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Auxin is a key regulator of plant growth and development, orchestrating cell division,
elongation and differentiation, embryonic development, root and stem tropisms, apical
dominance, and transition to flowering. Auxin levels are higher in undifferentiated
cell populations and decrease following organ initiation and tissue differentiation. This
differential auxin distribution is achieved by polar auxin transport (PAT) mediated by
auxin transport proteins. There are four major families of auxin transporters in plants:
PIN-FORMED (PIN), ATP-binding cassette family B (ABCB), AUXIN1/LIKE-AUX1s, and
PIN-LIKES. These families include proteins located at the plasma membrane or at the
endoplasmic reticulum (ER), which participate in auxin influx, efflux or both, from the
apoplast into the cell or from the cytosol into the ER compartment. Auxin transporters
have been largely studied in the dicotyledon model species Arabidopsis, but there is
increasing evidence of their role in auxin regulated development in monocotyledon species.
In monocots, families of auxin transporters are enlarged and often include duplicated
genes and proteins with high sequence similarity. Some of these proteins underwent sub-
and neo-functionalization with substantial modification to their structure and expression
in organs such as adventitious roots, panicles, tassels, and ears. Most of the present
information on monocot auxin transporters function derives from studies conducted in rice,
maize, sorghum, and Brachypodium, using pharmacological applications (PAT inhibitors)
or down-/up-regulation (over-expression and RNA interference) of candidate genes. Gene
expression studies and comparison of predicted protein structures have also increased our
knowledge of the role of PAT in monocots. However, knockout mutants and functional
characterization of single genes are still scarce and the future availability of such resources
will prove crucial to elucidate the role of auxin transporters in monocots development.
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INTRODUCTION
Plants exhibit an astonishing variety of shapes and develop mul-
ticellular bodies able to live for hundreds of years and reach
considerable size. They rely on continuous growth and are able to
regenerate organs from undifferentiated meristematic cells popu-
lations. Plant growth and organ differentiation, as well as response
to environmental stimuli, are regulated, among other factors,
by endogenous compounds called phytohormones. They control
the plant developmental program by regulating cell division and
expansion, tissue differentiation, and senescence. Phytohormones
can act within the cell of origin or move to other sites in the plant,
where they are perceived as a signal by hormone receptors (Davies,
2004).

The plant hormone auxin was first isolated as Indol-3-acetic
acid (IAA) by Went (1926), as he studied the tropic response
of Avena sativa coleoptiles. Subsequently, during the first half
of the twentieth century, other four phytohormones were identi-
fied, including abscisic acid, cytokinins, gibberellins, and ethylene
(Kende and Zeevaart, 1997). More recently, several additional
compounds have been recognized as hormones including brassi-
nosteroids (BR), jasmonate (JA), salicylic acid (SA), nitric oxide
(NO), and strigolactones (SLs) (Tarkowská et al., 2014). Auxin

is a regulator of many aspects of plant development, including
cell division, elongation, differentiation, embryonic development,
root and stem tropisms, apical dominance, and flower forma-
tion (Young et al., 1990; Woodward and Bartel, 2005; Tanaka
et al., 2006; Möller and Weijers, 2009; Leyser, 2010; Müller
and Leyser, 2011; Christie and Murphy, 2013; Gallavotti, 2013;
Geisler et al., 2014). Besides IAA, which is the most abundant
natural form of auxin, several auxin-like molecules have been
identified. While 4-chloroindole-3-acetic acid (4-Cl-IAA), indole-
3-butyric acid (IBA), and phenylacetic acid (PAA) are all found in
plants, 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-
1-acetic acid (NAA) are synthetic compounds that have biological
activity similar to IAA (Bertoni, 2011; Simon and Petrášek,
2011).

Local biosynthesis, degradation and conjugation contribute to
the modulation of IAA homeostasis at the cellular level. Avail-
ability of free IAA inside the cell is also controlled by auxin
transport, which occurs in two distinct pathways: a passive diffu-
sion through the plasma membrane (PM) and an active cell-to-cell
transport, depending on the protonation state of IAA. IAA is
a weak acid with a dissociation constant of pK = 4.8. In a
neutral or basic environment IAA− will be the most abundant
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form (99.4% ionized at pH = 7.0), whereas in the acidic extra-
cellular space IAAH is predominant (about 20% protonated at
pH = 5.5) (Delbarre et al., 1996; Estelle, 1998; Kramer and Ben-
nett, 2006). IAAH can enter into the cell through the PM by
passive diffusion or active transport by PM importers. Once inside
the cytoplasm, which has a neutral pH, IAA− becomes the pre-
dominant form and it cannot freely move out of the cell unless
actively transported by efflux carrier proteins (Figure 1). The dif-
ferential localization of transporters at specific sites on the PM
creates a directional auxin flow that eventually establishes a polar
auxin transport (PAT) stream through adjacent cells. Four classes
of auxin transporters have been identified: the PIN-FORMED
(PIN) exporters, the ATP-binding cassette (ABC)-B/multi-drug
resistance/P-glycoprotein (ABCB/MDR/PGP) subfamily of ABC
transporters, the AUXIN1/LIKE-AUX1 (AUX/LAX) importers,
and the newly described PIN-LIKES (PILS) proteins.

Despite the fact that auxin was first isolated and studied
in the monocot A. sativa, characterization of auxin trans-
port proteins derives mostly from forward genetic studies of
mutants with defects in development, organ morphogene-
sis, and gravitropism in the dicot Arabidopsis thaliana. In
recent years, the number of studies on the biological role of
PAT in monocots has increased. This has been facilitated by
the lower cost of deep sequencing of whole plant genomes
and transcriptomes and by the availability of tools such as
transgenic lines carrying proteins with fluorescent tags, which
are used in subcellular localization studies and PAT fluxes
modeling (Mohanty et al., 2009; Egan et al., 2012; Yu et al.,
2012). In this work, we present a comprehensive description
of monocots auxin transporters and provide, where possi-
ble, functional comparison between monocot and Arabidopsis
proteins.

FIGURE 1 | Auxin transport proteins regulate intracellular and cell to

cell auxin fluxes. Auxin (IAA) crosses the plasma membrane through
passive diffusion, as protonated form, or through PM transporters, as
deprotonated form. PINs are efflux carriers located at the PM and ER and
can be re-inserted in the lipid bilayer by recycling via the endocytic

pathway. AUX/LAXs and PILs are influx carriers located at PM and ER,
respectively. ABCBs are located at the PM and use energy from ATP to
traslocate IAA. The coordinated localization of the different transporters
determines the overall directionality of the auxin flux and contributes to
the regulation of intracellular auxin levels.
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MATERIALS AND METHODS
PIN and PILS protein sequences of Arabidopsis, rice, maize
sorghum, and Brachypodium (gene accession numbers are listed
in Table S1) were aligned using the CustalW 2.0 software (Larkin
et al., 2007). The alignment file was used to generate an unrooted
tree with MEGA 6.0 (Tamura et al., 2013), applying the Neighbor-
joining method, the Poisson model and 500 bootstrap replications.
Bootstrap analysis values >60 are indicated at each node.

PINs
PINs are the most studied family of auxin transporters in plants.
PIN genes are present in eight copies in Arabidopsis and encode
integral membrane proteins with two conserved domains formed
by transmembrane helices, typically five at both the N and C ter-
mini, and a less conserved central hydrophilic loop of variable
length (Křeček et al., 2009; Ganguly et al., 2012). Their subcellular
localization has been correlated with the length of the hydrophilic
domain. In Arabidopsis, PIN1, -2, -3, -4, and -7 have a longer
loop (ranging in size from 298 to 377 amino acid residues), PIN5
and -8 have a shorter loop (27–46 residues) and PIN6 contains an
intermediate form (Křeček et al., 2009; Ganguly et al., 2010;Viaene
et al., 2013). “Long” PINs are generally inserted into the PM while
“short” PINs are located in the endoplasmic reticulum (ER) and
they are thought to contribute to intracellular auxin homeosta-
sis (Mravec et al., 2009; Ding et al., 2012; Cazzonelli et al., 2013).
More recently, it has been demonstrated that PIN5 is also PM local-
ized, depending on the cell type and developmental stage, and that
PIN5, -6, and -8 function in polar cell−to−cell transport of auxin
by regulating coordinated influx and efflux of IAA into and out
of the ER (Bender et al., 2013; Sawchuk et al., 2013; Ganguly et al.,
2014).

Several auxin transporters show polar localization in the cell,
but it is only in the case of PIN proteins that polar target-
ing occurs more frequently (Figure 1). Shifting PIN polarity
results in the alteration of PAT which leads to developmental
defects in Arabidopsis (Löfke et al., 2013). The polar localization
of PIN proteins is established by cycling between the PM and
endosomal compartments such as the trans-Golgi network/early
endosomes (TGN/EE). PIN recycling can take place via endocy-
tosis of clathrin-coated vesicles and depends on phosphorylation
and ubiquitination (Robert et al., 2010; Kleine-Vehn et al., 2011;
Löfke et al., 2013). Unphosphorylated PINs, or those dephospho-
rylated by the PP2A/PP6 phosphatase, are recycled to the PM by
the brefeldin A (BFA)-sensitive ADP-ribosylation factor-guanine
nucleotide exchange factor (ARF-GEF) GNOM. Phosphorylation
of PIN proteins by the protein kinase PINOID (PID) results in their
GNOM-independent recycling to the PM on the opposite side of
the cell (Friml et al., 2004; Dhonukshe et al., 2010). Monoubiquiti-
nation and subsequent polyubiquitination of PIN proteins induce
their endocytosis, followed by trafficking from the TGN/EE to
late endosomes, from where the SNX1/BLOC-1 complex mediates
transfer to multivesicular bodies (MVBs) for vacuolar degrada-
tion (Habets and Offringa, 2014). Recently, another Arabidopsis
kinase, D6 PROTEIN KINASE (D6PK), has been demonstrated to
regulate PIN phosphorylation and, together with PID, D6PK pro-
motes PINs-mediated auxin transport at the PM by maintaining
their phosphorylation status. D6PK PM localization is essential to

establish and maintain PIN phosphorylation, and d6pk mutants
have defects in both negative gravitropism and phototropism due
to impaired auxin transport (Zourelidou et al., 2009; Willige et al.,
2013; Barbosa et al., 2014).

Phylogenetic studies on the origin and evolution of PIN pro-
teins have demonstrated that their general structure is highly
conserved across the plant kingdom and suggest that the last com-
mon ancestor of land plants had at least one “long” (canonical)
PIN protein (Carraro et al., 2012; Bennett et al., 2014). Strong
selective pressure maintained PINs function as auxin carriers while
they underwent sub- and neo-functionalization with substantial
modification to protein structure, possibly due to selective loss
of phosphorylation sites in their central loop (Dhonukshe et al.,
2010; Fozard et al., 2013; Bennett et al., 2014). This generated sev-
eral clades of non-canonical proteins with shorter and divergent
structure, leading to altered localization and biological function.
Monocot PIN families are often enlarged due to whole genome
duplications and the retention of multiple copies of similar pro-
teins. Both Oryza sativa and Zea mays contain four PIN1 copies
and present at least one monocot-specific gene, PIN9, which is
divergent in sequence and expression pattern from the closest
dicot PINs (Xu et al., 2005; Forestan et al., 2012; Bennett et al.,
2014; Clouse and Carraro, 2014). The PIN9 protein profile pre-
diction shows an intermediate hydropathic profile in between the
“long” and the “short” PINs.

AtPIN1 is expressed early during embryonic development and
later both in the primary root and in the inflorescence stem. Dis-
ruption of AtPIN1 expression leads to the formation of naked,
pin-shaped inflorescences and abnormalities in the number, size,
shape, and position of lateral organs (Okada et al., 1991; Gälweiler
et al., 1998). As suggested by the pin1 phenotype, PIN1 plays an
important role in establishing the plant developmental plan and
is involved in floral bud formation, phyllotaxis (the arrangement
of leaves and flowers around the stem), vascular development,
vein formation, embryogenesis, lateral organ formation, anther
development, and root negative phototropism (Gälweiler et al.,
1998; Benková et al., 2003; Reinhardt et al., 2003; Weijers et al.,
2005; Feng et al., 2006; Scarpella et al., 2006; Lampugnani et al.,
2013; Zhang et al., 2014). Arabidopsis pin2 was the first pin mutant
identified in a screen for agravitropic seedlings by Bell and Maher
(1990). Initially, it was called agr1, and the gene responsible for the
phenotype was cloned independently by four research groups and
named AGR1/EIR1/PIN2/WAV6 (Chen et al., 1998; Luschnig et al.,
1998; Müller et al., 1998; Utsuno et al., 1998). AtPIN2 functions in
auxin-regulated root gravitropic response and its expression lev-
els and polar cellular localization are altered by salt stress (Abas
et al., 2006; Sun et al., 2008). AtPIN3 is expressed during embryo
development and the Atpin3 mutant shows reduced growth, and
decreased apical hook formation (Friml et al., 2002b; Zádníková
et al., 2010). It has been shown that AtPIN3 plays an impor-
tant role in root gravitropism, as in vertically grown seedlings
AtPIN3 is positioned symmetrically at the PM in the columella
cells, but rapidly re-localizes laterally to the lower PM of the
statocytes following gravistimulation. AtPIN3 relocalization deter-
mines the direction of the auxin flux, which leads to asymmetric
auxin accumulation and subsequent differential cell growth (Friml
et al., 2002b). AtPIN3 is also involved in root negative phototropic
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response, as blue-light induced AtPIN3 polarization is needed for
asymmetric auxin distribution (Zhang et al., 2013).

AtPIN4, as well as AtPIN7, are involved in auxin controlled
embryo, primary root, and apical hook development (Friml
et al., 2002a, 2003; Vieten et al., 2005; Kleine-vehn et al., 2010;
Zádníková et al., 2010). AtPIN7 also undergoes relocalization sim-
ilar to AtPIN3 in response to gravistimulation in a subgroup of the
columella cells (Rosquete et al., 2013). AtPIN5 is involved in auxin
homeostasis, and it has been demonstrated that it can export auxin
from yeast cell (Mravec et al., 2009). AtPIN6 is involved in stamen
development, and microarray and reporter assays have demon-
strated that it is necessary for nectaries development (Bender et al.,
2013). Expression analysis of pPIN6::PIN6-GFP lines during leaf
development has demonstrated that AtPIN6 localizes to the ER and
expression is initiated in broad sub-epidermal domains that later
on narrow to sites of vein formation (Bender et al., 2013; Sawchuk
et al., 2013). Moreover, AtPIN6 is implicated in processes such
as shoot apical dominance, lateral root primordia development,
adventitious root formation, root hair outgrowth, and root wav-
ing where it regulates auxin homeostasis (Cazzonelli et al., 2013).
AtPIN8 is expressed in the male gametophyte, and has a crucial
role in pollen development and functionality (Ding et al., 2012).
AtPIN8, together with AtPIN5 and AtPIN6, also take part into leaf
vein network patterning by regulating intracellular auxin transport
between the cytoplasm and the ER lumen. Their action is exerted
coordinately with AtPIN1, in order to modulate intracellular auxin
levels in extending veins (Sawchuk et al., 2013).

PINs IN Oryza sativa
Rice has 12 PINs (Table S1) and OsPIN1 was first described by
Xu et al. (2005). Transmembrane motif analysis of the deduced
amino acid sequence shows that OsPIN1 is a “long” (canoni-
cal) PIN protein, which harbors a long hydrophilic loop and two
transmembrane regions composed of five helices each. Protein
structure, phylogenetic, and functional analysis identify OsPIN1
as the closest ortholog of AtPIN1 (Xu et al., 2005; Carraro et al.,
2012; Wang et al., 2014a). The three OsPIN1s, -a, -b, and -c are
expressed in roots, stem base, stem and, at a lower level, in leaves
and young panicles. In these last two organs, OsPIN1c expres-
sion is lower than in the other tissues (Xu et al., 2005; Wang
et al., 2009). Over-expression of OsPIN1 in 35S::OsPIN1 trans-
genic plants increases primary root length and lateral root number.
Suppression of OsPIN1 expression obtained by RNA interference
(RNAi) reduces the number of adventitious roots and increases the
number of tillers and the tiller angle. Thus, OsPIN1 is involved in
auxin transport in primary and adventitious roots, which are more
abundant in rice compared to Arabidopsis. The role of OsPIN1
in PAT was confirmed by treating wild type plants collars with
1-N-Naphthylphthalamic acid (NPA), which blocks initiation and
growth of adventitious and lateral roots, while application of
the auxin NAA rescues the RNAi-induced phenotype (Xu et al.,
2005). OsPIN2 is the most recently characterized PIN gene of
rice and shows a different expression pattern compared to OsPIN1
(Chen et al., 2012). Wang et al. reported that OsPIN2 is highly
expressed in roots and at the base of the stem, less in young panicles
and exhibits no expression in adult stem and leaves (Wang et al.,
2009). Over-expression of OsPIN2 results in a larger tiller angle,

reduced plant height and an increase in tillers number compared
to wild type. OsPIN2 over-expression increases auxin transport
from the shoot to the root–shoot junction and transgenic plants
are less sensitive to root growth inhibition by NPA (Chen et al.,
2012). Overall, the results indicate that OsPIN2 acts in a specific
auxin-dependent pathway which includes OsPIN1b and OsTAC1
(TILLER ANGLE CONTROL 1), and controls rice shoot rather
than root architecture (Chen et al., 2012). Three OsPIN5 homologs
are present on chromosomes 1, 8, and 9 of rice. The expression
patterns of OsPIN5a and OsPIN5c are very similar: while only
weakly expressed in roots, they show very high expression levels in
leaves, shoot apex, and panicle. Small amounts of OsPIN5b tran-
script are detected in the shoot apex, roots of 6-week-old plants
and 4-week-old callus tissue (Wang et al., 2009; Miyashita et al.,
2010). One AtPIN8 homolog has been identified in rice but it
has not been characterized yet (Miyashita et al., 2010). OsPIN9
is highly expressed in adventitious root primordia and pericycle
cells at the base of the stem (Wang et al., 2009). OsPIN9 expression
levels in roots are decreased by IAA and increased by cytokinin [6-
benzylaminopurine (6-BA)] application (Wang et al., 2009; Shen
et al., 2010). Expression analysis shows that OsPIN10a is present in
the stem, leaves, and young panicle, but not in the roots. OsPIN10b
is mainly expressed in leaves but also at the stem base and in lateral
root primordia and both genes are up-regulated by IAA, 6-BA, and
JA treatments (Wang et al., 2009).

PINs IN Zea mays
The PIN family in maize includes 12 members characterized
by often overlapping but sometimes organ-specific expression
domains (Forestan et al., 2010). ZmPINs consist of both “long”
(ZmPIN1a, -b, -c, -d, ZmPIN2, ZmPIN10a, -b) and “short” forms
(ZmPIN5a, -b, -c, ZmPIN8), with ZmPIN9 having a protein struc-
ture in between the two classes (Forestan et al., 2012; Table S1).
The ZmPIN1 homologs were among the first identified in maize
and are expressed at the PM, supposedly functioning in PAT at
different stages of plant development. The ZmPIN1a, -b, and -c
loci are located in duplicated regions on chromosomes 9, 5, and
4, respectively, and, along with ZmPIN1d, are characterized by
a six exons/five introns gene structure. This gene organization
is similar to that of AtPIN1 and OsPIN1. The proteins encoded
by ZmPIN1a, -b, -c, and -d present higher sequence similarity
to AtPIN1 than other PINs from Arabidopsis and they should be
considered as different orthologs of AtPIN1. In monocot species
such as maize, the presence of paralogs encoding protein isoforms
derived from duplication and neo-functionalization cannot be
ruled out, but so far there is no conclusive evidence in the case of
ZmPINs. ZmPIN1a, -b, -c are ubiquitously expressed but differen-
tially modulated in maize vegetative and reproductive tissues and
during kernel development. ZmPIN1 plays an important role dur-
ing embryogenesis, where detectable hormone activity inside the
developing maize embryo appears much later than in Arabidop-
sis (Forestan et al., 2010; Chen et al., 2014). In situ hybridization
showed that ZmPIN1a localizes in the root apical meristem (RAM)
and the calyptrogen, which is a specialized layer of meristematic
cells that continuously generate replacements for the root cap cells
that die during primary root growth. Immunolocalization exper-
iments locate ZmPIN1 in the central cylinder, vasculature, and
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cortex of the primary root (Carraro et al., 2006; Forestan et al.,
2012). NAA application to a ZmPIN1a-YFP reporter line causes
a more diffuse localization of ZmPIN1a and leads to changes
in root anatomy, reducing the size of both root cap and meris-
tem and developing of a pluristratified epidermis (Forestan et al.,
2012). ZmPIN1a also interacts with KNOTTED1 (KN1) in shap-
ing leaves and leaf veins patterns and regulates PAT during ear,
tassel, and spikelet differentiation (Carraro et al., 2006; Gallavotti
et al., 2008; McSteen, 2010; Bolduc et al., 2012). ZmPIN1a was
shown to rescue the Atpin1 phenotype and the application of NPA
to plants at different stages of development leads to PAT disruption
related defects (Gallavotti et al., 2008; Gallavotti, 2013). ZmPIN1b
is mainly expressed in the epidermis, root cap, and vasculature.
ZmPIN1c localizes in the epidermis and vasculature of the root
central cylinder, while ZmPIN1d is specifically expressed in the
tassel, ear, and in the fifth node of adult plants. ZmPIN1d is also
expressed in the L1 layer of the shoot apical meristem (SAM)
and inflorescence meristem during the transition to flowering
(Forestan et al., 2012). ZmPIN2 is expressed in the root tip, male
and female inflorescences and is involved in kernel development
(Forestan et al., 2012). Interestingly, ZmPIN2 is up-regulated in the
roots of the brachytic2 mutant, which is characterized by reduced
shoot-ward auxin transport at the root apex and reduced root
gravitropic growth (McLamore et al., 2010). ZmPIN5a is highly
expressed in roots and ZmPIN5b is expressed in the 5th node of
the stalk. ZmPIN8 is up-regulated during the early phase of ker-
nel development and in the 7th and 8th internodes. ZmPIN9 is
expressed in the root epidermis and pericycle and NAA treatment
increases its transcript levels in the root segment just before the
root apex. There are two PIN10 homologs in maize, ZmPIN10a
and ZmPIN10b. Both genes are expressed in the male inflores-
cence, with ZmPIN10a also up-regulated during the early phases
of kernel development (Forestan et al., 2012).

PINs IN Sorghum bicolor
In Sorghum bicolor, PINs have been identified and their expression
pattern described, but results from functional analysis are still
missing (Shen et al., 2010; Wang et al., 2011). The nomenclature
for sorghum PIN genes does not match the one followed for Ara-
bidopsis, rice, and maize therefore, we include the gene identifier
together with the common name (Table S1). In sorghum, “long”
PIN proteins have a conserved canonical architecture, with two
hydrophobic domains divided by a hydrophilic loop (Zazímalová
et al., 2007; Shen et al., 2010). Their chromosomal distribution,
expression profile and up- or down-regulation following treat-
ment with auxin transport inhibitors [NPA, 1-naphthoxyacetic
acid (1-NOA) and 2,3,5-triiodobenzoic acid (TIBA)] have been
described (Shen et al., 2010). The SbPIN1 (Sb02g029210) tran-
script, similar to ZmPIN5c, is predicted to localize to the tonoplast
and to be constitutively expressed in all tissues (Shen et al., 2010).
SbPIN2 (Sb03g029320), one of the sorghum proteins predicted to
be located at the PM,shows high sequence similarity to ZmPIN10a.
SbPIN3 (Sb03g032850), similar to At/Os/ZmPIN8, is highly
expressed in flowers (Shen et al., 2010). SbPIN4 (Sb03g037350)
is the sorghum gene that shares most similarity with ZmPIN9 and
it is also highly expressed in roots, although not exclusively (Shen
et al., 2010). However, its expression is down-regulated by IAA

application and increased by BR, while ZmPIN9 is up-regulated by
auxin treatments (Shen et al., 2010; Forestan et al., 2012). SbPIN5
(Sb03g043960), similar to Zm/OsPIN5a, is expressed at low lev-
els in untreated plants while IAA treatment suppresses expression
in leaves and roots (Shen et al., 2010). The gene named SbPIN6
(Sb04g028170) encodes a “long” form similar to PIN1 proteins
(Wang et al., 2011). The gene named SbPIN8 (Sb07g026370) is the
most similar to ZmPIN5b having a predicted protein structure of
a “short” PIN (Shen et al., 2010). Protein sequence alignment and
expression pattern of SbPIN9 (Sb10g004430) suggest homology to
ZmPIN10b. The SbPIN11 (Sb10g026300) sequence is orthologous
to Zm/OsPIN2 and is more expressed in roots and seedling shoots.

PINs IN Brachypodium distachyon
In the genome of the grass Brachypodium distachyon there are both
“long” and “short”/“intermediate” PIN forms (Bennett et al., 2014;
O’Connor et al., 2014; Wang et al., 2014a). Two PIN1 paralogs
have been identified: BdPIN1a (Genebank ID XM_003563990.1)
and BdPIN1b (Genebank ID XM_003570618.1). BdPIN1a and
BdPIN1b are highly expressed in internal tissues, with BdPIN1b
spanning a broader domain. Transgenic Brachypodium lines carry-
ing pPIN1a:PIN1a-YFP and pPIN1b:PIN1b-YFP constructs show
expression in developing spikelets, suggesting a role in vascular
patterning (O’Connor et al., 2014). The newly identified “Sister-
of-PIN1”(SoPIN1)/PIN11 clade contains Brachypodium genes that
are divergent in sequence from BdPIN1s and have no represen-
tatives in Brassicaceae. SoPIN1 is highly expressed in the stem
epidermis and is consistently polarized toward regions of high
expression of the DR5 auxin-signaling reporter, which suggests a
role in the localization of new primordia (O’Connor et al., 2014).

ABCBs
The ABC superfamily of membrane proteins includes more
than a hundred different members in plants (Kang et al., 2011).
The subfamily B (ABCB) includes homologs of the mammalian
MDRs/PGPs, several of which are involved in auxin transport
(Geisler and Murphy, 2006; Cho and Cho, 2013). ABCB trans-
porters are integral membrane proteins that actively transport
chemically diverse substrates across the lipid bilayers of cellu-
lar membranes (Figure 1). The core unit of a functional ABC
transporter consists of four domains: two nucleotide-binding
domains (NBDs) and two transmembrane domains (TMDs). The
two NBDs unite to bind and hydrolyze ATP, providing the driv-
ing force for transport, while the TMDs are involved in substrate
recognition and translocation across the membrane (Jasinski et al.,
2003; Higgins and Linton, 2004; Bailly et al., 2011). Arabidopsis
has 22 ABCBs and the first ABCBs characterized as functioning
in IAA traslocation were identified in seedlings (Sidler et al., 1998;
Noh et al., 2001). ABCB1, ABCB4, ABCB14, ABCB15, ABCB19,
and ABCB21 are associated with auxin transport, although not
exclusively (Geisler and Murphy, 2006; Titapiwatanakun and Mur-
phy, 2009; Kaneda et al., 2011; Kamimoto et al., 2012; Cho and
Cho, 2013). To date, the best-characterized ABCBs are AtABCB1,
AtABCB4, and AtABCB19. They all function in auxin driven
root development and require the activity of the immunophilin
TWISTED DWARF1 (TWD1)/FKBP42 to be correctly inserted
at the PM (Wu et al., 2010). AtABCB1/PGP1 was the first plant

www.frontiersin.org August 2014 | Volume 5 | Article 393 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Evolution_and_Development/archive


Balzan et al. Auxin transporters in monocots

MDR-like gene cloned from Arabidopsis and it is localized at the
PM in the root and the shoot apex of seedlings (Dudlers and Her-
tig, 1992; Noh et al., 2001). The Atpgp1 original mutant exhibits
only a subtle phenotype compared to wild type plants, but a new
allele designated as atpgp1-2, shows a shorter hypocotyl and dwarf
phenotype under long-day conditions (Geisler et al., 2005; Ye et al.,
2013). Disruption of AtABCB19/AtMDR1 expression results in
partial dwarfism and reduced PAT in hypocotyls and inflorescences
(Noh et al., 2001). AtABCB19 functions together with AtABCB1
in long distance transport of auxin along the plant main axis
in coordination with AtPIN1, and regulates root and cotyledon
development and tropic bending response (Lin and Wang, 2005;
Bandyopadhyay et al., 2007; Rojas-Pierce et al., 2007; Nagashima
et al., 2008; Lewis et al., 2009; Christie et al., 2011). AtABCB4 is a
root-specific transporter involved in auxin transport during root
gravitropic bending, root elongation, and lateral root formation
(Santelia et al., 2005; Terasaka et al., 2005; Kubeš et al., 2011; Cho
et al., 2012). This transporter is substrate-activated and functions
as an auxin importer at low substrate concentration, switching to
auxin export as the availability of auxin increases (Yang and Mur-
phy, 2009; Kubeš et al., 2011). AtABCB21 encodes a protein that is
the closest homolog to AtABCB4 and is expressed in the aerial parts
of the seedling and in the root pericycle cells. Just like AtABCB4,
AtABCB21 functions as a facultative importer/exporter that con-
trols cellular auxin levels (Kamimoto et al., 2012). AtABCB14 was
first described as a malate importer that functions in the control of
stomata aperture according to CO2 levels (Lee et al., 2008). More
recently, AtABCB14 and 15 have been shown to be active in the
vascular tissue of the primary stem, which shows anatomical alter-
ations in abcb14 and abcb15 mutants. Since IAA transport along
the inflorescence is reduced in both mutants, it was proposed that
AtABCB14 as well as AtABCB15 participate in auxin transport
(Kaneda et al., 2011).

ABCBs IN Oryza sativa
Homologs of ABCBs have been described in monocots. In
rice, Garcia et al. identified 24 putative ABCB sequences, with
OsABCB22 and OsABCB14/16 being homologs of AtABCB19 and
AtABCB1, respectively (Garcia et al., 2004; Knöller et al., 2010).
OsABCB14 is expressed in all plant organs, including roots, stem,
leaves, nodes, root-stem transition region, filling seeds, pan-
icle, and flowers (Xu et al., 2014). Spatial expression analysis
shows that OsABCB14 expression is higher in root tips than
in the basal root zone. Knockout mutants of OsABCB14 have
decreased PAT rates, conferring insensitivity to 2,4-D and IAA.
A role for OsABCB14 in auxin uptake and iron (Fe) homeostasis
has been demonstrated. Acropetal auxin transport in rice abcb14
plants root system is significantly lower than in wild type. The
iron concentrations in shoots, roots, and seeds are significantly
enhanced, and the expression level of iron deficiency-responsive
genes was significantly upregulated in rice abcb14 mutants (Xu
et al., 2014). Recent evidence also suggests that N-glycosylation of
ABCB proteins in rice might be important for root development.
In an EMS-generated mutant line for OsMOGS, which encodes
a mannosyl-oligosaccharide glucosidase, root PAT is altered due
to under-glycosylation of OsABCB2 and OsABCB14 (Wang et al.,
2014b).

ABCBs IN Zea mays AND Sorghum bicolor
In maize and sorghum, loss-of-function mutations in the
AtABCB1 orthologous genes ZmABCB1 and SbABCB1 result in
short stature plants designated as brachytic2 (br2) and dwarf3
(dw3), respectively (Multani et al., 2003). br2 and dw3 are charac-
terized by reduced basipetal auxin transport and greatly reduced
stalk height (Multani et al., 2003). BR2 is expressed in nodal meris-
tems, and analyses of auxin transport and content indicate that
BR2 function in monocot-specific meristems is the same as that
of AtABCB1, which is an auxin transporter. Thus ABCB1/BR2
auxin transport ability is conserved between dicots and monocots,
but should be considered in the context of distinct architec-
tures of monocot versus dicot plants, which have unsegmented
(Arabidopsis) and segmented stems (maize, rice, sorghum, Brachy-
podium) (Figure 2; Multani et al., 2003; Knöller et al., 2010). The
dwarfing phenotype of dw3 is very similar to that of br2 and
it is the result of a 882-bp tandem duplication in exon 5 that
disrupts protein function and the plant’s ability to establish an
auxin flux in the intermediate internodes (Multani et al., 2003).
These mutants are of particular interest because of the agro-
nomic importance in terms of their ability to resist to lodging
and to dramatically enhance the harvest index of the plant. Thus
dwarfing traits are important due to the potential distribution
of nutrients and energy to grain production rather than vege-
tative growth. Given that br2, which has a defect in ZmABCB1,
causes the stunting of lower internodes mostly, it raises the
possibility that other brachytic mutants may arise from defects
in other ABCB transporters. In maize, there are three putative
AtABCB19 homologs: ZmABCB10-1 (GRMZM2G125424) and
ZmABCB2-1 (GRMZM2G072850), present closest sequence sim-
ilarity to OsABCB16, while ZmABCB10-2 (GRMZM2G085236),
is more similar to the true auxin transporter OsABCB14 (Knöller
et al., 2010). ZmABCB10-1 (GRMZM2G125424) is expressed in

FIGURE 2 |The br2 maize mutant shows dramatically impacted stalk

architecture. The br2 adult plant shows altered stalk height due to
reduction in internode length, which is caused by the disruption of IAA
transport mediated by ZmABCB1. The same phenotype is present in the
sorghum dw3 mutant, which carries a tandem duplication in the
SbABCB1/Dw3 gene.
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actively growing tissues, especially in pre-pollination ears at
the flowering stage (Pang et al., 2013). In sorghum, SbABCB16
(Sb06g018860) and SbABCB18 (Sb06g030350) present the clos-
est protein sequence similarity to ABCB19 from Arabidopsis.
SbABCB16 expression is highest in the roots and is not respon-
sive to IAA and 1-NOA treatments, while SbABCB18 is mostly
expressed in leaves and is up-regulated by IAA, 1-NOA, and BR
applications (Shen et al., 2010).

AUX/LAXs
The existence of auxin importers in plants was first demonstrated
studying the Arabidopsis auxin insensitive 1 (aux1) mutant, which
carries defects in roots gravitropic response. AtAUX1 belongs to a
small gene family composed of four highly conserved proteins that
share similarities with amino acid transporters: AtAUX1, AtLAX1,
-2, and -3 (Péret et al., 2012). AtAUX1 encodes a protein simi-
lar to fungal amino acid permeases and is expressed in columella,
lateral root cap, epidermis, and stele tissues of the primary root
where it acts as an auxin importer (Bennett et al., 1996; Swarup
et al., 2001, 2004; Carrier et al., 2008). AtAUX1 is involved in
auxin-regulated root gravitropic response together with the auxin
exporter AtPIN2. The coordinated action of these two proteins
forms a lateral auxin gradient which inhibits the expansion of epi-
dermal cells on the lower side of the root relative to the upper
side, eventually causing the downward root curvature (Swarup
et al., 2005). aux1, as well as pin2 Arabidopsis mutants are agravit-
ropic and aux1 also presents a decreased number of lateral roots
due to defects in lateral root initiation (Marchant et al., 2002).
AtAUX1 and AtLAX1, act redundantly in regulating the phyllotac-
tic pattern in Arabidopsis although AtLAX2 is not expressed in
the SAM L1 layer. Since AtLAX2 is expressed in the forming pri-
mordium vasculature, one hypothesis is that AtLAX2 enhances the
strength of the primordium as an auxin sink by pulling IAA from
the L1 layer of the SAM (Bainbridge et al., 2008; Kierzkowski et al.,
2013). AtLAX2 is involved in vascular development in cotyledons
and it is also expressed in young vascular tissues, the quiescent
center and columella cells in the primary root (Péret et al., 2012).
AtLAX3 is expressed in the columella and stele of the primary root
and it is involved in lateral root development, as Arabidopsis lax3
mutants show delayed lateral root emergence (Swarup et al., 2008).
No root growth–related defects or lateral root–related defects are
observed in either lax1 or lax2 single mutants while aux1lax3 dou-
ble mutant shows a severe reduction in the number of emerged
lateral roots (Swarup et al., 2008). Auxin binding and import activ-
ity of AUX/LAX proteins has been demonstrated using an oocyte
expression system for AtAUX1 (Yang et al., 2006), AtLAX3, and
AtLAX1 or a yeast-based heterologous expression system in the
case of AtLAX2 (Yang et al., 2006; Carrier et al., 2008; Péret et al.,
2012).

AUX/LAXs IN MONOCOTS
Recently, the expression profile of a putative AUX1 homolog in
rice (OsAUX1, Genebank ID AK068536) has been published (Song
et al.,2013). The study investigates lateral roots developmental pat-
tern, auxin distribution, PAT and expression of auxin transporter
genes in the rice cultivars “Nanguang” and “Elio,” under differ-
ent nitrogen availability. Expression of OsAUX1 results higher

in the lateral root initiation and emergence zone of “Nanguang”
roots in response to partial NO3

− nutrition rather than to NH4
+

alone. OsAUX1 is up-regulated in the lateral root elongation
zone in the roots of both cultivars in response to phosphorus–
nitrogen–nitrogen (PNN) compared to NH4

+ alone (Song et al.,
2013).

ZmAUX1, the closest maize homolog of AtAUX1, has 7–10
predicted TMDs and it’s 73% identical to AtAUX1 (Hochholdinger
et al., 2000). Northern blot experiments show expression in the tips
of primary, lateral, seminal, and crown roots. In situ hybridization
shows that ZmAUX1 expression is tissue-specific and confined to
the endodermal and pericycle cell layers of the primary root, as
well as to the epidermal cell layer (Hochholdinger et al., 2000).
ZmAUX1 and AtAUX1 exhibit a preference for IAA and 2,4-D
over NAA as substrate and are subject to differential transport
inhibition by hexyloxy and benzyloxy derivatives of IAA (Parry
et al., 2001; Tsuda et al., 2011). Transcriptome analysis indicates
a role for ZmAUX1 in leaf primordia differentiation, although
evidence is still not conclusive (Brooks et al., 2009).

Five LAX genes, named SbLAX1-5, have been identified in
sorghum. The corresponding proteins present a highly conserved
core region with 10 predicted transmembrane helices and their
transcript levels are higher in leaves and stems rather than in roots
and inflorescence tissues (Shen et al., 2010). Expression analysis
of 3-weeks-old sorghum seedlings indicates that IAA treatment
induces SbLAX2 and SbLAX3, but it inhibits SbLAX1 and SbLAX4
expression in leaves and roots, as well as it down-regulates SbLAX5
expression in leaves. BR treatment induces the expression of all
five SbLAX genes in roots while it down-regulates SbLAX1 and -4
in leaves. ABA, salt, and drought treatments alter the expression
profile of all SbLAXs (Shen et al., 2010; Wang et al., 2011).

PILS
PIN-LIKES represent the most recently characterized family of
plant auxin transport proteins and include seven members in Ara-
bidopsis. PILS show low (10–18%) sequence identity with PINs
and they are all capable of transporting auxin across the PM in
heterologous systems (Barbez et al., 2012). PILS regulate intracel-
lular auxin accumulation at the ER and thus reduce the availability
for free auxin that can reach the nucleus, possibly exerting a role
in auxin signaling that is comparable to that of AtPIN5 (Barbez
et al., 2012; Barbez and Kleine-Vehn, 2013). The PILS family is
conserved throughout the plant lineage, having representatives
in several taxa including unicellular algae, where PINs have not
been found yet. This indicates that PILS could be evolutionar-
ily older than PINs (Feraru et al., 2012; Viaene et al., 2013). Six
PILS have been identified in rice, 10 in maize, 7 in sorghum, and
8 in Brachypodium (Figure 3; Feraru et al., 2012). Forestan et al.
(2012) identified two maize proteins that in sequence compari-
son analysis do not cluster with Arabidopsis PINs: ZmPINX and
ZmPINY. Our sequence comparison verified that the two proteins
are more similar to PILS rather than PINs, as previously hypoth-
esized (Figure 3). Expression analysis for these genes shows that
they are ubiquitously expressed and differentially up-regulated in
maize organs. In detail, ZmPINX is up-regulated in root apex and
male and female inflorescences, while ZmPINY is highly expressed
during kernel development (Forestan et al., 2012).
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FIGURE 3 | Neighbor-joining sequence similarity analysis of the PIN

and PILS proteins from Arabidopsis, rice, maize, sorghum, and

Brachypodium. The unrooted tree shows the degree of sequence
similarity among PIN and PILS proteins from Arabidopsis, rice, maize,
sorghum, and Brachypodium. ZmPINX and ZmPINY present higher overall
similarity to PILS rather than PIN proteins. Bootstrap values higher than 60
are indicated at each node.

CONCLUSION
Auxin has a fundamental role in plant organs formation and its
polar transport across cellular membranes is crucial for the correct
development and response to external stimuli. Master regulators
of PAT are auxin transport proteins, which have been extensively
studied in Arabidopsis but not in other species, mainly due to
the difficulty to obtain loss-of-function mutants. In monocots,
only a few of these transporters have been characterized, mainly
in rice and maize and most of the information available has
been obtained by expression analyses without functional char-
acterization. There are substantial divergences in development
and plant structure between monocots and dicots. Differences
are present in seed, vascular system, and leaf developmental pro-
grams (Tsiantis, 1999; Scarpella and Meijer, 2004; Coudert et al.,
2010; Sreenivasulu and Wobus, 2013). The monocot root system
architecture and cellular organization also differ considerably from
those of dicots (Hochholdinger et al., 2004; Smith and De Smet,
2012). In addition, monocots have a segmented stem as opposed
to the unsegmented stem of dicots. Auxin transporter families
are larger in monocots allowing for the possibility of functional
redundancy, but also for neo- and sub-functionalization of specific
proteins. Monocot-specific and organ-specific proteins exist and
they have a distinct role in regulating auxin driven organ develop-
ment (PIN9). In some cases, alterations in PAT result in interesting
new traits, such as dwarfism in maize and sorghum br2 and dw3
mutants respectively, which can be exploited to generate more pro-
ductive lines through breeding programs. Moreover, many more
short-statured mutants exist in maize that may have defects in
auxin transport, although none of these mutants have been char-
acterized in any detail. Interestingly, quite a few of these mutants
exhibit dominant inheritance (Johal, unpublished) that makes
them interesting in at least two ways. First, they can help side step
gene redundancy problems and allow the functional exploration
of additional genes. Second, they can be used in MAGIC (mutant-
assisted gene identification and characterization)-based enhancer
suppressor screens to unveil natural variation in a trait of interest
(Johal et al., 2008). Even transgenic reporters for auxin activity can
be used in lieu of bona fide dominant mutants for such MAGIC
screens. The traditional enhancer/suppressor screens based on
mutagenesis can also be employed to identify additional genes
that encode auxin transporters. One such resource already exists
in sorghum, where a line carrying a dw3 mutation in SbABCB1 was
EMS mutagenized to produce and sequence M2 populations for
both forward and reverse genetics (Krothapalli et al., 2013). These
M2 populations can be screened to identify other genes in the net-
work with the ability to suppress or enhance the dw3 phenotype.
Finally, there is the exciting possibility of using new genome editing
and reverse genetics tools such as CRISPR/Cas9, which has been
shown to work in rice and maize (Miao et al., 2013; Liang et al.,
2014). Technologies like this can be used to alter the expression and
function of genes encoding auxin transporters in monocots and
this may lead to important new breakthroughs in our understand-
ing of their roles in development and response to the environment.
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