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The launch of seed development in flowering plants (angiosperms) is initiated by the
process of double fertilization: two male gametes (sperm cells) fuse with two female
gametes (egg and central cell) to form the precursor cells of the two major seed
components, the embryo and endosperm, respectively. The immobile sperm cells are
delivered by the pollen tube toward the ovule harboring the female gametophyte by
species-specific pollen tube guidance and attraction mechanisms. After pollen tube burst
inside the female gametophyte, the two sperm cells fuse with the egg and central cell
initiating seed development. The fertilized central cell forms the endosperm while the
fertilized egg cell, the zygote, will form the actual embryo and suspensor. The latter
structure connects the embryo with the sporophytic maternal tissues of the developing
seed. The underlying mechanisms of double fertilization are tightly regulated to ensure
delivery of functional sperm cells and the formation of both, a functional zygote and
endosperm. In this review we will discuss the current state of knowledge about the
processes of directed pollen tube growth and its communication with the synergid cells
resulting in pollen tube burst, the interaction of the four gametes leading to cell fusion
and finally discuss mechanisms how flowering plants prevent multiple sperm cell entry
(polyspermy) to maximize their reproductive success.
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INTRODUCTION
High crop yield strongly depends on efficient formation of
numerous ovules, which after successful fertilization, develop
into seeds comprising seed coat, embryo, and endosperm. In
angiosperms, the haploid gametophytic generations produce the
male and female gametes required to execute double fertiliza-
tion. Both gametophytes are reduced to only a few cells. The
female gametophyte is deeply embedded and thus protected by
the maternal sporophytic tissues of the pistil (Figure 1). It har-
bors the female gametes (egg and central cell) and is surrounded
by the nucellus tissue as well as the inner and outer integu-
ments. After fertilization these different tissues form the seed
coat. The female gametophyte arises from a megaspore mother
cell though processes known as megasporogenesis and megaga-
metogenesis (for review see Evans and Grossniklaus, 2009; Drews
and Koltunow, 2011). In ∼70% of all angiosperm species includ-
ing Arabidopsis and maize the embryo sac develops according to
the Polygonum type (Drews et al., 1998). The functional megas-
pore undergoes three mitotic divisions resulting in a syncytium
containing eight nuclei. After nuclei migration and cellulariza-
tion seven cells are differentiated: the haploid egg cell and its two
adjoining synergid cells are located at the micropylar pole forming
the egg apparatus. The homodiploid central cell containing two
fused or attached nuclei is located more centrally, whereas three
antipodal cells are found at the chalazal pole of the ovule oppo-
site to the egg apparatus. While synergid cells are essential for

pollen tube attraction, burst and sperm cell release (see below),
the function of antipodal cells is so far unknown. During female
gametophyte maturation antipodal cells are degenerating in the
ovule of the eudicot model plant Arabidopsis (Mansfield et al.,
1991), whereas they proliferate in other species including grasses
and form a cluster of about 20–40 cells (Diboll and Larson,
1966).

The haploid male gametophyte (pollen grain) is formed dur-
ing the processes of microsporogenesis and microgametogenesis
from the microspore mother cell by meiosis and two succes-
sive mitotic divisions resulting in the formation of a tricellulate
pollen grain. The vegetative cell encases the two sperm cells,
which are connected with the vegetative cell nucleus by the
generative cell plasma membrane, forming the male germ unit
(MGU). MGU formation ensures the simultaneous delivery of
both gametes to the ovule (for review see McCue et al., 2011).
The major task of the vegetative cell is to deliver the sperm
cells through the maternal tissues of the style and ovary to an
unfertilized ovule. After pollen germination, the vegetative cell
forms a tube and grows by tip-based-growth mechanism along
papillae cells of the stigma into the style toward the transmit-
ting tract. Inside the transmitting tract, pollen tubes are guided
toward the ovules by mechanical and chemotactic cues involv-
ing numerous interactions with the sporophytic style tissues.
In many eudicots pollen tubes exit the transmitting tract and
grow along the septum, the funiculus and the outer integument
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FIGURE 1 | The female gametophyte is deeply imbedded inside the

female flower organs. (A) Dissected and reconstructed Arabidopsis
flower. One of four petals (P) and one of six stamina (SA) are shown. They
surround the pistil, which represents the female flower organ. It can be
dissected into three parts. The upper part contains the papilla cells and
forms the stigma (S), which is connected to the ovary (OY) by the style
(ST). The ovary is formed by two fused carpels (C), which harbor two rows
of ovules (OV). A side view (B) and front view (C) of a 3D-remodeled
ovule reconstructed from toluidine blue stained single, successive ultra-thin
sections of a dissected pistil. See Supplemental Movie 1 for whole series
of sections. The ovule is connected to the septum (SE, yellow) containing
the transmitting tract (TT, blue) by the funiculus (F, petrol) and surrounded
by the carpel tissue (C) (green). A 3D-model of a dissected ovule shown
from various angles is shown in Supplemental Movie 2. The mature
female gametophyte cells (FG) and the nucellus tissue (NC) are surrounded

by the outer (OI) and inner integuments (II) (OI, blue; II, purple). The
vacuole and nucleus of the different female gametophyte cells showed
highest contrast and are therefore shown individually. Near to the
micropyle (MY), the two nuclei of the two synergid cells (SY) are shown in
red and green. The egg cell, indicated by EC in (D), has a comparably
large vacuole (light blue) and its nucleus (blue) is located at its chalazal
pole. The center of the female gametophyte is filled by the vacuole (light
yellow) of the central cell, indicated by CC in (D), and its homo-diploid
nucleus (yellow). The three degenerating antipodal cells, indicated by AP in
turquoise color in (D) at the chalazal pole are not highlighted. (D) DIC
microscopic image of a mature female gametophyte surrounded by the
maternal sporophytic tissues of the ovule. The cell types and tissues are
artificially colored as shown in (B,C). At full maturity the nucellus cell (NC)
layer surrounding the developing embryo sac is flattened between inner
integument (II) and female gametophyte cells.

toward the micropyle of unfertilized ovules. In grasses the ovary
contains a single ovule and the pollen tube is directly guided
toward its surface after leaving the blind ending transmitting
tract. The pollen tube continues to grow along its surface toward
the micropylar region (for review see Lausser and Dresselhaus,
2010). Finally, the pollen tube enters the micropyle, an open-
ing between the inner and outer integuments, and grows toward
the two synergid cells. The pollen tube bursts and sperm cells
are released. This process is associated with the degeneration
of the receptive synergid cell due to programmed cell death.
Subsequently, both sperm cells arrive at the gamete fusion site and
fertilize the egg and central cell (Hamamura et al., 2011). From
the moment of germination until sperm discharge the pollen

grain/tube communicates with at least five different sporophytic
and three different gametophytic cell types to successfully accom-
plish fertilization (Palanivelu and Tsukamoto, 2012). Its extended
growth inside the female flower tissue is regulated by many
different guidance, attraction and support mechanisms. After
sperm cell release all gametes are activated, followed by fusion
of their membranes and nuclei by processes known as plasma-
and karyogamy, respectively. After successful double fertilization
further signaling events are activated to prevent polyspermy. In
this review we will summarize and discuss the cell–cell com-
munication processes, which are essential to successfully accom-
plish double fertilization and to initiate seed development in
angiosperms.
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POLLEN TUBE GROWTH AND ATTRACTION
POLLEN REJECTION
Pollen tube growth and guidance toward the female gametes are
controlled at various stages by chemotactic signals and growth
support molecules derived from the sporophytic and gameto-
phytic tissues of the female flower organs. Pollen grains placed
on the stigma (Figure 1A) by contact, wind or different polli-
nators stick to the papilla cells and start to hydrate followed by
their germination. The efficient adhesion of the pollen grain to
the papilla cell is regulated by interaction events between these
cells and may activate thereby inter- and intra-species barri-
ers to prevent unsuccessful pollination and fertilization events
already at this early time point during reproduction. Angiosperms
possess different strategies to recognize self from alien pollen
and evolved independent self-incompatibility (SI) mechanisms
to prevent self-fertilization. Early SI mechanisms are based on
cell-cell communication events between the papilla cells and the
pollen grains, whereas later SI mechanisms occur while the grow-
ing pollen tube interacts with the cells of the transmitting tract.
Species of the Solanaceae, for example, use a pistil-expressed S-
RNase, which penetrates the pollen tube (McClure et al., 1989;
Luu et al., 2000). A compatible pollen tube expresses the S-
locus F-box protein (SLF), which leads to the degradation of
the S-RNase (Hua and Kao, 2006; Kubo et al., 2010), while in
incompatible interactions intact S-RNase degrades RNAs result-
ing, for example, in the disruption of the actin cytoskeleton and
other cellular processes (Liu et al., 2007; Roldán et al., 2012).
In Papaveraceae SI depends on the small pistil secreted protein
Papaver rhoeas style S (PrsS), which binds to the S-locus pollen
tube membrane protein P. r. pollen S (PrpS) and activates a Ca2+-
dependent signaling cascade resulting in pollen inhibition and
programmed cell death (Wheeler et al., 2009; Wu et al., 2011). SI
is best understood in Brassicaceae, which use a surface-localized S-
locus receptor kinase (SRK) in papilla cells (Takasaki et al., 2000)
and a pollen coat localized cysteine-rich protein (SP11/SCR)
(Schopfer, 1999; Shiba et al., 2001) to distinguish self from alien
pollen. Their successful interaction leads to proteasome depen-
dent degradation of Exo70A1, an essential component of the
exocyst complex. It is thought to be involved in secretion of essen-
tial pollen germination factors necessary for pollen hydration
(Synek et al., 2006; Samuel et al., 2009). Rejection of pollen in
Brassicaceae thus occurs already during pollen hydration and ger-
mination at the surface of papilla cells. Little is known about SI
in the economically important grasses (reviewed in Dresselhaus
et al., 2011). Pollen hydration and germination appear not to be
affected, although only grass pollen tubes are capable of pene-
trating the style and reach the transmitting tract. This indicates
that SI in the grasses depends on successful interaction of the
pollen tube with the sporophytic cells of the style and trans-
mitting tract. The signaling events involved in this recognition
process still await their discovery. More details about SI mecha-
nisms can be found in Iwano and Takayama (2012), Watanabe
et al. (2012) and Dresselhaus and Franklin-Tong (2013).

POLLEN TUBE GUIDANCE TOWARD AND THROUGH THE
TRANSMITTING TRACT
After adhesion and hydration, compatible pollen germinates,
penetrates the style and grows through the extracellular space of

stylar cells toward the transmitting tract (Figure 1B). The growth
direction of the pollen tube is regulated by the formation of dif-
ferent gradients including water, γ-amino butyric acid (GABA),
calcium and other small molecules such as D-serine. The water
flow during hydration forms an external gradient specifying the
site of pollen tube outgrowth and was shown to be controlled
by triacylglyceride (Lush et al., 1998; Wolters-Arts et al., 1998).
Ca2+ influx into the pollen tube tip region is known to be essen-
tial for germination and tube growth (Brewbaker and Kwack,
1963; for a review see Steinhorst and Kudla, 2013a) and leads
to the generation of an oscillating apex-based cytoplasmic Ca2+
(Ca2+

cyto) gradient (Miller et al., 1992; Calder et al., 1997). Initially,

papilla cells export Ca2+
cyto by the auto-inhibited Ca2+-ATPase13

(ACA13) at the pollen grain adhesion site (Iwano et al., 2004,
2014). Extracellular Ca2+ is then imported into the pollen tube
by glutamate receptor-like channels (GLRs), which can be stim-
ulated by D-serine (Michard et al., 2011). In animal systems it
was shown that GLRs are non-selective cation channels catalyz-
ing Na+ and/or Ca2+ influx into cells. Binding of the agonist
D-serine to GLRs should thus lead to channel opening resulting
in a Ca2+

cyto increase (Gilliham et al., 2006). D-serine is produced
by Serine-Racemase1 (SR1), which shows an expression peak in
the style indicating D-serine availability. The induced changes
in Ca2+

cyto concentration in the pollen tube might thereafter reg-
ulate and coordinate many different signaling events like actin
polymerization and thus influence pollen tube growth behavior
and growth direction. Ca2+

cyto-sensors, belonging to the protein
families of calmodulin (CaM), calmodulin-like proteins (CMLs),
calcium-dependent protein kinases (CDPKs), and calcineurin B-
like proteins (CBLs) are expressed in the pollen tube and are
thought to control different cell-cell communication events indi-
cated by their localization and overexpression phenotypes. The
presence of these different Ca2+

cyto receptors around the sperm cells

and at the pollen tube tip indicate an essential role of Ca2+ signals
both during pollen tube growth and double fertilization (Zhou
et al., 2009; Steinhorst and Kudla, 2013b).

During pollen tube growth the tip needs to modulate the sur-
rounding cell wall of stylar cells enabling its penetration through
the extra-cellular space, most likely by interaction with extensin-
like proteins and arabinogalactan proteins as well as the secretion
of cell wall softening enzymes and inhibitors such as polygalac-
turonases and pectin methylesterase inhibitors (Cosgrove et al.,
1997; Grobe et al., 1999; Stratford et al., 2001; Ogawa et al., 2009;
Nguema-Ona et al., 2012; Woriedh et al., 2013). The transmitting
tract is composed of small cylindrical cells that are surrounded
by an extracellular matrix (ECM), which contains a mixture of
glycoproteins, glycolipids, and polysaccharides (Lennon et al.,
1998). The ECM provides essential nutrients as well as compo-
nents for an accelerated, extended and guided pollen tube growth
(Palanivelu and Preuss, 2006). Without an intact transmitting
tract like in the NO TRANSMITTING TRACT (NTT) mutant
or its target HALF FILLED (HAF), pollen tube growth is severely
affected and either slowed down or prematurely terminated. NTT
encodes a C2H2/C2HC zinc finger transcription factor involved
in ECM production and is essential for programmed cell death
in the transmitting tract upon pollination (Crawford et al., 2007).
HAF encodes a bHLH transcription factor and is involved in NTT
dependent transmitting tract regulation (Crawford and Yanofsky,
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2011). The transmitting tract-specific arabinogalactan glycopro-
teins TTS1 and TTS2 have a positive effect on in vitro grown
tobacco pollen and show a gradient of increased glycosylation
correlating with pollen tube growth direction inside the trans-
mitting tract (Cheung et al., 1995; Wu et al., 1995). Another
factor which has a positive effect on pollen tube growth and
guidance is chemocyanin, a small secreted peptide in the style
of lily (Kim et al., 2003). The different sporophyte-derived sig-
nals do not only guide or increase pollen tube growth rate, but
rather lead to a change in the pollen transcriptome and thereby
activate the pollen for female gametophyte-derived attraction
signals (Higashiyama et al., 1998; Palanivelu and Preuss, 2006).
Recently, de novo expression of closely related MYB transcrip-
tion factors and other genes were reported to be induced dur-
ing pollen tube growth through the style regulating themselves
a number of downstream genes. Hence pollen tubes matu-
rate during their growth through the sporophytic tissue and
thereby become competent for fertilization (Leydon et al., 2013,
2014).

OVULAR POLLEN TUBE GUIDANCE
The signaling events that control pollen tube exit from the trans-
mitting tract and guidance toward the ovule are not known. In
Arabidopsis this process was shown to be tightly regulated and
usually only a single pollen tube exits the transmitting tract in
proximity of an unfertilized ovule. The pollen tube grows on
the septum surface toward the funiculus, the tissue connecting
the ovule with the septum (Figures 1B–D; Supplemental Movies
1, 2). At the funiculus the pollen tube is directed through the
micropyle inside the ovule by a mechanism known as micropylar
guidance (Shimizu and Okada, 2000). In Arabidopsis a gradient
of GABA was reported in front of the ovule. The transami-
nase POLLEN ON PISTIL2 (POP2) forms this gradient through
GABA degradation. At moderate concentrations GABA stimu-
lates pollen tube growth and thus likely supports growth toward
the ovule (Palanivelu et al., 2003). Another candidate involved
in micropylar guidance is D-serine, which was already described
above. Its synthesizing enzyme gene SR1 is also expressed in the
ovule indicating the presence of D-serine (Michard et al., 2011).
Semi-in vitro fertilization experiments revealed an oscillation of
Ca2+

cyto levels in growing pollen tubes depending on their distance
from an unfertilized ovule and especially from the synergid cells
(Shi et al., 2009; Iwano et al., 2012). The connection between
Ca2+

cyto and D-serine by GLR channels in growing pollen tubes

was already described above. The observed changes in the Ca2+
cyto

level depending on its distance from the synergid cells might again
result from this interplay.

Recently, two pollen-expressed mitogen-activated protein
kinases (MAPKs), MPK3 and MPK6, were identified in
Arabidopsis, which are part of the ovular guidance network.
In vivo pollination assays revealed that mpk3/6 double mutant
pollen tubes were not capable of growing along the funiculus after
transmitting tract exit but micropylar guidance (see below) was
not effected in the double mutants (Guan et al., 2014). MPK3/6
are two cytoplasmic protein kinases, which seem to be part of
the signaling cascade mediating extracellular stimuli to changes
in pollen tube growth direction.

In summary, our current understanding of ovular pollen tube
guidance is very limited, but a whole orchestra of small molecules
derived from the ovule seem to be involved in pollen tube
growth support and attraction, and multiple signaling networks
are required in pollen tubes to respond to the diverse set of signals
and to direct their growth behavior.

MICROPYLAR POLLEN TUBE GUIDANCE
After arrival at the surface of the ovule, the pollen tube reaches
the last phase of its journey, which is known as micropylar pollen
tube guidance. It enters the micropyle, an opening between the
two integuments, and directly grows toward the egg apparatus in
species such as Arabidopsis (Figure 2A). In grasses the pollen tube
first has to overcome a few layers of nucellus cells (Márton et al.,
2005) before it also gets in contact with the filiform apparatus
of the synergid cells, a thickened and elaborated cell wall at their
micropylar pole, where the cell surface is extensively invaginated
(Willemse and van Went, 1984; Huang and Russell, 1992). It was
believed for a long time that the pollen tube grows through the
filiform apparatus to enter one synergid cell, leading to pollen
tube burst and cell death of the receptive synergid cell. Recently,
it was shown that the pollen tube is repelled by the filiform
apparatus and instead grows along the cell wall of the synergid
cells until it reaches a certain point after the filiform apparatus
where its growth is arrested and burst occurs explosively (Leshem
et al., 2013). Pollen tube burst results in the discharge of its cyto-
plasmic contents including the two sperm cells. The synergid
cells represent the main source for chemo-attractants required
for micropylar pollen tube guidance. Moreover, laser ablation
experiments in Torenia fournieri have demonstrated that a sin-
gle synergid cell is sufficient and necessary to attract pollen tubes
(Higashiyama et al., 2001). The major function of the filiform
apparatus may thus be to considerably increase the micropylar
surface of the synergid cells, which represent glandular cells of the
egg apparatus. Many known components required for pollen tube
growth and guidance are membrane-associated and accumulate
at the filiform apparatus, which gives it the additional role of a
signaling platform. It contains, for example, a high Ca2+ concen-
tration, which is known to play a key role during the regulation
of pollen tube growth (Brewbaker and Kwack, 1963; Chaubal
and Reger, 1990; Iwano et al., 2004; Michard et al., 2011) and
also seems to trigger pollen tube burst afterwards (see below).
In Arabidopsis the formation of the filiform apparatus as well
as the expression of different attractants in the synergid cells
depend on the activity of the R2R3-type Myb transcription fac-
tor MYB98 (Kasahara et al., 2005; Punwani et al., 2007). Among
other genes, MYB98 regulates the expression of genes encoding
cysteine-rich proteins (CRPs), including those representing a sub-
group of defensin-like (DEFL) polypeptides (Punwani et al., 2008;
Takeuchi and Higashiyama, 2012).

In Torenia it was shown that a DEFL subgroup of CRPs called
LUREs are secreted from the synergid cells and accumulate at
the filiform apparatus (Okuda et al., 2009; Kanaoka et al., 2011).
LUREs attract pollen tubes in a species-preferential manner from
a distance of about 100–150 μm and were recently shown to
bind to the tip region of pollen tubes (Okuda et al., 2009,
2013). Due to their rapid molecular evolution it was difficult to
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FIGURE 2 | Model of signaling events during micropylar pollen tube

attraction and double fertilization in Arabidopsis. (A) The micropylar
opening of the ovule is formed by the inner and outer integuments. The
female gametophyte is “naked” at its micropylar pole containing one egg
(colored in blue) and two synergid cells (colored in green and red)
representing the egg apparatus. The central cell surrounds the egg apparatus.
The synergid cells are the main sources of pollen tube attractants. Among
other components, they secrete LURE peptides, which bind to pollen
expressed LIP1/2 receptors thus directing pollen tube growth. Calcium
transporters are involved in pollen tube growth control. The plasma
membranes of synergid cells harbor a high concentration of receptors like
FER and LRE, especially in the region of the filiform apparatus. Upon pollen
tube perception NTA is relocated to the plasma membrane by FER activity
likely regulated by Ca2+ oscillations inside the synergid cells. (B) The pollen

tube bursts when it reaches a certain point beyond the filiform apparatus and
releases its cytoplasmic contents including the two sperm cells. Pollen tube
burst depends on the presence and activation of FER-, LER-, NTA-, and
VDD-dependent signaling cascades culminating in the death of the receptive
synergid cell (indicated by diffusing red color). Released sperm cells are
located at the gamete fusion side, between the two female gametes. The
two sperm cells are connected to each other, likely involving tetraspanins.
The male gametes adhere to female gametes by GEX2 located at their
surface. After activation, the egg cell secrets EC1 leading to sperm cell
activation and HAP2/GCS1 localization to the plasma membrane. HAP2/GCS1
and tetraspanins at the surface of gametes may be involved in mediating
membrane fusion. Unknown egg and central cell-specific fusogenic proteins
as well as EC1 receptor are indicated by question marks in green, black, and
purple, respectively.

identify orthologs in other plant species, but finally the DEFL
subgroup CRP810/AtLURE1 of Arabidopsis was discovered to
be involved in micropylar pollen tube guidance (Takeuchi and
Higashiyama, 2012). In Zea mays, EGG APPARATUS1 (ZmEA1),
a small hydrophobic precursor protein of 94 aa was reported as
an egg apparatus-specific protein required for micropylar pollen
tube guidance (Márton et al., 2005, 2012). ZmEA1 was shown to
bind in a species-specific manner to the apical region of the pollen
tube, where it is quickly internalized and degraded, likely keeping
the pollen tube susceptible to pollen tube attractants while grow-
ing through the micropylar nucellus cell layers (Márton et al.,
2012; Uebler et al., 2013).

More puzzling is the role of the central cell in micropy-
lar guidance of the pollen tube. For example magatama (maa)
mutants show defects in central cell maturation; both haploid
nuclei are smaller and often fail to fuse. Pollen tubes grow in the
direction of an unfertilized maa ovule but loose their way just
before entering the micropyle. Moreover, mutant female game-
tophytes attracted two pollen tubes at a high frequency (Shimizu
and Okada, 2000). MAA3 was recently shown to encode a heli-
case required for general RNA metabolism, which could explain
the central cell maturation defect but not the defect in pollen
tube guidance (Shimizu et al., 2008). Another example of central
cell-dependent defects in micropylar pollen tube guidance is the
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transcriptional regulator CENTRAL CELL GUIDANCE (CCG),
which is expressed exclusively in the central cell of the female
gametophyte (Chen et al., 2007). These guidance defects may
be indirect and caused by non-functional or immature central
cells influencing maturation of egg apparatus cells and thus the
generation of guidance components in these cells. It might also
be possible that molecules generated by the MAA3 and CCG
pathways directly regulate the generation of guidance molecules
in the neighboring cells. Also the egg cell seems to be involved
in micropylar guidance. GAMETE EXPRESSED 3 (GEX3) is a
plasma membrane-localized protein, which is expressed in the
unfertilized egg cell. Down-regulation of GEX3 by antisense RNA
in the egg cell leads to defects in micropylar guidance by an
unknown mechanism (Alandete-Saez et al., 2008).

Until recently, male factors and signaling pathways reacting
to attractants secreted from the egg apparatus were unknown.
The receptor-like kinases (RLKs) LOST IN POLLEN TUBE
GUIDANCE1 (LIP1) and 2 (LIP2) have been identified, which
are preferentially expressed in the pollen tube. Both proteins
show membrane localization due to a palmitoylation site and
are involved in the AtLURE1-dependent guidance mechanism.
lip1/2 double mutant pollen reach the funiculus but fail to grow
through the micropyle inside the ovule, and the pollen tube
shows a reduced attraction toward AtLURE1 (Liu et al., 2013).
However, it is unclear whether LIP1/2 are directly involved in
LURE perception.

POLLEN TUBE BURST AND SPERM CELL DISCHARGE
Pollen tube burst seems to be regulated by RLKs located
at surfaces of both male and female interaction partners
(Figures 2A,B). The RLK FERONIA/SIRENE (FER/SRN) is
expressed in most tissues including the synergid cells, where
it localizes predominately at their surface in the filiform appa-
ratus region. Loss-of-function mutants display a pollen tube-
overgrowth phenotype. Pollen tube growth arrest and sperm cell
discharge fail in fer ovules (Huck et al., 2003; Rotman et al., 2003;
Escobar-Restrepo et al., 2007). FER acts as a cell surface regu-
lator for RAC/ROP GTPases. Recently it was shown that FER
binds to the small secreted peptide Rapid Alkalinization Factor
(RALF), which leads to the inhibition of a plasma membrane
H+-ATPase resulting in the suppression of cell elongation in the
primary root (Haruta et al., 2014). Besides changes in the pH,
RALF also induces the increase of Ca2+

cyto (Pearce et al., 2001;
Haruta and Constabel, 2003; Haruta et al., 2008) and thus may
influence pollen tube growth arrest and eventually its burst. The
Arabidopsis genome contains around 30 RALF-like genes indi-
cating the possibility that a pollen secreted RALF-like peptide
may indeed be involved in FER-dependent pollen tube perception
(Olsen et al., 2002). Other proteins were identified whose loss-
of-function resemble the fer phenotype such as the glycosylphos-
phatidylinositol (GPI)-anchored protein LORELEI (LRE) and
the Mildew Resistance Locus O (MLO) family protein NORTIA
(NTA). Both genes are expressed in synergid cells and show a
similar pollen tube overgrowth phenotype (Capron et al., 2008;
Kessler et al., 2010). NTA encodes a protein with multiple poten-
tial transmembrane domains as well as a calmodulin-binding site.
The frequency of unfertilized ovules in lre/lre and nta/nta is less

pronounced compared to fer/fer pistils. This finding indicates
that FER activity is essential for pollen tube perception, while
other, yet unknown factors act redundantly with LRE and NTA.
These factors are all present at the synergid plasma membrane
during pollen tube contact. However, while FER accumulates at
the filiform apparatus already prior to pollen tube arrival, NTA
relocalizes to the plasma membrane of the synergid cells at the
filiform apparatus region upon pollen tube contact. In a tran-
sient expression system NTA is directly targeted to the plasma
membrane. However, in Arabidopsis ovules under control of its
endogenous promoter, NTA localizes to uncharacterized com-
partments within the cell, and becomes relocalized to the plasma
membrane upon pollen tube arrival, indicating the presence of an
active retention mechanism. This relocalization is FER-dependent
and therefore connects FER to NTA in the same signaling net-
work (Kessler et al., 2010). The presence of a calmodulin-binding
domain in NTA supports the idea of a Ca2+-dependent signal-
ing network, which is activated upon pollen tube arrival. Due to
its predicted signal peptide and GPI anchor, LRE is expected to
localize to the extracellular side of the plasma membrane after
passage through the secretory pathway. But so far plasma mem-
brane localization could only be shown in a transient expression
system and not in synergid cells themselves (Capron et al., 2008).
Whether LRE localization also changes during the process of fer-
tilization needs to be elucidated. Another factor required for suc-
cessful pollen tube/synergid cell communication is VERDANDI
(VDD), a member of the plant-specific B3 superfamily of tran-
scription factors. Vdd mutants show defects in antipodal and
synergid cell identity and result in the lack of pollen tube burst
after reaching the synergid cells. In contrast to fer, nta, or lre
mutants, an overgrowth phenotype was not reported indicating
that VDD may act downstream of cell surface signaling com-
ponents (Matias-Hernandez et al., 2010). Little is known about
male factors involved in pollen tube/synergid cell communica-
tion. Two closely related homologs of FER, ANXUR1 (ANX1),
and ANX2 were reported to be involved in the timing of pollen
tube burst or more precisely in the inhibition of pollen tube burst.
In an in vitro pollen tube growth assay, pollen of double mutants
show spontaneous discharge already after pollen bulge forma-
tion, whereas in vivo-grown pollen tubes germinate normally on
a stigma but rupture in the style before arriving at the egg appa-
ratus. Both receptors localize mainly to the apical tip of the pollen
tube as well as in small vesicles (Boisson-Dernier et al., 2009;
Miyazaki et al., 2009). Their over-expression inhibits growth by
over-acting exocytosis and over-accumulation of secreted cell wall
material (Boisson-Dernier et al., 2013) suggesting that the main
function is associated with coordination of growth through the
style rather than sperm cell discharge. Other male factors, which
are involved in pollen tube growth and reception, are the pollen-
expressed transcription factors MYB97, MYB101 and MYB120.
myb97/101/120 triple mutants exhibited uncontrolled growth and
failed to discharge their sperm cells after entering the embryo sac
(Liang et al., 2013). It is thought that these factors are required
to enable pollen tube to communicate with the pistil tissues and
the female gametophyte (Leydon et al., 2014). As already men-
tioned, the level of Ca2+

cyto alters during pollen tube elongation.

Upon pollen tube arrival Ca2+
cyto level starts to oscillate in the
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synergid cells, triggered by the contact of the pollen tube tip with
the synergid cell. This oscillation can be observed until pollen
tube burst, which leads to the degeneration of one synergid cell
(Sandaklie-Nikolova et al., 2007; Iwano et al., 2012; Denninger
et al., 2014; Ngo et al., 2014). These changes in Ca2+

cyto level are
essential for sperm delivery and are depending on FER and LRE
activity, respectively. Downstream of FER, NTA localization to
the synergid cell surface and its activity likely depend on suf-
ficient Ca2+

cyto level in the synergid cells (Ngo et al., 2014). The
synergid cell, which is in contact with the pollen tube follows
a regulated cell death program that is somehow associated and
controlled by pollen tube burst and linked to oscillation of Ca2+

cyto
level (Higashiyama et al., 2000; Sandaklie-Nikolova et al., 2007;
Denninger et al., 2014; Ngo et al., 2014). It cannot be explained
by mechanical breakdown due to an invading pollen tube. In fer
mutant, for example, pollen tube growth continues around the
synergid cells, which must be associated with mechanical stress
but does not induce synergid cell death (Escobar-Restrepo et al.,
2007). However, the signaling events, which are responsible for
programmed cell death in the synergid cell, are not understood
yet. In maize pollen tube arrival is associated with the secretion
of defensin-like ZmES proteins, inducing pollen tube burst by
activating the K+ -channel Zea mays 1 (KZM1) in the pollen
tube membrane (Amien et al., 2010). Whether these “toxin”-like
molecules are also capable of inducing synergid cell burst remains
to be shown.

GAMETE INTERACTION AND PREVENTION OF POLYSPERMY
SPERM CELL DELIVERY, ACTIVATION, AND GAMETIC MEMBRANE
INTERACTIONS
Once released, the two sperm cells are delivered to the so-called
gamete fusion site between egg and central cell (Figure 2B). It
is controversial whether this requires active transport or is solely
based on cytoplasmic flow associated with burst of both pollen
tube and receptive synergid cell and/or the architecture of the egg
apparatus. Most flowering plants, like Arabidopsis, generate iso-
morphic sperm cells and therefore fusion of sperm cell appears
to be random, either with the egg or the central cell (Berger
et al., 2008; Ingouff et al., 2009; Liu et al., 2010). Some reports
suggest that fertilization of the egg cell is preferred, which was
demonstrated, for example, in mutants of CYCLIN DEPENDENT
KINASE A1 (CDKA;1), which generate only one sperm-like germ
cell (Iwakawa et al., 2006; Nowack et al., 2006). Experiments with
photo-labeled sperm cells have demonstrated that there is no
preference for either female gamete (Hamamura et al., 2011). The
differentiation into two equal sperm cells depends on the activ-
ity of the MYB transcription factor DUO POLLEN 1 (DUO1),
which is required for correct male germ cell differentiation by
regulating key genes essential for fertilization such as GAMETE
EXPRESSED 2 (GEX2) and GENERATIVE CELL SPECIFIC 1
(GCS1), also known as HAPLESS 2 (HAP2) (Brownfield et al.,
2009). GEX2 encodes a single-pass transmembrane protein with
filamin repeats exposed to the extracellular space. GEX2 localizes
to the sperm cell plasma membrane and contains extracellu-
lar immunoglobulin-like domains, similar to gamete interaction
factors reported in algae and mammals (Misamore et al., 2003;
Inoue et al., 2005). In the presence of GEX2 the two gametes

adhere to the egg and central cell. gex2 mutant sperm cells show
reduced adhesion to female gametes, likely causing cell fusion fail-
ure (Mori et al., 2014). GCS1/HAP2 is another factor required
for gamete interaction in Arabidopsis. After pollen tube burst,
both sperm cells of gcs1/hap2 loss of function mutants remain
at the fusion site and fail to fuse with female gametes, lead-
ing to the attraction of additional pollen tubes (polytubey). It
was further shown that in the absence of the potential fusogen
GCS1/HAP2, attachment of male to the female gamete occurs but
no membrane fusion is visible, implying that the protein medi-
ates membrane fusion as a component of signaling events, or
more likely that it is directly involved in the fusion event (Wong
and Johnson, 2010; Mori et al., 2014). GCS1/HAP2 is a con-
served protein and has been identified in genomes of all major
eukaryotic taxa except fungi. Gcs1/hap2 mutants in protozoan
and algal gametes result in fusion failure, suggesting that this pro-
tein is required for a common mechanism of membrane fusion in
eukaryotes (Mori et al., 2006; Hirai et al., 2008; Liu et al., 2008;
Steele and Dana, 2009; Wong and Johnson, 2010). Upon sperm
cell arrival at the gamete fusion site (Figure 2B) the egg cell starts
to secrete small cysteine-rich proteins of the EGG CELL 1 (EC1)
family. EC1 leads to the relocalization of HAP2/GCS1 from the
endomembrane system to the sperm cell plasma membrane and
thus activates sperm cells enabling them to fuse with the female
gametes (Sprunck et al., 2012). The egg cell appears to require
activation itself and calcium may play a key role in this process;
this is indicated by a single strong Ca2+

cyto transient in the egg cell
associated with pollen tube burst and sperm delivery (Denninger
et al., 2014), which thus precedes EC1 secretion.

The relocalization of a transmembrane fusogen was also
described for the mammalian-specific fusogen IZUMO1 (Inoue
et al., 2005). Female components, which are directly involved in
gamete fusion are so far unknown in higher plants. In mam-
mals, CD9-like membrane spanning proteins of the tetraspanin
family are located at the plasma membrane of eggs and were
shown to be required for gamete fusion (Kaji et al., 2000; Le
Naour et al., 2000; Miyado et al., 2000). In Arabidopsis the con-
served tetraspanin family consists of 17 members. While TET11
and especially TET12 are located at the surface of sperm cells and
reach high concentrations in the membrane region connecting
both sperm cells, TET9 appears at the surface of female game-
tophyte cells including the egg and central cell (Boavida et al.,
2013). Arabidopsis tetraspanins were shown to form homo- and
heterodimers, but so far functional studies are missing. However,
their presence at the surface of plant gametes and structural
homology to mammalian CD9-like proteins suggest that they may
possess a similar role during gamete interaction.

DEGRADATION OF FUSOGENS AND PREVENTION OF POLYSPERMY
In general polyspermy blocks prevent multiple fertilization
events that would otherwise lead to abnormal development
or even embryo lethality, and thus reproductive failure. In
Chlamydomonas FUS1, a single-pass transmembrane protein with
a high similarity to prokaryotic invasion and adhesion molecules,
mediates membrane fusion (Ferris et al., 1996; Misamore et al.,
2003). In Chlamydomonas both GCS1/HAP2 and FUS1 are
rapidly degraded after cell fusion, resulting in a fast membrane
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block to prevent polygamy (Misamore et al., 2003; Liu et al.,
2010). In mammals, it was recently shown that IZUMO1 is recog-
nized by the GPI-anchored protein JUNO on the egg cell surface.
Rapid degradation of JUNO after fertilization suggests an addi-
tional mechanism for membrane block to prevent polyspermy
(Bianchi et al., 2014).

In Arabidopsis it was shown that the polyspermy block only
functions in the egg cell and not in the central cell, which is capa-
ble of fusing with more than one sperm cell, as demonstrated
in the tetraspore (tes) mutant. This mutant produces more than
one sperm pair, which is released simultaneously at the gamete
fusion site. After fertilization, polyploidy resulting from multiple
fertilization events was observed in the developing endosperm,
but not in the embryo (Scott et al., 2008). The cause of the
egg cell-specific fast block to polyspermy is unclear. In vitro
fertilization experiments with maize egg and sperm cells have
shown that cell wall material is detectable already within 30 sec
after fusion (Kranz et al., 1995) and thus may prevent further
gametic membrane interactions. Additionally, a quick block to
polyspermy may also depend on the degradation of fusogens as
described above. Calcium may play a role in immediate signal-
ing of successful plasmogamy and release of cell wall material
as an extended Ca2+

cyto transient is observed in the egg cell asso-
ciated with successful gamete fusion (Denninger et al., 2014).
However, the precise cellular function of calcium signaling during
gamete interaction is currently unclear and will require further
experimentation.

Another way to prevent polyspermy is the deactivation of
pollen tube guidance and the activation of repelling mechanisms.
In Arabidopsis usually only a single pollen tube is guided inside the
ovule to execute double fertilization. After unsuccessful fertiliza-
tion events, for example by failure of cell-cell fusion in gcs1/hap2,
duo1, duo3, gex2, cdka;1, or ec1-RNAi gametes (Beale et al., 2012;
Kasahara et al., 2012; Sprunck et al., 2012; Maruyama et al., 2013;
Mori et al., 2014), secondary pollen tubes are attracted by the
remaining synergid cell by a process named as polytubey. This
process is delayed by a couple of hours (Kasahara et al., 2012),
suggesting that pollen tube repellents are released upon sperm cell
discharge and require degradation until additional pollen tubes
can be attracted by the remaining synergid cell. After successful
fertilization this cell quickly disintegrates, but remains viable for
significantly longer times upon fertilization failure (Beale et al.,
2012). A recent report showed that both female gametes indepen-
dently control successful fertilization thus maximizing reproduc-
tive success (Maruyama et al., 2013). The key to prevent polytubey
is the quick degeneration of the 2nd synergid cell. In order to
investigate its death, it was recently reported that an Ethylene-
Insensitive (EIN3-EIN2)/Ethylene-Insensitive3-like2 (EIL2)-
dependent, ethylene-response cascade is activated after fertiliza-
tion. Its artificial activation results in premature synergid cell dis-
integration and thus a block to pollen tube attraction (Völz et al.,
2013). The degeneration of the 2nd synergid cell thus leads to the
stop of attractant secretion and ultimately prevents polyspermy.

ACTIVATION OF SEED DEVELOPMENT
Both female gametes need to be fertilized to produce viable
progeny. Although equipped with the genetic repertoire to

generate every cell type (in the case of the fertilized egg cell)
or a number of highly specialized cell types (in the case of
the fertilized central cell), both female gametes appear in an
arrested state until activated through fertilization. In contrast,
parthenogenetic egg cells do not arrest and initiate cell divi-
sion without fertilization. The central cell, however, requires
fertilization in most plant species, even in those containing
parthenogenetic egg cells. Its activation is closely related to
seed development as both parthenogenetic embryogenesis and
seed development arrest at an early stage without central cell
fertilization (Koltunow and Grossniklaus, 2003; Barcaccia and
Albertini, 2013). Recent reports in Arabidopsis confirm intensive
cross-talk between endosperm and embryo as well as between
endosperm and seed coat shortly after fertilization (Costa et al.,
2014; Figueiredo and Köhler, 2014). It was further shown that
the zygotic genome is activated shortly after fertilization in this
species and both maternal and paternal genomes contribute
equally to the transcriptome of the early embryo (Nodine and
Bartel, 2012). Research in the last two decades has discovered
many differences in epigenetic modification between male and
female genomes, which lead to variations in expression profiles
between their genes before and after fertilization. Polycomb group
genes and RNA silencing mechanisms play a major role in these
processes, but will not be considered here in more detail as excel-
lent reviews can be found elsewhere (e.g., Van Ex et al., 2011;
Gehring, 2013).

It is well conceivable that sperm cells deliver factors, which
activate female gametes after fusion. A transcript encoding
the Interleukin-1 Receptor-Associated Kinase (IRAK)/Pelle-like
kinase gene SHORT SUSPENSOR (SSP), which was shown to be
delivered by sperm cells, becomes translated in the zygote and acts
in the YODA (YDA) MAPK pathway during zygote elongation
(Bayer et al., 2009). In the zygote, the regulatory network acti-
vated by SSP-YDA is yet unknown. Activation of the cell cycle
might also represent a key mechanism for the activation and
progression of seed development. However, cdka;1 mutant sin-
gle sperm-like germ cells, defective in a master cell cycle regulator
are capable of fertilizing egg cells and activating the embryonic
program (Iwakawa et al., 2006; Nowack et al., 2006). Although
the mutant cdka;1 central cell showed mitotic divisions upon egg
cell fertilization, it appeared mostly unfertilized, and endosperm
proliferation and thereby seed development stopped after a cer-
tain time point. This finding suggested a positive proliferation
signal from the zygote leading to cell cycle activation in the central
cell. However, occasionally two cdka;1 sperm cells are delivered to
the gamete fusion site leading to cell-cell fusion of both female
gametes with one cdka;1 mutant sperm cell each. It was further
reported that fusion between nuclei of sperm and central cell fails.
The failure of karyogamy in the central cell prevents incorpora-
tion of the paternal genome, impairs endosperm development
and causes seed abortion. This and the above findings using
pathenogenetic species imply that the paternal genome plays an
essential role during early seed development and that sperm cell
factors are also required to activate central cell development (Aw
et al., 2010). In summary, very little is known about the molec-
ular mechanisms activating both female gametes that lead to the
initiation of seed development.
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CONCLUSIONS
Efficient and successful fertilization of all developed ovules is
a key to reproductive success and essential for high crop yield.
Using the model plant Arabidopsis tremendous progress has been
made in the past couple of years to understand the underlying cel-
lular and molecular mechanisms that regulate pollen tube growth
and guidance, sperm delivery and gamete interaction resulting
in blocks to polytubey and polyspermy. Little is known about
the activation of gametes and thus seed development immedi-
ately after fertilization. Many of the processes described above
involve conserved mechanisms and proteins. Some of these pro-
teins are highly polymorphic and species-specific, allowing female
flower organs to discriminate self from alien pollen grains/pollen
tubes to avoid reproductive failure after pollination and fertil-
ization with incompatible gametophytes and gametes, respec-
tively. In summary, we have learned that species-specific or even
ecotype-specific molecules and plant family-specific mechanisms
are required during compatible interactions. These are used by
papilla cells to control pollen germination, by transmitting tract
cells during pollen tube growth and by the ovule and female
gametophyte cells during the last steps of pollen tube journey.
Moreover, even sperm cell discharge is regulated in a species-
preferential manner. Whether gamete interactions depend on
species-specific molecules remains to be shown. Up to now the
final processes of fertilization seem to involve partly conserved
proteins even from lower to higher eukaryotes. The knowledge
generated can now be used to investigate, for example, speciation
mechanisms or can be applied to overcome hybridization bar-
riers between species. Initial attempts enabling ovules to attract
pollen tubes from unrelated plant families have been successful
(Márton et al., 2012). However, as outlined above double fertil-
ization mechanisms are very complex and regulated at multiple
levels, and it will be a challenge to overcome all steps simulta-
neously allowing wide hybridization between plant species that
presently cannot be crossed. A major challenge for the near future
is to understand fertilization mechanisms also in crop plants,
especially in the grasses, which represent the most economically
important plant family. Maize was suggested as a grass and crop
model to investigate these processes (Dresselhaus et al., 2011),
but transformation difficulties, the low number of available inser-
tion mutants, the requirement of sufficient greenhouse space and
especially technical problems to visualize the fertilization pro-
cess in vivo still limit its utilization for reproduction biologists.
Concerted efforts are now required to understand the molecular
mechanisms of double fertilization in crop plants, which signifi-
cantly differ from Arabidopsis in both reproductive structures and
genetic repertoire.
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