (2011)

90 174 König et al. (2014a)

57 64 Wu et al. (2011)

G. max 121 190 Smith-Hammond et al. (2014b)

P. sativum 358 664 Smith-Hammond et al. (2014a)

Vitis vinifera 97 138 Melo-Braga et al. (2012)

S. tuberosum 31 35 Salvato et al. (2014)

Animals

H. sapiens 1750 3600 Choudhary et al. (2009)

>62 >111 Kim et al. (2006)

1047 >1300 Zhao et al. (2010)

Mus musculus 133 277 Kim et al. (2006)

R. norvegicus 4541 15474 Lundby et al. (2012a)

Yeast

S. cerevisiae >1059 >4000 Henriksen et al. (2012)

Protists

P. falciparum 230 421 Miao et al. (2013)

T. gondii 274 411 Jeffers and Sullivan (2012)

Archaea

Halobacterium sp. 2 2 Soppa (2010)

Bacteria

E. coli 85 125 Yu et al. (2008)

91 138 Zhang et al. (2009)

349 1070 Zhang et al. (2013)

S. enterica 191 >191 Wang et al. (2010)

B. subtilis 185 332 Kim et al. (2013)

sites preferentially occur in regions of ISD in Toxoplasma gondii
tachyzoite proteins (Xue et al., 2013). We observed that versus all
Lys residues in our soybean database, PKA was approximately
twice as likely to occur in long ISD-regions (Smith-Hammond
et al., 2014b). If, as has recently been proposed (Cumberworth
et al., 2013), regions of ISD are important in mediating protein
interactions, then PTM of residues within regions of ISD might
explain the basis for multiple layers of regulation (Nishi et al.,
2013). Clearly this aspect of PKA deserves a greater focus.

LYS-Nε-ACETYLATION IN PLANTS
While thousands of acetylated proteins are known in animals
and yeast, when preparing this manuscript fewer than 400 plant

proteins (∼500 sites) have been reported. These include 131 A.
thaliana proteins (155 sites; Finkemeier et al., 2011; Wu et al.,
2011), 97 Vitis vinifera berry proteins (138 sites; Melo-Braga
et al., 2012), 121 proteins (190 sites) from developing Glycine max
cotyledons (Smith-Hammond et al., 2014b), and 31 proteins (35
sites) from Solanum tuberosum mitochondrial proteins (Salvato
et al., 2014). Even after results from work in progress are added; 90
A. thaliana mitochondrial proteins (174 sites; König et al., 2014a),
and 358 Pisum sativum proteins (664 sites; Smith-Hammond et al.,
2014a), the extant number of PKA proteins is small in comparison
to P-proteins and only five species have been examined.

“WRITERS, ERASERS, AND READERS” OF
LYS-Nε-ACETYLATION
The occurrence of a mammalian enzyme specific for histone acety-
lation was first reported by Racey and Byvoet (1971), and the
first histone acetyltransferase (HAT1) gene was cloned from yeast
(Kleff et al., 1995). For over 40 years, protein Lys-acetylation
has meant “histone Lys-acetylation.” The relatively recent dis-
covery that transcription factors, structural proteins, metabolic
enzymes, and a host of other non-histone proteins are Lys-
Nε-acetylated has led to some confusion about specificity and
terminology (Josling et al., 2012; Xing and Poirier, 2012). There
are even instances where a “HAT” has been reported to acety-
late histones, non-histone proteins, and even small molecules (Gu
and Roeder, 1997). At this point, we favor erring on the side of
generalization rather than claiming unsupported specificity. With
this caveat, herein we refer to the “writers” of the PTM code
(Muntean and Hess, 2009), protein Lys-Nε-acetyltransferases,
as KATs, and the “erasers,” protein Lys-Nε-deacetylases as
KDACs.

Based upon comparative sequence analyses, it has been con-
cluded that there are four distinct KAT families: GNAT (GCN5-
related N-terminal acetyltransferases); MYST [MOZ, Ybf2 (Sas3),
Sas2, and Tip60; Sapountzi and Côté, 2011]; p300/CREB (CBP);
and the nuclear receptor coactivator family (Roth et al., 2001).
The first three families are widespread in eukaryotes [including
A. thaliana (Pandey et al., 2002)], eubacteria, and archaea. The
nuclear receptor coactivator family is thought to be absent from
plants, fungi, and lower animals (Pandey et al., 2002). The differ-
ent KAT families have distinct kinetic and catalytic mechanisms
(Yan et al., 2002; Röttig and Steinbüchel, 2013), but are character-
istically large, complex, multi-domain proteins (Roth et al., 2001;
Figures 1A,C).

Perhaps not all protein acetylation is KAT-mediated? Similar
to non-kinase based protein phosphorylation (autophosphoryla-
tion; Miernyk et al., 1992; Bae and Schlessinger, 2010), there have
also been reported examples of autoacetylation (e.g., Yang et al.,
2012). An intriguing recent publication described“widespread and
enzyme-independent Nε-acetylation” of a number of proteins in
the mitochondrial matrix (Wagner and Payne, 2013). This mecha-
nism might also be extended to include peroxisomal and plastidial
proteins? It is noteworthy that König et al. (2014b) found Nε-
acetylated proteins, and a sirtuin, within A. thaliana mitochondria,
but found no evidence of a KAT. Nor was there any evidence for
a KAT within highly purified potato tuber mitochondria (Salvato
et al., 2014).
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FIGURE 1 | Phylogeny and domain architecture of the Arabidopsis

thaliana KATs and KDACs. The phylogenetic trees of KATs (A) and KDACs
(B) are shown with distinct groups colored differently. The KAT and KDAC
sequences were aligned using MUSCLE, and trees were constructed in
MEGA5 (http://www.megasoftware.net/) using maximum-likelihood method

with 1000 bootstrap replicates (Values of more than 50% are shown). Scale
bars indicate the number of substitutions per site. For the domain architecture
of selected KATs (C) and KDACs (D), information was collected from PFAM
(http://pfam.sanger.ac.uk/). Horizontal bars are proportional to sequence
length (129–1919 residues for KATs, 203–682 residues for KDACs).

If the KATs write the PTM code, then it is the deacety-
lases that are responsible for “erasing” it. The genome of the
reference eudicot plant A. thaliana includes 18 genes encoding
KDAC proteins; at least two members each of the RPD3-like
(reduced potassium deficiency 3), HD-tuin, and sirtuin fami-
lies (Hollender and Liu, 2008). Much like the KATs, the KDAC
proteins display complex domain organization (Figures 1B,D),
tissue-specific expression, and physiological functions. Members
of the RPD3-like family are apparently present in all eukaryotes

and have been the most widely studied KDACs (Murfett et al.,
2001; Rossi et al., 2003). The HD-tuins appear to be present only
in plants (Dangl et al., 2001; Luo et al., 2012) and have been the
least studied.

The sirtuins (Silent Information Regulator 2 proteins) are a
ubiquitous family of NAD++-dependent KDACs. It has been
reported that mammalian cells contain seven sirtuin homologs
(SIRT1–7) with diverse cellular localization [for example, some
proteins of the Srt3, 4, and 5 families are mitochondrial (Huang

Frontiers in Plant Science | Plant Physiology August 2014 | Volume 5 | Article 381 | 4

http://www.megasoftware.net/
http://pfam.sanger.ac.uk/
http://www.frontiersin.org/Plant_Physiology/
http://www.frontiersin.org/Plant_Physiology/archive


Rao et al. Protein Lys-Nε-acetylation

FIGURE 2 | Plant bromodomain proteins. (A) Phylogenetic analysis of
the A. thaliana BRD-proteins. Distinct clusters (more than 50%
bootstrap value) are colored differently in the tree. Sequences were
aligned with MUSCLE and the tree was constructed using maximum
likelihood method with 1000 bootstraps in MEGA5.The scale bar
indicates the number of substitutions per site. (B) A representative BRD
structure (AT3G54610.1) has four helices (Z, A, B, and C, each ∼110

residues in length). The ZA plus BC loops form the acetyl-Lys binding
pocket. Unlike many mammalian and yeast proteins which include two
or more BRD, most plant proteins have a single BRD. (C) An exception
is the product of the Chlamydomonas reinhardtii (gi| 159485810) locus
which includes three BRD (plus a PHD domain). The C. reinhardtii
protein structure was predicted using I-TASSER (http://zhanglab.ccmb.
med.umich.edu/I-TASSER).

et al., 2010; Sol et al., 2012)] and physiological functions. The sir-
tuins have been demonstrated to deacetylate a wide spectrum
of clients (Finkemeier et al., 2011; Duan, 2013). König et al.
(2014b) recently described a Srt2-orthologous protein localized
within the matrix of A. thaliana mitochondria that deacetylates
a specific cohort of mitochondrial client proteins. In contrast
to the seven sirtuin genes present in mammalian genomes, A.
thaliana and G. max (Glyma04g38730.1 and Glyma06g16260.1)
have only two sirtuin-encoding genes. König et al. (2014b), how-
ever, detected more than seven alternative splicing variants of
Atsrt2.

Like a molecular barcode, the information present in
acetylated-Lys must be recognized and decoded by some sort
of “reader.” Originally discovered as a component of histone-
binding proteins, bromodomains (BRD) are conserved structural
motifs (Figure 2B) that recognize and bind PKA (Dhalluin et al.,
1999; Zeng and Zhou, 2002; Sanchez and Zhou, 2009). The term
“BRD” comes from brahma, a regulatory protein in Drosophila

melanogaster. The human genome encodes at least 46 BRD-
proteins (each of which has between one and six BRDs) which
have been sorted into eight classes (Filippakopoulos et al., 2012).
The yeast genome encodes at least nine BRD-proteins (Sanchez
and Zhou, 2009; Table 1).

In A. thaliana there are 29 BRD-proteins3, which can be
separated into multiple groups (Figure 2A). The number of
BRD-proteins varies considerably among plants, from as many
as 57 in G. max to as few as nine in the red nanoalga Cyani-
dioschyzon merolae. There are only a few instances of plant
proteins that include more than a single BRD (Figure 2C). The
relationship between BRDs and Lys-acetylated client proteins
(Figure 3) has been compared with the recognition and bind-
ing of O-phosphorylated client proteins with the SH2 domain
or with 14-3-3 proteins (Yang, 2004a; de Boer et al., 2013).
It is not yet clear if recognition and binding involve only

3http://scop.mrc-lmb.cam.ac.uk/scop/
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FIGURE 3 | A plant Lys-Nε-acetyl-protein interactome. (A) The
BRD-proteins are presented as squares, KATs as arrow-heads,
KDACs as diamonds, and PKA proteins as circles. Some of the
PKA proteins [histone H4 (AT1G07660) and H3.2 (AT1G09200),
GTP-binding EF-Tu (AT1G07930), and nuclear PGK1 (AT3G12780)]
interact with BRD-proteins. However, either no interactions or only
self-interactions are known for the majority of plant PKA-proteins
(∼69%; B). The interactome information was collected from TAIR
(http://www.arabidopsis.org/), AtPID (http://www.megabionet.org/atpid/),
AtPIN (http://bioinfo.esalq.usp.br/), CCSB (http://interactome.dfci.
harvard.edu/), and PAIR (http://www.cls.zju.edu.cn/pair/), and visualized

using Cytoscape. Edge color (red is negative and green is positive)
and width are proportional to gene co-expression (correlation
coefficient) of genes based on GSE3011 from NCBI-GEO
(http://www.ncbi.nlm.nih.gov/geo/). Nodes with no known interactions
have not been included. Node size is proportional to the number
of interactions. Node colors indicate subcellular protein localization,
based on information from the TAIR database. (C) The percentage
of currently known plant PKA-proteins in different subcellular
localization categories is shown. The A. thaliana homologs of
known PKA-proteins from other plants species were obtained using
BLAST.

acetylated-Lys residues or if these residues must be in a particular
context/domain/environment.

An additional possible PKA-reader is the YEATS domain, which
is an evolutionarily conserved structural feature found in a variety
of proteins in chromatin-modifying and transcription complexes
ranging from yeast to humans (Schulze et al., 2010). Recently, the
3D structure of the YEATS domain from Yaf9 protein has been
resolved, which is shown to have a region containing a shallow
groove that might constitute aPKA-binding pocket (Zhang et al.,
2011). The YEATS-domain containing protein family comprises
more than 100 members in over 70 eukaryotic species (Schulze

et al., 2009), including A. thaliana (Zacharaki et al., 2012), Oryza
sativa, and Medicago truncatula.

It is worthwhile to note that not all effects of acetylation related
downstream functions require BRD proteins, or any kind of medi-
ating protein binding. Just as with O-phosphorylation, acetylation
can exert direct effects on protein function or enzyme activity.
For example, in Escherichia coli 85 PKA proteins (125 sites) have
been identified (Yu et al., 2008), which seemingly function in the
absence of any known BRD-proteins3.

Although the total number of P-sites and PKA sites are con-
verging (Table 2), there remain large differences in the numbers
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of components of each system. While there are hundreds of
Ser/Thr/Tyr-kinases (518/130/1085 in H. sapiens/S. cerevisiae/A.
thaliana) and phosphatases (147/38/150), there are relatively few
KATs (22/11/16) and KDACs (18/4/18). How can so few enzymes
specifically regulate thousands of acetylation events in a cell
(Kouzarides, 2000; Xing and Poirier, 2012; Xiong and Guan,
2012)? How does PKA accomplish specific and dynamic control
with a relatively small complement of writers, erasers, and read-
ers? Choi and Bakkenist (2013) recently suggested an intriguing
possibility, that a PTM-binding protein might function in part
by blocking access of a kinase and/or acetyltransferase to a dif-
ferent, potentially regulatory-site. Additionally, there are several
reports that both KAT and KDAC are present in vivo as compo-
nents of multi-protein complexes. Associated proteins can both
stimulate (Berndsen et al., 2008) and inhibit (Kim et al., 2014)
acetyl-transferase activity, and might also specify or modify client
protein selectivity.

The known writers, erasers, and readers are all relatively large,
multi-domain proteins (Figure 1). Multiple domains often func-
tion as protein interaction modules or scaffolds. This implies a
profusion of protein interactions, multi-protein complexes, and
networks (Figure 3). With the exception of BRD-proteins binding
to PKA-histones (Dhalluin et al., 1999), most protein interac-
tions have been addressed from a computational perspective (Lu
et al., 2011). Protein interactions, signaling networks, etc. have
now been well-studied as related to reversible O-phosphorylation
(Trost et al., 2010; Newman et al., 2013; Uhrig et al., 2013), and
it will be important to extend our understanding of PKA in this
direction.

LYS-Nε-ACETYLATION AND METABOLIC CONTROL
Lys-acetylation has rapidly become established as an important
PTM involved with metabolic regulation in mammalian and
microbial systems. In yeast and mammalian systems, virtually
every enzyme of glycolysis, gluconeogenesis, the Krebs cycle, and
urea, fatty acid, and glycogen metabolism has been reported
to be acetylated (Wang et al., 2010; Zhao et al., 2010; Oliveira
and Sauer, 2012). However, distinguishing bona fide regulatory
sites among the thousands of PKA sites detected by contem-
porary high-resolution MS, and elucidating the mechanisms by
which the modifications alter protein function remain a primary
challenge.

The multiple mechanisms by which reversible-O-phosphor-
ylation can directly affect protein activity includes effects on
catalysis, the binding or release of substrates/products/regulators,
protein complex formation, localization, turnover, etc. (Zhang
et al., 2007; Trost et al., 2010; Oliveira et al., 2012; Fischer, 2013).
As a rule of thumb, a PTM directly involved with control of pro-
tein function will be dynamic (e.g., have a shorter lifetime than
the protein itself). A successful experimental strategy has been
to use phosphatase or deacetylase inhibitors to treat tissues, cells,
or organelles. Alternatively, it is also useful to employ knockout
or knock-down phosphatase or deacetylase mutants. Finally, it is
possible to use recombinant phosphatases or deacetylases to treat
modified proteins coupled with direct measurements of activity.

While our current understanding of reversible PKA in plants
is both preliminary and fragmentary, there is support for

regulation in a few instances. Deacetylation of 3PGA-kinase
by incubation with a heterologous sirtuin led to a signif-
icant increase in catalytic activity (Finkemeier et al., 2011).
Likewise, RuBisCO LSU is Lys-acetylated in vivo, which
reduces activity (Finkemeier et al., 2011). There are several
reports that PKA inhibits/prevents/reverses protein interac-
tions. Plastidial glycolytic/Calvin cycle enzymes form a com-
plex/metabolon in the stroma (Graciet et al., 2004) mediated
by PKA of GAPDH (Winkel, 2004). The position and acety-
lation of the specific GAPDH Lys residue are conserved in
animal and bacterial sequences (Zhao et al., 2010; Zhang
et al., 2013), as is, presumably, the role in mediating pro-
tein interactions. Another example of PKA affecting protein
interactions is LHC subunit trimer formation and associa-
tion with the thylakoid membranes (Wu et al., 2011). Unfor-
tunately, thus far there have not yet been many instances
where protein interactions have been directly related to protein
activity.

LYS-Nε-ACETYLATION AND SIGNALING
Changes in the complex pattern of histone PKA as a mecha-
nism for controlling gene expression is being studied extensively
(e.g., Cigliano et al., 2013; Gu et al., 2013), and is not addressed
herein. Instead, we will focus on signaling between the nucleus
and the cytoplasmic organelles. Plastids and mitochondria are
specialized for both production and utilization of ATP and
reduced pyridine nucleotides. While both plastids and mito-
chondria are “semi-autonomous,” the vast majority of proteins
resident in these organelles is nuclear-encoded, translated in the
cytoplasm, and imported post-translationally. The protein com-
plements of these organelles are dynamic, and must be regulated
to match cellular energy demands. Mechanisms for this regula-
tion include sensing metabolic states and signaling the nucleus of
changes.

Nuclear regulation of organellar protein composition and con-
centration is extensive and complex, and signaling is considered
anterograde or forward. However, the idea of organellar signaling
leading to changes in nuclear gene expression is a newer concept
and is referred to as retrograde signaling (Ng et al., 2014). While
our understanding of retrograde signaling is at a very early nascent
stage, it has nevertheless been surprising that the best under-
stood signaling molecules are simple metabolic intermediates (e.g.,
Czarnecki et al., 2012).

In a remarkable example of both flexibility and economy,
acetyl-CoA is both a central metabolite and the substrate for
PKA (Hartl and Finkemeier, 2012; Wellen and Thompson, 2012).
Acetyl-CoA is a key component of major metabolic pathways
in the cytoplasm, peroxisomes, plastids, and mitochondria, and
examples of PKA of enzymes have been identified in all of
these subcellular compartments (Finkemeier et al., 2011; Wu et al.,
2011). Thus the metabolic status of these organelles, and of the
cell in general, might easily be signaled to the nucleus. In order
to maintain compartmental specificity, it would be necessary that
the signaling molecules be either an up- or downstream compo-
nent of the specific pathways. It has been recently suggested that
citrate and possibly malate could be the signals for mitochondrial
retrograde signaling (Finkemeier et al., 2013).
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Another potentially important aspect of PKA and signaling
involves subcellular dynamics. Both organelles and cytoplas-
mic protein complexes employ molecular motors to move along
the cytoskeleton. Actin filaments, intermediate filaments, and
microtubules are all subject to PKA, which can affect both intracel-
lular trafficking and protein interactions (Zencheck et al., 2012).
Cytoplasmic GAPDH can function either as part of a solu-
ble, non-associated glycolytic pathway or as a component of
a glycolytic metabolon at the mitochondrial outer membrane
(Graham et al., 2007). All aspects of this dynamic micro-
compartmentation are potentially controlled by PKA, includ-
ing association of the GAPDH subunits, association with the
metabolon (several if not all components of which are sub-
ject to PKA) and positioning in the cell via association with
actin (Wojtera-Kwiczor et al., 2013). It seems reasonable to
assume that the metabolic signals sent to the nucleus would
differ under each of these conditions. Finally, it is impor-
tant to consider interactive and hierarchical interactions among
PKA, other PTM, and other aspects of signaling (e.g., oxidative
signaling).

CROSSTALK BETWEEN KAC AND OTHER PTM
As yet we have only a nascent understanding and appreciation of
the complexity of various interacting PTM (van Noort et al., 2012;
Rao et al., 2013). Decoding the various levels of crosstalk patterns
is critical to appreciating the role of PTM in protein regulation,
signaling and plant development, and controlling gene expression.
The possibilities are manifold, and include multiple instances of
the same PTM at different sites [e.g., a priming modification at
site A is necessary for subsequent phosphorylation or acetylation
of site B (Lu et al., 2011; Woodsmith et al., 2013)], to hierarchical
responses to multiple PTM of the same site (Minguez et al., 2012;
Zauner et al., 2012), differential responses to multiple different
PTM at different sites within the same protein (cis-crosstalk), and
ultimately to crosstalk between PTM of different proteins (trans-
crosstalk).

An instance of PTM cis-crosstalk is the phosphorylation
of Ser10 residue of histone H3, which subsequently leads to
acetylation of Lys14 residue (Roth et al., 2001). The amino-
and carboxy-terminal tails of the core histones are decorated
with multisite-modifications including methylation, acetyla-
tion, phosphorylation, ADP-ribosylation, ubiquitination, and
sumoylation (Lau and Cheung, 2013). The “histone code” was
introduced as an explanation of how combinatorial systems
of histone PTM regulate transcription (Jenuwein and Allis,
2001). The histone-code hypothesis was subsequently modi-
fied, extended to include transcription factors, and referred
to as the PTM code (Benayoun and Veitia, 2009). With
the widespread occurrence of a plethora of PTM, we pro-
pose further extension of the “PTM code” to include regula-
tion, signaling, and development, as well as control of gene
expression.

CONCLUSION
While reversible O-phosphorylation has received the most atten-
tion of any PTM, there are an increasing number of reports
of Lys-Nε-acetylation. Based upon results from analyses of

mammalian systems, it is reasonable to expect discovery of
many additional sites of PKA of plant and microbial proteins.
It will be important to shift research emphasis from descrip-
tive to quantitative and to determine the stoichiometry and
dynamics of PKA rather than only sites of acetylation. In O-
phosphorylation there are large differences between the number
of kinases/client proteins, and phosphatases. In contrast, in
PKA there are large differences in the numbers of acetyltrans-
ferases/deacetylases, and client proteins. The bases for these
differences are obscure. Network analyses of the writers, erasers,
and readers of O-phosphorylation are relatively well-developed
in contrast to corresponding network analyses of N-acetylation.
In the absence of any apparent candidates for KAT in mito-
chondria, plastids or peroxisomes, how and where are proteins
resident within these organelles Lys-acetylated? A very complex
and multifaceted question addresses the nature and extent of PKA
crosstalk with other PTM. Finally, it will be important to achieve
an improved understanding of the roles of PKA in the long-range
signaling pathways.
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