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An increase in the distribution of data points indicates the presence of genetic
or environmental modifiers. Mapping of the genetic control of the spread of
points, the uniformity, allows us to allocate genetic difference in point distribution
to adjacent, cis effects or to independently segregating, trans genetic effects.
Our genetic architecture-mapping experiment elucidated the “environmental context
specificity” of modifiers, the number and effect size of positive and negative
alleles important for uniformity in single and combined stress, and the extent of
additivity in estimated allele effects in combined stress environments. We found
no alleles for low uniformity in combined stress treatments in the maize mapping
population we examined. The major advances in this research area since early
2011 have been in improved methods for modeling of distributions and means
and detection of important loci. Double hierarchical general linear models and,
more recently, a likelihood ratio formulation have been developed to better model
and estimate the genetic and environmental effects in populations. These new
methods have been applied to real data sets by the method authors and we
now encourage additional development of the software and wider application of
the methods. We also propose that simulations of genetic regulatory network
models to examine differences in uniformity and systematic exploration of models
using shared simulations across communities of researchers would be constructive
avenues for developing further insight into the genetic mechanisms of variation
control.
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Landers and Stapleton Update on uniformity genetics

INTRODUCTION
There is useful information in the distribution of data as well as
the mean (Cleasby and Nakagawa, 2011; Geiler-Samerotte et al.,
2013); genetic analysis of distributions can be especially infor-
mative (Hill and Mulder, 2010; Ronnegard and Valdar, 2012).
Specifically, an increased spread of measured allele effects indi-
cates the presence of a modifier, and is thus a clue to biological
mechanisms. In Figure 1, we illustrate this point by showing
the increased spread around the average in one symbol shape
(Figure 1A, where the normal environment has points clustered
around the mean where the stress environment has points spread
broadly up and down from the mean), and then illustrate how the
presence of a modifier that increases the growth trait under stress
could be visualized, using blue filled symbols as compared to the
yellow unfilled symbols (Figure 1B, compare normal to stressed
effect). The color-coding thus represents the additional “dimen-
sion” when a modifier is present. In our hypothetical Figure 1
example, the modifier ameliorates the stress effect of the allele, as
without the blue modifier points’ contribution to the mean, the
average value for the trait of any organism carrying that particu-
lar allele would be even lower than the two-fold decrease shown
in the Figure 1 example. Of course it is also possible to have equal
means when modifiers are present, which would mean that the
allele is not detectable as a separate genetic variant. This type of
modifier masking, without a detectable mean effect, could thus
contribute to false negatives in typical quantitative trait locus
(QTL) analyses of genetic architecture.

KEY CONCEPT 1 | Modifier

allele or alleles that change the measured phenotype effect of another allele.
This definition implies that the modifier effect is heritable and that the mod-
ifier allele effect is only measurable when the “receiving” genetic variant is
present.

KEY CONCEPT 2 | QTL (quantitative trait locus)

a particular allelic difference between DNA molecules that is associated with
a difference in a measured phenotype of the organisms. To do such an anal-
ysis, there must be variation in the genotype (SNPs, markers) and variation
in the phenotype (trait, measured value of trait).

KEY CONCEPT 3 | Genetic architecture

list of the number of alleles and the pattern of allele effects in a genotype-
phenotype mapping experiment. This can range from one or two large-effect
alleles to many very small-effect alleles, or a mixture of these types. Most
mapping populations only allow detection of relatively large effect SNPs
(down to about 1% of the total variation of the measured trait); we assume
that additional undetectable small-effect variants are present.

Our simple hypothetical example in Figure 1 includes both a
modifier and an environmental difference. Environment-specific
variants have been studied extensively (Lynch and Walsh, 1998),
and are known as plasticity alleles. Analysis of these alleles, or of
genotypes that include a variety of these alleles, differs depend-
ing on the goal of the analysis. For plant breeding, alleles that are
conditionally neutral or are favorable across all environments are
chosen (Lynch and Walsh, 1998). For a recent pictoral illustration
of plasticity allele effect classifications, please see the review by El-
Soda et al. (2014). In some breeding studies, alleles with effects

that assist in classifying sets of target environments are included
in trials (Windhausen et al., 2012). These standard genotypes
can allow grouping of test sites into suitable target production
environment predictors, and thus improve the efficiency of selec-
tive breeding programs. Information on important features across
sets of environments can also be derived from crop and weather
model parameters (Heslot et al., 2014) to better link gradient or
factorial variables with chromosomal alleles.

KEY CONCEPT 4 | Plasticity

difference in genetic architecture in a comparison of environments. This term
is normally used in comparisons of the same population, so that the genetic
variation is held constant while the environment is varied.

Basic research on the evolutionary trajectories and specific
interactions that underlie genetic architecture differences has
incorporated environment-specific differences, though combina-
tions of stress have rarely been examined. In this focused review
we emphasize multiple-factor combinations as an intermediate
between single-factor lab-scale experiments and large-scale envi-
ronmental dissection or clustering, such as crop modeling and
weather record covariate analyses. Multiple-stress effects are rele-
vant to breeding for our growing population, as typical crop yields
are substantially lower than yields under optimum conditions,
and the limiting factors vary. This yield gap could theoretically
be narrowed by breeding more tolerant genotypes (Tollenaar and
Lee, 2002), though the interactions between stresses complicate
selection. Typical crop environments are composed a mixture
of different limiting factors, with variation across the growth
season as well as season to season. There is relatively little infor-
mation about combinations of limiting, stressful environmental
factors (Sharma et al., 2013), which motivated us to map loci
important for single stress and combined stress using a facto-
rial approach. We focused specifically on the genetic architecture
of uniformity by environment interactions, as modifiers are key
in understanding mechanism, so that we can move toward more
general predictability as well as prediction based on environment
context-dependent genetic variants. We encourage researchers
who are designing genetic architecture comparisons to consider
experimental designs that allow fitting of these variance-control-
detection models that will allow identification of new aspects of
the genotype-phenotype map.

KEY CONCEPT 5 | Uniformity

spread of a group of measurements of experimental units such as individual
plants; high uniformity indicates that most of the measurements in the repli-
cates are close to the average, whereas low uniformity indicates that many
points are far from the average of the replicates. The value of this number
will scale with the value of the mean unless adjusted.

SUMMARY OF THE MAIN RESULTS OF OUR FRONTIERS
ARTICLE (MAKUMBURAGE AND STAPLETON, 2011)
The three key results of our mapping experiment include the
“context specificity” of modifiers, comparison of the number and
effect size (major QTL or minor QTL) of positive and nega-
tive alleles for uniformity in single and combined stress, and the
extent of additivity in estimated allele effects in combined stress
environments. To recap the first point, modifiers that map to the
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FIGURE 1 | Hypothetical example of a modifier effect on a plasticity

allele. This illustration is formulated like Figure 1 in Ronnegard and
Valdar (2012), except that our focus is on environmental factors rather
than allele interactions. The y axis is the measured amount of a
phenotype, and the x axis indicates the effect of a single allele of a
plastic, environmentally-sensitive locus. (A) The stress-sensitivity is
apparent in the difference in the mean (dashed line) contribution to the
phenotype of the allele, with high phenotype effect in the normal
control setting and low contribution in the stress environment. The

spread of the points also differs for this allele, with a tight clustering
of points around the mean in the control and a wider spread in the
stress environment. (B) A modifier allele is illustrated by color-coding
the phenotype effect estimates. In this example the modifier confers a
higher mean (yellow points) and the plasticity allele retains its
sensitivity to environmental stress (blue points). The mean difference is
still visible in this example, though with the modifier identified the
mean plasticity of the focus allele would be even larger than originally
estimated from part (A).

same allele as the mean effect (cis alleles) would be more likely to
be transmitted together through the generations and thus not be
dependent on the population context, as compared to trans alle-
les that could segregate independently. We found nine trans alleles
for maize plant height trait uniformity, with these nine modifying
loci spread over seven of the ten maize chromosomes. These nine
loci are trans alleles, as there was no QTL at the same locus for
mean amount of height. We detected only one coincident cis QTL
(in other words, one locus that had a significant effect on both
uniformity and amount of height). That single coincident QTL
had different allele effect patterns across environments for height
and uniformity, so it is not strictly cis in effect. Thus, the modi-
fiers of plant height in this maize IBM94 RIL mapping population
are appeared to primarily segregating independently from the loci
that contribute directly to tall and short plants in our experiment.

KEY CONCEPT 6 | RIL

recombinant inbred line; these are experimental populations derived from
the crossing of two inbred parents and subsequent inbreeding, so that cross-
overs are now visible as “chunks” of the genome from each parent in each
RIL. “Clones” of the same genotypes can be tested in many environments,
and the lines have a known ancestral origin so that presence of a SNP can
be modeled as independent from SNPs on other chromosomes.

Secondly, under single stress conditions there are stress-
specific alleles that are high and low uniformity as compared
to the population mean, but we only detected alleles impor-
tant for uniformity decrease under combined stress. This pattern
is different than the architecture of mean plant height, which
has loci with both high and low allele effects under combined

stress. In our hypothetical example (Figure 1B), the yellow-point
modifier effect confers stress environment tolerance, and thus
reduces the effect size of the blue allele under stress. This par-
ticular modifier interaction example was chosen as it illustrates
a common modifier pattern in our data, with the stress mod-
ifier reducing the effect size of the allele at a locus. Thus, the
stress-specific modifier would increase the spread of the points
(decreasing the uniformity) as it conferred tolerance to the stress.
All the uniformity alleles we found do indeed decrease unifor-
mity, though we could not separate the effects of the modifier
and the allele in the way we color-coded our hypothetical exam-
ple, as we carried out separate Levene and mean analyses and
compared them by map overlay. New methods for detecting
modifier contributions are discussed in the next section of this
review.

Finally, we found six loci that had predictable multiple-stress
allele uniformity effects and three loci with surprising allele effects
that could not be extrapolated from single stress effect estimates.
One-third non-additive is probably an underestimate, as we first
identified our QTL as having at least one significant genotype-
environment interaction. After these G x E loci were identified
we examine the allele effects post hoc. We did not fit models
designed to test for modifier contributions as illustrated in our
example (Figure 1B). Fitting of models designed to specifically
detect effects jointly in combined and single stress and to also sep-
arate modifier contributions from mean effects would be useful in
future analyses, as such more specific models for additive or mul-
tiplicative combinations might be expected to increase our ability
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to detect higher-order effects even in small data sets. We discuss
this point in more detail in the “Areas for Future Work” section
below.

REVIEW OF RELATED RESULTS SINCE OUR FRONTIERS
PUBLICATION
The major advance in this area since early 2011 has been the
development of improved methods for modeling of distributions
and means and detection of important loci. Double hierarchi-
cal general linear models and, more recently, a likelihood ratio
formulation have been developed to better model and estimate
the genetic and environmental effects in populations. There have
also been applications of the models to new data sets and appli-
cation of straightforward statistical models to well-understood
biological data since our publication appeared.

Conventional statistical methods, while still popular, have
some inherit pitfalls that have been addressed by more recent
methods. Levene’s test (the method used in the article that is
the focus of this review) is obtained as the absolute differ-
ences between each observation and its group’s mean or median.
Generally, an F-statistic is used to make inferences about the trait’s
uniformity. This test is relatively robust to the distribution of the
data points. Unfortunately, the test is unable to compare means
and uniformity simultaneously and lacks the capacity to include
covariates directly in the analysis.

In determining how much organisms’ genetics control
responses to environments, a novel statistical method was devel-
oped that used double hierarchical generalized linear models
(DHGLM) to estimate the genetic variance of both macro- and
micro-environmental sensitivity simultaneously (Ronnegard
and Valdar, 2012). In this formulation, macro-environmental
factors can be thought of as those that are known and can be
measured while micro-environmental factors are unknown. The
most recent published DHGLM analysis (Mulder et al., 2013b)
combines two models: one model to estimate the genetic variance
of macro-environmental sensitivity, expressed as the genetic vari-
ances in the intercept and slope of a reaction norm curve (where
the reaction norm is the difference between two environments; if
the difference is connected with a line the slope of the line can
be used as the amount of the environmental difference), com-
bined with a generalized linear model for the residual variance in
order to estimate genetic variances in micro-environmental sensi-
tivity, expressed as the differences in environmental variance. The
implementation requires iteration between the two models and
updating the weight matrices used in the iteratively weighted least
squares estimation method until variance component estimates
converge (i.e., estimates become relatively stable). The DHGLM
method was shown to have generally low bias in most cases, with
special attention to be paid to the relatively low bias present in

KEY CONCEPT 7 | Environmental sensitivity

difference in measured phenotype value when the population is examined
in different environments. The difference in environments can be loosely
specified, such as difference in season or site. Alternatively, environments
can be varied in a tightly specified way, as factorial experiments with all other
aspects controlled.

the genetic parameters even when the estimated statistical model
differed from the true genetic model. However, precision was
usually not very high, especially in the estimation of the genetic
variance of micro-environmental sensitivity (i.e., standard devia-
tions across replicates were very high). This was especially true in
designs with small families; the authors used an animal breeding
model and recommended designs with at least 100 sire families
each with at least 100 offspring each in order to ensure reasonably
high precision.

In addition to the offspring size effect on precision, the inclu-
sion of additional fixed effects in the models could further
increase both the required family size and required offspring per
family. However, the required offspring numbers for detecting
genetic variance in macro-environmental sensitivity is generally
lower than for differences in micro-environmental sensitivity and
this expectation was observed in the authors’ analysis. Further,
the environmental parameter used for the reaction norm slope
was assumed to be known and without error. In many cases,
this might be fine, but there may be specific situations in which
researchers may wish to consider environmental parameters esti-
mated from the data. Unfortunately, environmental parameters
that are estimated from the data were shown to seriously bias the
estimations of genetic variance in macro-environmental sensitiv-
ity. Provided these limitations are addressed in the experimental
design, the DHGLM method remains a very useful method to
increase our understanding of the genetic variance of environ-
mental sensitivity as well as provide us with tools for discrimi-
nating between these types of environmental sensitivity.

A more recently developed method (Cao et al., 2014) for
detecting quantitative trait loci with variance heterogeneity
(vQTL) is a likelihood ratio test developed to test differences
in means and variances simultaneously (LRTMV). Derivatives of
this test allow for single-purpose testing of variance heterogeneity
(i.e., phenotype uniformity) and mean differences (notated LRTV

and LRTM respectively). This omnibus method tests for these dif-
ferences by comparing a full model with a null model that lacks
certain properties with the purpose of evaluating the differences
in likelihood. The full model requires dummy/indicator predic-
tors for genotype (for example, for random population samples
for the major allele homozygous, heterozygous, and minor allele
homozygous classes) and a heterogeneous residual variance (a dif-
ferent residual variance for each allele type). It also permits the
inclusion of a covariate matrix (e.g., sex, subpopulation struc-
ture principal components, etc.). The null model’s specification
depends on the purpose of the test, for which the authors out-
lined three. Specifically, in a scenario where differences in means
and variances are to be tested (LRTMV), the null model sim-
ply excludes terms for both genotype and models the residual
variance as homogenous (i.e., modeling all genotypes as having
identical variance), effectively leaving a model with an intercept,
covariates, and normal error term. Similarly, if the scenario

KEY CONCEPT 8 | Variance heterogeneity

differences in the spread of points between different samples or factors
in an experiment; this is similar to uniformity but with the addition of the
comparison of more than one experimental unit to the meaning.
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only requires us to test the uniformity of the phenotype (LRTV),
then the null model is identical to the full model, except again,
the residual variance is modeled as homogenous. Finally, if the
test required only the differences in means to be tested (LRTM),
then the null model would be specified as having unique resid-
ual variances per genotype, but exclude dummy predictors for
genotype.

The purpose of the likelihood ratio tests (LRTMV, LRTM, and
LRTV) is to compare the likelihood of both the full and null model
given observed phenotypes and using that to draw conclusions
about the presence of mean differences and/or variance hetero-
geneity. Under Wilks’s theorem, the distribution of the likelihood
ratio tests follows an approximate chi-squared distribution, per-
mitting us to draw conclusions with significance testing. The
LRTV, however, is closely related to Bartlett’s test of equality of
variance, which has shown to be sensitive to even slight viola-
tions of the normality assumption. Simulation studies of the LRT
showed that LRTMV and LRTV (both including test of variance
heterogeneity) indeed have inflated Type I errors, and thus the
authors recommended a bootstrap method for non-normal traits.

Compared with the double hierarchical generalized linear
models (using the pre-cursor to the 2011 macro- and micro-
environmental model) in simulated data with strong normality
(an advantage in uniformity testing), the LRT mean tests per-
formed comparably. In the variance tests, however, the LRTV

performed with the highest power. In single-purpose tests, the
LRTM and LRTV are comparable to the DHGLMM and the
DHGLMV. Further, joint tests (tests where differences in means
uniformity were tested simultaneously) were never as powerful as
mean tests in the presence of just mean differences, and similarly,
joint tests were never as powerful as variance tests in the presence
of just variance heterogeneity.

Both the DHGLM and LRT methods have been applied to real
data sets. The results of the cow heard analyses indicated that the
within-herd micro-environmental model had the best fit, and that
selection for increased milk production increased the environ-
mental sensitivity (Mulder et al., 2013b). In a second application
to dairy traits, the environmental effect was again shown to con-
tribute substantially to the variance (Mulder et al., 2013a). In the
Cao et al. (2014) work the new method was applied to a well-
understood functional variant important for Alzheimer disease;
the analysis showed that closely linked SNPs with different popu-
lation distributions could be detected using the method. As yet,
this omnibus method has not been applied to environment or
modifier detection.

Variance-detection methods have not been widely exploited in
plant genetics since 2011. We found one example, in analysis of
flowering time. The genetics of flowering in plants is extensively
studied and this pathway was recently used for a data analysis
incorporating uniformity (Shen et al., 2012). Shen et al. (2012)
used the Brown-Forsythe method for variability analysis, as there
were no repeated-genotype replicate measurements available in
a suitable data set. They found novel, trans loci for uniformity
rather than the same loci as the mean effects, which is consis-
tent with our results. As the flowering time control pathway in
Arabidopsis thaliana is well described, these authors were able
to determine that variance control is reflected in downstream

pathway components; in other words a high-variation allele for
a gene early in the flowering genetic regulatory network has high-
variation downstream-gene QTL. Flowering time is known to
be strongly affected by a specific environmental cold treatment,
vernalization. When Shen et al. (2012) examined the effect of ver-
nalization, they found that the variance QTL are lost. This result
is similar to the plasticity effect that we observed, where adding
an environment resulted in reduced uniformity QTL effects as
compared to the single stress environment.

In addition to improved statistical methods since 2011, and
applications of those methods, there is some recent published
work on combined stress environment genetics. We recently
examined the genetic architecture of combined ultraviolet radi-
ation and drought stress QTL in maize, in both the IBM94
mapping populations and a subset of the nested association NAM
population (Makumburage et al., 2013). In both our examples
of multiple-stress QTL mapping (plant height under drought
and fertilizer limitation and several growth traits in ultraviolet
radiation and drought conditions), the mean trait alleles decline
less than expected from the effects estimated in the single stress
cases. This is consistent with the Makumburage and Stapleton
(2011) uniformity genetic architecture, where the uniformity
decreased—there were no allele effects identified that increased
uniformity in combined stress environments. Combined stress
alleles are thus hypothesized to attenuate plasticity. Another key
publication on combined stress genetics approaches the topic
from a breeding perspective—Cairns et al. (2013) found that
optimal genotypes under combined heat and drought were not
identified as optimal in single stress environments. This provides
incentive for us to better understand the mechanism of stress
combination for future use in prediction and selection of test field
sites.

Statistical formulations for plasticity epistasis and pleiotropy
detection have been described recently (Zhou et al., 2013; Zhai
et al., 2014). These models could guide model construction and
fitting to combination-stress environment data for multiple traits
together, instead of using qualitative map comparison as we orig-
inally did; however, the models would need to be extended to
incorporate factorial treatment environment combinations to fit
our data. Pathway and set detection methods (Bakir-Gungor et al.,
2014; Marjoram et al., 2014) have also recently been suggested
as approaches for defining more specific models to fit to datasets
such as ours.

AREAS FOR FUTURE RESEARCH
As uniformity decreases in the combination stress environment
in our experiments with the maize IBM94 population, we pro-
pose that there are more modifiers involved in combination stress
than in single stress responses. We suggest that a single-stress
response would have a smaller network of transcription factors
or physiological intermediaries, and genetic variation in those
factors would be detectable in small mapping experiments. In
contrast, the network of master regulators in combinations of
stresses is hypothesized to balance input from different stress
responses and thus be either a) a larger network with each indi-
vidual transcription factor or physiological component playing a
proportionally smaller, attenuating role, so that there would be
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no large-effect detectable allele that controls high genotype-by-
environment effects in the combined-stress case, or b) have atten-
uating network interactions that repress QTL effects. We base
our proposed mechanisms on both our results and on the more
general observation that heritability decreases in stress environ-
ments. We favor the second explanation in theory, as the network
of effects cannot be increased indefinitely as more environmen-
tal factors are applied, and as negative feedback/homeostasis is
a defining feature of biological systems. These two hypotheses
could be distinguished by increasing the power to detect small-
effect QTL, either by increasing the sample size or improving
the model power, or both; an increase in detection of QTL in
combination stress would support the first hypothesis. In addi-
tion, we suggest that agronomically important factors such as heat
and drought combinations be considered for follow-up experi-
mental analyses; these factors are relatively difficult to manipulate
and would likely require large numbers of experimental plots and
careful fitting of covariates, but would provide results relevant to
conditions predicted under climate change. If attenuating com-
bined environment networks are common in elite germplasm,
then simulations of breeding strategies could incorporate this
constraint.

In small mapping populations such as ours there is limited
statistical power for detection of combinatorial all-two-way inter-
actions. We thus suggest that pathway or other complex biological
priors be developed for follow-up analyses. Simulations and
improved, easy-to use simulation methods to assist in develop-
ing priors for fitting complex causal models to the relatively small
combination stress data sets that are possible for single investiga-
tors to generate would be helpful. A careful comparison of models
with negative interaction latent variable structure to models with
increased numbers of latent variables would also be helpful in dis-
tinguishing between our two hypotheses for combination stress
genetic architecture.

Why does heritability typically decline under stress? Is it an
increase in noise as the system goes out of bounds, or a recruit-
ment of more functions? We can restate this question in the as
“does Ve or Vg∗g∗e increase?”. The key to addressing this ques-
tion is developing better ways to partition the variance and to
rigorously incorporate priors such as genetic regulatory path-
way architecture. We suggest further exploration of causal mod-
els using methods such as Pearl’s causal graph calculus (Pearl,
2000) and comparison of semi-supervised vs. self-training anal-
ysis methods, to help untangle causality and modifiers in small,
high-dimensional data sets. As a follow-up to our discussion on
wide crosses for favorable alleles (Makumburage and Stapleton,
2011), we suggest that mapping of specific and general combin-
ing ability of uniformity in stress and control environments might
be helpful in addressing the architecture of stress-responsive net-
works. Since the combining ability of uniformity can be mapped
to SNPs it is not a “noise” effect, and we suggest that dynamic
network models include dissection of both variances and means.

As we consider methods for complex trait and environment
interaction, our choice of simulation model type becomes impor-
tant. For example, are trans alleles for uniformity best thought of
as nodes, as physical objects that change state such as protein that
can be phosphorylated, or increased hormone concentrations, or

should they be conceptualized as networks, with connections such
as kinase activity or hormone movement? We suggest simulations
of genetic regulatory network models to examine differences in
uniformity, and systematic exploration of models using shared
simulations across communities of researchers to better under-
stand the constraints and power of different methods such as
structural equation modeling and Boolean network construc-
tion. Simulations are especially useful for comparison of detection
methods for precision and accuracy, and for ensuring that follow-
up experiments have maximum power. Model systems for genetic
architecture are also important to consider as simulations are
constructed. For example, in yeast model systems that have one-
step allele replacement, comprehensive simulation of knock-out
effects should be part of any modeling effort. Plant model sys-
tems are especially well suited to multivariate trait data collection
and analysis, and to developmental series-environment analyses,
as well as to large-scale replication of genotypes by seed increase.
Developmental and multi-trait factors should be incorporated
into gene regulatory network models and explicitly tested for
sensitivity to inform future experimental work.
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