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Chloroplasts are the central nodes of the metabolic network in leaf cells of higher plants,
and the conversion of proplastids into chloroplasts is tightly coupled to leaf development.
During early leaf development, the structure and function of the chloroplasts differ greatly
from those in a mature leaf, suggesting the existence of a stage-specific mechanism
regulating chloroplast development during this period. Here, we discuss the identification
of the genes affected in low temperature-conditional mutants of rice (Oryza sativa). These
genes encode factors involved in chloroplast rRNA regulation (NUS1), and nucleotide
metabolism in mitochondria, chloroplasts, and cytosol (V2, V3, ST1). These genes are all
preferentially expressed in the early leaf developmental stage P4, and depleting them
causes altered chloroplast transcription and translation, and ultimately leaf chlorosis.There-
fore, it is suggested that regulation of cellular nucleotide pools and nucleotide metabolism
is indispensable for chloroplast development under low temperatures at this stage. This
review summarizes the current understanding of these factors and discusses their roles in
chloroplast biogenesis.
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INTRODUCTION
Low temperature is a major abiotic constraint to plant growth. In
rice, two stages of development are known to be the most sensitive
to low temperatures the young seedling stage and the booting stage
(Kaneda and Beachell, 1974; Cruz et al., 2013). At the booting
stage, pollen sterility caused by low temperatures decreases the
final grain yield. At the seedling stage, low temperatures reduce
germination and delay leaf emergence and greening. Leaf chlorosis
and yellowing are common symptoms when a low temperature
prevails during this stage (Cruz et al., 2013), which suggests the
low temperature arrests chloroplast development and functioning.

The effect of a low-temperature environment on chloroplast
functions has been studied extensively (Berry and Björkman,
1980; Hasanuzzaman et al., 2013). A low temperature causes
swelling of the thylakoid lamellae, vesiculation of the thy-
lakoid, and ultimately breakdown of the entire chloroplast.
A low temperature also inhibits electron transport and the
carbon assimilation apparatus such as the Calvin cycle, ATP
synthase, and ribulose 1,5-bisphosphate carboxylase/oxygenase
(RuBisCO; Demmig-Adams and Adams, 1992; Asada, 1999;
Yamori et al., 2011; Hasanuzzaman et al., 2013). However,
these physiological symptoms have been mainly investigated in
mature leaves containing functionally established chloroplasts.
The molecular mechanisms underlying early chloroplast devel-
opment under low temperatures have not yet been extensively
studied.

virescent is a chlorotic mutant of higher plants causing young
leaves to have a reduced chlorophyll content, but the chloro-
phyll levels recover as they grow (Archer and Bonnett, 1987).
In contrast with other chlorotic mutants showing lethality such
as albino, chlorina, and xantha, the virescent mutants are not

terminal, and can reach maturity and produce seeds. Cer-
tain classes of the virescent mutations that have been reported
are low-temperature conditional. They develop chlorotic leaves
under low temperatures, but not under higher temperatures,
suggesting a temporal aberration in a factor governing chloro-
plast development under low-temperature conditions. During
the past decade, numerous genes responsible for virescent muta-
tions have been identified in rice, and they have been shown to
be involved in the chloroplast genetic system, including tran-
scription, translation, and nucleotide metabolism. Because many
of these genes are expressed temporally during early leaf devel-
opment, they are probably involved in the establishment of
the plastid genetic system at this phase under low tempera-
tures. Here, we introduce four factors involved in chloroplast
biogenesis under low-temperature conditions (NUS1, GKpm,
RNRS1, and RNRL1) that have been identified through genetic
and functional analysis of virescent mutants of rice (v1, v2, v3,
and st1).

TEMPERATURE-SENSITIVE PHASE OF virescent MUTANTS
DURING EARLY LEAF DEVELOPMENT
virescent-1, -2, and -3 (v1, v2, v3) were the first virescent mutants
reported in rice and the mutations have been used as classi-
cal genetic markers (Omura et al., 1977). They develop chlorotic
leaves at a restrictive low temperature (20◦C) but nearly normal
green leaves at a permissive higher temperature (30◦C; Figure 1A).
They are often hard to distinguish from each other, showing
similar phenotypes. An important characteristic of these vires-
cent mutants is that the leaf phenotype is not influenced by
growth temperature after its emergence (Iba et al., 1991). This
indicates that the leaf phenotype is irreversibly determined by
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the environmental temperature at a certain developmental stage
before emergence. Furthermore, this phenotype can be useful for
determining the temperature-sensitive period (TSP), by shifting
the temperature from restrictive to permissive during leaf devel-
opment, or vice versa. This technique was originally performed
with Drosophila (Suzuki, 1970), in which the TSP for condi-
tional mutants was limited to particular stages of development.
Temperature-shift experiments showed that the TSPs of all v1, v2,
and v3 mutants was at stage P4 of leaf development (Iba et al.,
1991).

Rice has the striking feature of leaf primordia production (plas-
tochron) that is synchronized with leaf emergence (phyllochron)
in shoot development (Nemoto and Yamazaki, 1993; Itoh et al.,
2005). This regularity of leaf development enables a series of suc-
cessive stages to be defined, starting with P0 (leaf founder cells),
through P1 (youngest primordium), P2, P3, P4, and P5, to P6 (a
fully expanded leaf; Figure 1B). Anatomical studies have shown
that in rice the P4 stage is characterized by rapid leaf blade elonga-
tion (Itoh et al., 2005). Leaves at the P4 stage have an initial length
of 3–5 mm and reach a final size of about 8–10 cm. Chlorophyll
concentration per unit of fresh weight is negligible in the early P4
stage, and increases to about 40% in a mature leaf (Kusumi et al.,
2010a). Electron microscopic observations have indicated that
chloroplasts in the leaves at the early P4 stage have a small spher-
ical shape (below 1 μm) and poor internal thylakoid structures.
After the mid-P4 stage, thylakoid extension and grana formation
in chloroplasts has been observed within the mid-portion of the
leaf (Kusumi et al., 2010b).

The process of chloroplast development is divided roughly
into three steps: (i) plastid division and DNA replication; (ii)

establishment of the plastid genetic system; and (iii) activation
of the photosynthetic apparatus (Jarvis and Lopez-Juez, 2013;
Yagi and Shiina, 2014). These stepwise processes are partially
achieved by two plastidial RNA polymerases; a nucleus-encoded
phage-type RNA polymerase (NEP), and a plastid-encoded
bacterial-type RNA polymerase (PEP; Hajdukiewicz et al., 1997;
Yagi and Shiina, 2014). Plastid genes involved in the second step
are known to be mainly transcribed by NEP, and those involved
in the third step are transcribed by PEP (Yagi and Shiina, 2014).
Analyses for chloroplast transcript accumulation revealed that the
first step of chloroplast differentiation is likely to start in the leaves
at the P0–P3 stages, and will largely finish during the early P4 stage
(Figure 1C; Kusumi et al., 2010b). The second step occurs signif-
icantly in the leaves at mid-P4, and the decline of the second step
and onset of the third step take place during late P4 (Kusumi et al.,
2010b). The accumulation of tRNAGlu, a bifunctional molecule
mediating the early steps of chlorophyll synthesis, and the switch-
ing of transcription from NEP to PEP (Hanaoka et al., 2005),
showed two peaks (late-P4 and P5). The first activation of tRNAGlu

can be related to the NEP–PEP transition. Therefore, the TSP of v1,
v2, and v3 mutants at the P4 stage suggests that they may be related
to the establishment of the chloroplast genetic system, which is the
major process occurring at this stage.

REGULATION OF CELLULAR NUCLEOTIDE POOLS INVOLVED
IN THE CHLOROPLAST DEVELOPMENT
Virescent-2 (V2) was the first gene isolated from virescent mutants
of rice (Sugimoto et al., 2007). Functional analyses showed that
V 2 encoded guanylate kinase (GK), a key enzyme in guanine
nucleotide biosynthesis that catalyzes the conversion of GMP to

FIGURE 1 | (A) Phenotypes of the wild-type (Wt) and virescent mutants (v1,
v2, and v3) grown at a restrictive temperature (20◦C). (B) Schematic of a rice
seedling with a fully expanded third leaf. L1, L2, L3, and L4 indicate the first,
second, third, and fourth leaf, respectively. Developmental stages (P0–P6) are

also indicated. shoot base, SB corresponds to a 5 mm section from the
bottom of the shoot and contains pre-emerged leaves at P0–P3 stages.
(C) Plastid gene expression patterns during leaf development (Kusumi et al.,
2010a). Horizontal bars indicate the leaf developmental stages.
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FIGURE 2 | Representation of de novo purine nucleotide synthesis in

chloroplasts and cytosol (Sugimoto et al., 2007;Yoo et al., 2009; Kusumi

et al., 2011; Nomura et al., 2014). Proteins whose function has been linked to
chloroplast development at cold temperature are depicted in red. The names

of the mutation for each protein are indicated below. Orange dotted arrows
indicate hypothetical routes for membrane transport or enzyme conversions.
PRPP, 5-phosphoribosyl 1-pyrophosphate; IMP, 5’-monophosphate; AdS,
adenylosuccinat.

GDP (Figure 2). In bacterial and animal species, GK is local-
ized in the cytoplasm and participates in maintenance of the
guanine nucleotide pools. Plants possess two types of GK; cytoso-
lic GK (GKc) and plastid/mitochondrial GK (GKpm; Sugimoto
et al., 2007). Analysis of RNAi knockdown plants showed that
GKc is essential for the growth and development of plants, but
not for chloroplast development (Sugimoto et al., 2007). V2 is
a single-copy gene encoding the GKpm protein. V2-encoded
GKpm predominantly accumulates in developing leaves at the
P0–P4 stages (Sugimoto et al., 2007), which is consistent with
a temperature-shift experiment in which the V2 gene prod-
uct was shown to be necessary at the P4 stage. A chloroplast
possesses its own nucleoside diphosphate kinase that catalyzes
subsequent GDP to GTP conversion (Figure 2; Sugimoto et al.,
2007; Kihara et al., 2011; Nomura et al., 2014). Therefore, GKpm
can limit the GDP/GTP pool in the chloroplast. Reduction
of GKpm activity will cause a shortage of the GTP neces-
sary for the assembly and function of the plastid translation
machinery. In the v2 mutant, Val162 has been substituted with
Ile, which caused a 20-fold reduction in specific GMP activity
(Sugimoto et al., 2007), and severely suppresses chloroplast trans-
lation (Sugimoto et al., 2004). Similarly, bacterial GTPases have
important roles in ribosome biogenesis and protein translation
(Verstraeten et al., 2011). In Arabidopsis and tobacco, plastidial
GTPases have been reported to be involved in chloroplast rRNA
processing and ribosome biogenesis in higher plants (Jeon et al.,
2014). It has also been reported that an Arabidopsis mutant defi-
cient in GTP-dependent chloroplast elongation factor G developed
pale cotyledons and greenish true leaves, as observed in the GKpm-
deficient Arabidopsis (Albrecht et al., 2006; Sugimoto et al., 2007).

This phenotypic similarity suggests the involvement of GKpm in
the regulation of plastid translation, via limitation of the GTP
pool.

Additionally, it was recently reported that GKpm is a tar-
get of regulation by guanosine 3′,5′-bisdiphosphate (ppGpp) in
chloroplasts of rice, as well as those of peas and Arabidopsis
(Nomura et al., 2014). In bacteria, ppGpp is a key regula-
tory molecule that controls the stringency of responses through
direct interaction with protein factors involved in gene expression
such as RNA polymerase, translation factors, and DNA primase
(Potrykus and Cashel, 2008; Tozawa and Nomura, 2011). In higher
plants, ppGpp is synthesized in chloroplasts from GTP (GDP)
and ATP (Figure 2). Major ppGpp synthase/hydrolase enzymes,
named RSH (RelA/SpoT homolog), are localized to chloroplasts
(Mizusawa et al., 2008). It has also been reported that ppGpp can
negatively regulate chloroplast RNA polymerase (Sato et al., 2009)
and the elongation cycle of translation (Nomura et al., 2012). This
suggests that ppGpp functions as a regulatory molecule in chloro-
plasts, and interaction between GKpm and ppGpp may limit the
GTP (and ATP) pool, which will subsequently retard chloroplast
transcription and translation.

Nucleotide biosynthesis in the cytosol is also involved in the
regulation of chloroplast differentiation at early leaf development
under cold stress. Yoo et al. (2009) showed that the genes respon-
sible for the v3 and st1 mutants of rice encoded the large and
small subunits of ribonucleotide reductase (RNR), RNRL1 and
RNRS1, respectively (Yoo et al., 2009). RNR is constructed from
large RNR (α) and small RNR (β) subunits, which associate to
form an active heterodimer complex (α2β2) and catalyze conver-
sion of nucleotide diphosphates (NDPs) to deoxyribonucleotide
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diphosphates (dNDPs; Figure 2). Synthesized dNDPs are rapidly
converted into dNTPs for DNA replication and repair. Therefore,
the RNR activity affects the entire de novo nucleotide synthe-
sis pathway in vivo (Elledge et al., 1992). As observed in the v3

mutant, st1 also caused low-temperature-dependent leaf chloro-
sis. RNRL1 and RNRS1 abundantly accumulated in the leaves
at the P0–P4 stages, and this was enhanced by low temperature
(Yoo et al., 2009). Both the v2 and st1 mutations caused mis-
sense mutations resulting in reduction of the first ab dimerization,
which correlated with the degree of chloroplast disruption (Yoo
et al., 2009). This suggests that a threshold level of RNR activ-
ity plays an important role in regulating nucleotide flow from
the cytosol to chloroplasts. The involvement of cytosolic RNR
in plastid nucleotide metabolism is further supported by the
report that RNR deficiency causes plastid DNA degradation in
pollen in Arabidopsis (Tang et al., 2012). Balancing chloroplast
biogenesis and cell division during early leaf development would
be achieved through optimization of the nucleotide pool in the
cellular compartments.

NUS1 REQUIRED FOR rRNA MATURATION AT LOW
TEMPERATURES
In bacteria, synthesis of ribosomes requires a Rho-dependent anti-
termination system for the efficient transcription of 16S, 23S, and
5S rRNA from rrn operons (Santangelo and Artsimovitch, 2011).
All rrn operons have anti-terminator sequences in their leader and
spacer regions, referred to as BoxB, BoxA, and BoxC, that allow
RNA polymerase, modified with protein factors, to transcribe
rRNA operons. Previously known protein factors that interact
with the anti-terminator include NusA, NusB, NusE, and NusG
(Santangelo and Artsimovitch, 2011). Recently, Virescent-1 (V1)
was identified from a v1 mutant of rice and shown to encode a
novel chloroplast RNA binding protein, named NUS1 (Kusumi
et al., 2011). The C-terminal region of NUS1 has a structural simi-
larity to the RNA-binding domain of the bacterial NusB, which
is classified as alpha helical with seven helices. Accumulation
of NUS1 specifically occurs in the developing leaves at the P4
stage, and is enhanced by low-temperature treatment (Kusumi
et al., 2011). Although there are no regions identical to bacte-
rial Box regions within the chloroplast rrn operon in rice, the
gene order of 16S–23S–4.5S–5S and their coding sequences are
highly conserved with those of the bacterial rrn operon (Bollen-
bach et al., 2007). RNA-immunoprecipitation and gel mobility
shift assays indicated that NUS1 binds to the upstream leader
region of the 16S rRNA precursor (Kusumi et al., 2011). The
v1 mutant had a nonsense mutation in the helical domain and
failed to accumulate the NUS1 protein, and therefore proba-
bly represents the null phenotype. In the v1 seedlings grown at
low temperatures, the processing and accumulation of chloro-
plast rRNA and chloroplast translation/transcription was severely
suppressed (Kusumi et al., 1997, 2011). Additionally, Arabidopsis
seedlings deficient in a NUS1 ortholog also exhibited a similar
phenotype (Kusumi et al., 2011). Therefore, NUS1 is likely to be
involved in the regulation of rRNA maturation, which occurs
at the P4 stage. Bacterial NusB is involved in the protein com-
plex that interacts with RNA polymerase, nascent mRNA, and
ribosomes (Santangelo and Artsimovitch, 2011; Bubunenko et al.,

2013). Recent proteomics-based techniques have allowed the iden-
tification of previously uncharacterized proteins that contribute
to the chloroplast genetic system (Majeran et al., 2012; Pfalz
and Pfannschmidt, 2013). Majeran et al. (2012) showed that in
maize, NUS1 and other factors structurally similar to the bacte-
rial Nus-related factors, such as NusG and Rho, were included in
nucleoid-enriched fractions. Examination of the physical inter-
actions among these proteins, and identification of other factors
interacting with the NUS1 protein, will be vital for elucidating the
role of NUS1 in the regulation of the chloroplast genetic system.

CONCLUDING REMARKS
Compared with other cereals such as wheat and barley, rice is
susceptible to cold stress, probably because of its tropical ori-
gin (Cruz et al., 2013). The degrees of low-temperature sensitivity
and damage vary according to the growth stage. Yoshida (1981)
showed that temperature sensitivity varies between stages and
that rice plants have a lower threshold temperature for cold
damage during the early young seedling stage (10–13◦C) than
during the reproductive stage (18–20◦C), making them less sensi-
tive to low temperature as young seedlings. In field conditions,
sudden low-temperature phases often occur during the early
seedling development in spring. Therefore, it is reasonable to
infer that rice developed this mechanism to protect leaf and inter-
nal chloroplast development against low temperature-induced
retardation.

It has been known that processes of chloroplast translation
are sensitive to cold stress. Environmental low temperature arrests
protein synthesis by causing ribosomal pausing (Grennan and Ort,
2007) or retardation of ribosomal biogenesis and RNA processing
(Millerd et al., 1969; Hopkins and Elfman, 1984; Barkan, 1993).
Furthermore, loss of translational factors such as ribosomal pro-
tein (Rogalski et al., 2008; Fleischmann et al., 2011; Ehrnthaler
et al., 2014; Song et al., 2014), translation elongation factor (Liu
et al., 2010), rRNA methylase (Tokuhisa et al., 1998) and the RNA
binding protein required for RNA processing (Kupsch et al., 2012)
leads to sensitivity to low temperatures. These reports suggest
the existence of a particular mechanism that protects chloro-
plast translation against cold stress, which can be expected to be
associated with NUS1, V2, V3, and ST1.

The observed involvement of control of translation and
nucleotide metabolism in low-temperature tolerance/adaptation
has also been reported in bacteria. For example, in Escherichia coli,
a temperature downshift hampers ribosome function, and ribo-
somes change their composition to function properly (Akanuma
et al., 2012). It has also been reported that cold-shock proteins are
often induced not only by low temperatures but also by transla-
tional inhibitors, such as chloramphenicol and tetracycline (Weber
and Marahiel, 2003). Therefore, a reduction in translational capac-
ity may be interpreted as a cellular signal triggering the cold
adaptation response. Furthermore, analyses of bacterial mutants
deficient in ppGpp synthesis showed that artificially induced high
levels of ppGpp diminish the expression of cold-shock proteins,
while low levels increase their production (Potrykus and Cashel,
2008). ppGpp synthesis is triggered by occupation of the ribo-
somal A-site by an uncharged tRNA (Potrykus and Cashel, 2008).
Considering the hampered ribosomal function at low temperature,
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it is possible that a decrease in cellular ppGpp levels following a
temperature downshift plays a physiological role in the regulation
of gene expression and adaptation to growth at low tempera-
ture. The bacterial NusB protein has also been reported to be
involved in cold tolerance. Cells containing a disrupted nusB gene
are viable under standard growth conditions, but are cold sensitive
(Quan et al., 2005). They are defective in rRNA synthesis and have
a decreased peptide elongation rate at low temperatures. NusA,
another host factor of the Nus complex, is also induced by cold
treatment (Phadtare and Severinov, 2010), suggesting the impor-
tance of Nus and the anti-termination system in the cold response
in bacteria. These similar properties between the chloroplast and
the bacterial low-temperature response imply that higher plants
have taken over the bacterial protective system in response to low
temperature.

Recently, several other genes have been isolated from low
temperature-conditional, chloroplast-deficient mutants of rice,
such as OsV4 (virescent 4), wlp1 (white leaf and panicles 1), and
tcd9 (thermo-sensitive chloroplast development 9; Gong et al., 2014;
Jiang et al., 2014; Song et al., 2014). The corresponding genes in
OsV4, wlp1, and tcd9 mutants encode plastidial pentatricopeptide
repeat (PPR) protein, plastid ribosomal protein L13, and a sub-
unit of chaperonin 60 (CP60α) required for chloroplast division,
respectively. Similarly to NUS1, V2, V3, and ST1, their functions
are speculated to be involved in early chloroplast development
at low temperatures (Gong et al., 2014; Jiang et al., 2014; Song
et al., 2014). It is possible that these factors are involved in a
closely related mechanism to chloroplast protein expression and
assembly, which is required at low temperatures, but not essen-
tial for chloroplast development during early leaf development at
higher temperatures. Therefore, the maintenance of the develop-
ing plastid genetic system will be crucial for tolerance of cold at
the seedling stage in rice.
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