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A central goal of systems biology is to develop models that are both predictive and
accurately describe the biological system. One complexity to this endeavor is that it is
possible to develop models that appear predictive even if they use far fewer components
than the biological system itself uses for the same process. This problem also occurs in
quantitative genetics where it is often possible to describe the variation in a system using
fewer genes than are actually variable due to the complications of linkage between causal
polymorphisms and population structure.Thus, there is a crucial need to begin an empirical
investigation into the true number of components that are used by biological systems
to determine a phenotypic outcome. In this study, we use a meta-analysis of directly
comparable metabolomics quantitative studies using quantitative trait locus mapping and
genome wide association mapping to show that it is currently not possible to estimate how
many genetic loci are truly polymorphic within Arabidopsis thaliana. Our analysis shows
that it would require the analysis of at least a 1000 line bi-parental population to begin
to estimate how many polymorphic loci control metabolic variation within Arabidopsis.
Understanding the base number of loci that are actually involved in determining variation in
metabolic systems is fundamental to developing systems models that are truly reflective
of how metabolism is modulated within a living organism.
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INTRODUCTION
A central goal of systems biology is to develop models that are both
predictive and accurately describe the biological system. Compli-
cating this endeavor is the observation that it is possible to develop
highly accurate models that use far fewer components than the
biological system itself uses for the same process. The absence of
components means that the models typically are not predictive
when moving into new areas (phenotypes, environments, species)
other than the explicit conditions in which the model was devel-
oped. This is because in these different areas there are new and
previously unrecognized components that need to be included to
make the model accurate. Thus, while it is possible to create highly
accurate models, these models ability to be predictive into new
untested conditions is frequently hindered. Solving this requires
developing a base understanding of how large a true molecular
network is within a biological system to ensure that the models are
of similar scale.

This reduction conundrum also occurs in quantitative genetics
where it is often possible to accurately describe the variation in
a system using far fewer genetic loci than may actually be caus-
ing the phenotypic variation. This potential arises from the fact
that most genetic populations are smaller than required to allow
all independent components varying within the population to
behave independently (Brem et al., 2005; West et al., 2007; Buck-
ler et al., 2009; Chan et al., 2010b, 2011; Bloom et al., 2013; Albert
et al., 2014). This lack of independence arises from the fact that

genes are genetically linked upon chromosomes and there has
not been sufficient recombination to separate them (Falconer and
Mackay, 1996; Mackay, 2001; Manolio et al., 2009). Additionally,
most populations do not have sufficient numbers of individuals
to fully sample the genetic matrix. For example it would require
∼33000 yeast lines to sample all possible combinations of 15 loci
once (Albert et al., 2014). Another factor affecting independence
in quantitative genetics is that there may be natural or artificial
selection structuring the genome and further decreasing random-
ness and hence independence (Platt et al., 2010a,b). Thus, there
is a crucial need to begin an empirical investigation into the true
number of variable causal loci that may be present in any mapping
population.

A key approach to study the number of loci causing varia-
tion in a phenotype is the use of structured mapping populations.
Modeling studies often test how the size of a mapping popu-
lation and its recombination design impact the ability to find
quantitative trait loci (QTLs). However, these modeling studies
are typically built on the assumption that existing populations
have largely discovered what is available to be discovered within
a specific population. This arises because studies often bootstrap
the analysis by taking a subset of the population and then test-
ing how many of the final QTLs were found (de Koning et al.,
1998; Charmet, 2000; Perretant et al., 2000; Doerge, 2002; West
et al., 2007). These analyses always show that only a smaller subset
of the lines were necessary to identify what was found in the full
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population. This is then frequently misinterpreted to mean that all
potential QTLs present within this population were found. How-
ever, this simply means that the researcher did not need the full
population to find what they found. In contrast, this backward
bootstrapping has no predictive capacity to provide informa-
tion on what additional information might have been found if
the population had been even larger than tested. Thus there is
a need to conduct an empirical analysis of how population size
may influence the number of QTLs being detected as a first step
to figuring out how many loci may exist within a population or
species.

In the report, we conduct a meta-analysis of metabolite QTL
mapping studies within simple bi-parental recombinant inbred
line (RIL) populations of Arabidopsis thaliana to begin studying
what is necessary to estimate the number of loci that affect a trait
in a species. We show that the different RIL populations have
similar genetic architecture suggesting that they can be treated
as a randomized sample of the species. Using multiple popula-
tions of differing sizes measured for the same phenotypes with
the same experimental and statistical approaches, we show that
the number of QTL identified increases with population size but
that it is currently impossible to tell if this relationship is linear or
log-linear. Separating these two models is essential to developing
future populations but will require a bi-parental RIL population
of at least 1000 lines. Interestingly, the new QTLs identified with
the increasing population sizes were not of small effect but instead
they were of similar effect to the QTLs found in smaller popu-
lations. In contrast, most models assume that as more QTL are
found they are of smaller and smaller effect. This means that
we may be vastly underestimating the genetic potential present
within any single RIL population. If we are underestimating a
simple bi-parental population than there is an even larger issue
of underestimation with more complex multi-parent or genome
wide association (GWA) mapping population. New empirical and
modeling studies taking into account these meta-analysis obser-
vations will be needed to design optimal mapping populations for
future analysis.

MATERIALS AND METHODS
METABOLOMICS META-ANALYSIS OF RIL POPULATIONS
We obtained all the QTL mapping data from two previous exper-
iments looking at metabolomics QTLs in the Bay × Sha and
Kas × Tsu RIL populations (Loudet et al., 2002; McKay et al.,
2008; Rowe et al., 2008; Juenger et al., 2010; Joseph et al., 2013a).
These experiments were done in the same growth chamber using
the same experimental protocols optimizing the ability to directly
compare the results. Additional metabolomics QTL studies in Ara-
bidopsis RIL populations were not included either because they
used different experimental designs that prevented the ability
to compare the results or the appropriate data were not avail-
able (Keurentjes et al., 2006; Lisec et al., 2008, 2009; Sulpice et al.,
2009; Brotman et al., 2011). All metabolomics were conducted
at the University of California Davis metabolome facility fol-
lowing the same published protocols as described in the direct
citations for each dataset (Weckwerth et al., 2004; Fiehn et al.,
2005, 2008; Rowe et al., 2008; Chan et al., 2010a; Joseph et al.,
2013a).

METABOLOMICS META-ANALYSIS OF GWA IN Arabidopsis
To compare the genetic architecture of metabolome variation in
RILs with GWA populations, we obtained all the metabolite vari-
ation data from a previous GWA analysis of 96 accessions that
were done in the same growth chamber using the same experi-
mental protocols (Chan et al., 2010a). These 96 accessions were
the same as described in other GWA analysis (Atwell et al., 2010).
This allowed us to optimize the comparability of the results.

GLUCOSINOLATE META-ANALYSIS OF RIL POPULATIONS
For our meta-analysis of glucosinolate QTL analysis, we obtained
all QTL mapping data from previous experiments looking at glu-
cosinolate QTLs in the Ler × Col-0, Ler × Cvi, Bay × Sha,
Da(1)-12 × Ei-2, and Kas × Tsu RIL populations (Kliebenstein
et al., 2001b, 2002a,b; Wentzell et al., 2007; Joseph et al., 2013b).
The number of QTLs found for each trait were available for all
populations but the estimated additive effect per locus was only
available for the Bay × Sha, Da(1)-12 × Ei-2, and Kas × Tsu RIL
populations (Kliebenstein et al., 2001b, 2002a,b; Wentzell et al.,
2007; Joseph et al., 2013b). These QTL studies were all conducted
with the same technical platform and similar replication allow-
ing for an optimal comparison of the results (Kliebenstein et al.,
2001b, 2002a,b; Wentzell et al., 2007; Joseph et al., 2013b). For
all experiments, they were conducted using the same established
high-throughput glucosinolate extraction protocol with the same
quantification approaches and level of replication (Kliebenstein
et al., 2001a,b,c; Reichelt et al., 2002).

STATISTICAL ANALYSIS
All statistical analysis and visualizations were conducted within
the R software (R Development Core Team, 2014).

RESULTS
COMPARATIVE METABOLOME HERITABILITY ACROSS POPULATIONS
To begin investigating how population size and diversity may influ-
ence metabolome QTL identification, we compiled data from two
metabolomics studies in which the same experimental design,
metabolome analysis protocol and growth chambers were used
(Rowe et al., 2008; Joseph et al., 2013a). This minimizes any tech-
nical or environmental difference between the experiments that
could influence the comparison. The two metabolomics QTL
studies used RIL populations of different sizes; the Kas × Tsu A.
thaliana RIL population had 316 lines while the Bay × Sha pop-
ulation had only 210 lines measured (Loudet et al., 2002; McKay
et al., 2008; Rowe et al., 2008; Joseph et al., 2013a,b). Further, the
two populations are highly diverse with minimal shared regions
of high or low polymorphism indicating that we can treat them
as a random sampling of potential RILs that may be generated
from Arabidopsis (Figure 1; Atwell et al., 2010). 258 predomi-
nantly primary metabolites were detected in the QTL mapping
experiments for both populations allowing these metabolites to be
used for a direct comparison of the genetics controlling the plant
metabolome between these two populations (Rowe et al., 2008;
Joseph et al., 2013a). The two populations showed a highly sim-
ilar heritability distribution for the metabolome variation, 21%
for Kas × Tsu and 25% for Bay × Sha (Figure 2A; Rowe et al.,
2008; Joseph et al., 2013a). In contrast, a direct comparison of
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FIGURE 1 | Comparison of SNP distributions in the recombinant inbred

line (RIL) populations. We obtained previously published single nucleotide
polymorphism calls between the four genotypes, Bay, Sha, Kas, and Tsu.
Using this data, we estimated the distribution of SNPs on chromosomes

1–5 (top to bottom) based on a sliding window of 250 Kb along the
chromosome. The frequency is shown as the fraction of polymorphisms per
100 bp between the two parents for BayxSha (green) and KasxTsu (blue)
RIL populations.

the heritability for each specific metabolite in the two popu-
lations showed that there was no significant correlation across
the metabolites (Figure 2B, Pearson correlation, r2 = 0.04,
P = NS; Figure 2B; Rowe et al., 2008; Joseph et al., 2013a).
Thus, while the genetics affecting the metabolome has similar
overall heritability in the two populations, this genetic diversity
affects different metabolites in the two populations. As such the
size of the RIL population did not influence the distribution of
heritability’s.

SHARED STRUCTURE BUT DIFFERENT SPECIFICS OF METABOLOMIC
DIVERSITY IN RIL POPULATIONS
Heritability showed that the overall genetic architecture affect-
ing the metabolome is similar between the two populations but
that the affected metabolites are different. We further tested this
using the genetic variance present in each metabolite across the

RILs. To do this, we compared the genetic CV for all 258 metabo-
lites across the two populations. As with heritability, the overall
distribution of metabolic variance was very similar between the
two populations (Figure 3). The larger Kas × Tsu population was
slightly skewed toward metabolites with larger population variance
while the smaller Bay × Sha population had a slight enrichment
in metabolites with lower genetic variance (Figure 3; Rowe et al.,
2008; Joseph et al., 2013a). As with heritability, plotting the genetic
CV of the 258 metabolites detected in both populations showed
no correlation indicating that different specific metabolites are
affected by this similar genetic architecture (Figure 4, Pearson
correlation).

Within the Bay × Sha population the highly variable metabo-
lites were enriched in sugars and amine metabolic processes
(Figure 4). In contrast, the metabolites specifically variable in the
Kas × Tsu population are more associated with stress responses
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FIGURE 2 | Comparative metabolite genetics. (A) Comparison of
estimated metabolite heritability’s in the Bay × Sha (gray) and Kas × Tsu
(black) RIL populations. (B) Scatter plot of heritability for 258 metabolites

where both heritability and replicate effect could be estimated in the
Bay × Sha and Kas × Tsu RIL populations. No significant correlation was
found (Pearson correlation).

like Shikimate, putrescine, SA, and isonicotinic acid or lipid
metabolism (Figure 4). Interestingly, the known compounds that
displayed elevated genetic variance in both populations are key
energy balance compounds like asparagine, pyruvate, glucose-
6-phosphate, fructose-6-phosphate and galactose-6-phosphate
(Figure 4). Typically, these central energy flux components are
considered constrained in their function which should limit their
diversity but this does not appear to be the case in Arabidopsis.
The lack of correlation amongst specific metabolites for heritabil-
ity or genetic CV between the two populations argues that each

population has specific genetic polymorphisms that alter distinct
metabolites in each population. These genetic polymorphisms are
largely not shared between the two populations (Figure 1). Thus,
while the specific genetic variation in each RIL population affects
different metabolites, the overall genetic architecture (the distri-
bution of heritabilities and CV) of each population is similar. The
fact that the overall genetic architecture of the RIL populations
is comparable suggests that we can treat diverse RIL populations
in Arabidopsis as random sample of the potential genetic diversity
within the species.
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FIGURE 3 | Comparative metabolite genetics. Comparison of population CV across the metabolites within the Bay × Sha (gray) and Kas × Tsu (black) RIL
populations. Inset shows a zoomed in view of the majority of the distribution.

COMPARATIVE METABOLOME GENETICS ACROSS POPULATIONS
To begin testing how an increase in the number of lines between
the two populations increases the ability to identify QTLs, we
compared the number of QTLs identified for the 258 common
metabolites. For both populations we had previously used the
same composite interval mapping (CIM) approach to identify and
call significant QTLs. In combination with the similar range of her-
itability’s and genetic variances, this identical statistical approach
allows us to conduct a direct comparison where the only major dif-
ference in the two populations is line number (Jansen, 1994; Zeng
et al., 1999a; Broman et al., 2003; Rowe et al., 2008; Joseph et al.,
2013a). There was 54% more QTLs per metabolite detected in the
316 line Kas × Tsu population than for the 211 line Bay × Sha pop-
ulation (Figure 5). The Kas × Tsu population had an average of
1.22 ± 0.02 QTLs per metabolite in comparison to 0.79 ± 0.1 QTLs
per metabolite found in the Bay × Sha RIL (Figure 6; Avg ± S.E.).
The main difference between the two populations was the number
of metabolites with at least one detected QTL; Kas × Tsu had a
QTL detected for 75% of metabolites while for Bay × Sha this was
only 44%. There was also an increase in the number of metabo-
lites with two or more QTLs (Figure 5). Interestingly, 316 lines
represents about a 50% increase in the number of lines which is
similar to the 50% increase in QTL detected suggesting the poten-
tial for a linear relationship between the number of lines present
in a population to the number of metabolite QTL detected.

RIL POPULATION SIZE AND QTL DETECTION USING TARGETED
METABOLITE ANALYSIS
To better test how RIL population size influences the ability to
identify QTLs we obtained data on QTL mapping for aliphatic

and indolic glucosinolate accumulation within five different Ara-
bidopsis populations (Lister and Dean, 1993; Alonso-Blanco et al.,
1998; Kliebenstein et al., 2001b, 2002a,b; Loudet et al., 2002; Pfalz
et al., 2007; Wentzell et al., 2007; McKay et al., 2008; Joseph et al.,
2013b). These RIL populations differ in size from 100 to 411
lines and the glucosinolates were measured in the same tissue
with similar replication using the same technical platform. Addi-
tionally, the glucosinolate QTL mapping was done with the same
algorithm for all experiments (Kliebenstein et al., 2001b, 2002a,b;
Wentzell et al., 2007; Joseph et al., 2013b). This allows us to con-
duct a direct comparison of QTL detection where the major
difference is solely due to differences in the populations. Com-
paring the number of QTL identified to the number of lines
in each population showed that QTL identification significantly
increased with population size (Figure 6; Pearson Correlation,
P < 0.001). This increase in QTL identification with popula-
tion size was found for both aliphatic and indolic glucosinolates
(Figure 6; Pearson Correlation, P < 0.001 for both). Within these
populations, the aliphatic and indolic glucosinolates are controlled
by different causal loci suggesting that they are behaving as inde-
pendent measures of the relationship between power to identify
QTL and population size within these populations (Kliebenstein
et al., 2001b, 2002a,b; Pfalz et al., 2007; Wentzell et al., 2007; Joseph
et al., 2013b).

When analyzing the relationship between QTL number found
and population size for the glucosinolate phenotypes we found a
log-linear relationship between the two parameters as has often
been found in modeling studies (Figure 6; Pearson correlation
using log adjusted values, P < 0.001 for both; Falconer and
Mackay, 1996; Mackay, 2001; Doerge, 2002; Stich et al., 2007;
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FIGURE 4 | Different modules of metabolic variation in different

populations. Comparison of metabolite CV across all the RILs in the
Bay × Sha and Kas × Tsu populations for 258 metabolites where CV could be
estimated in both populations and that showed significant heritability’s in both
populations. The gray polygon shows metabolites with elevated phenotypic

variation in both populations. Below the polygon are metabolites with high
variation only in Kas × Tsu while to the left are metabolites that show
elevated variation in only Bay × Sha. Known metabolites are labeled while
unknown metabolites are unlabeled. Elevated variance is defined as being in
the top 10th percentile of metabolites within a population.

West et al., 2007; McMullen et al., 2009; Klasen et al., 2012).
However, a linear regression was also an equal statistical fit to
the data (Figure 6). Thus, the existing data cannot differenti-
ate between a linear and log-linear relationship of QTL number
detected to population size. This is even though the large popula-
tion is considered to be sufficient to fully sample the potential
QTL in a population (Figure 6; Falconer and Mackay, 1996;
Mackay, 2001; Doerge, 2002; Stich et al., 2007; West et al., 2007;
McMullen et al., 2009; Klasen et al., 2012). Using the regres-
sion estimates we projected the linear and log-linear regression
models with their 95% confidence intervals to larger population
sizes to test what population size would be required to differ-
entiate between these two different regressions (Figure 7). Even
though both the aliphatic and indolic glucosinolates had differ-
ent specific regression estimates the two traits generated the same
estimate that it would require minimally between 950 and 1000
individuals in a single bi-parental RIL population to test which
regression model more accurately approximates the relationship
between population size and the power to identify new QTLs
(Figure 7).

RIL POPULATION SIZE AND QTL EFFECT SIZE
A common assumption in QTL mapping is that small RIL popu-
lations will identify larger effect loci and the larger populations
simply add smaller effect loci (Beavis, 1994, 1998; Zu, 2003).
Using our meta-analysis data, we tested if there was a relation-
ship between population size and the additive effect of the QTLs
found. We chose to focus on additive effect rather than percent
of total variance (r2) explained because the additive effect of an
individual locus is not dependent upon the total population vari-
ance. In contrast, the r2 per locus is determined both by the effect
of the locus and the total population variance (Beavis, 1994, 1998;
Falconer and Mackay, 1996; Mackay, 2001; Zu, 2003). Thus, addi-
tive effect allows for more independence when comparing across
populations. We thus compared line number against the additive
effect size of each QTL found across three of the populations.
Two of the five populations did not have the estimated addi-
tive effect size for the QTLs and were not used. Unexpectedly,
this comparison showed no statistically significant relationship
between population size and the additive effect of the identified
QTLs for either the aliphatic or indolic glucosinolates (Figure 8;
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FIGURE 5 | Comparison of QTL detection across populations. Shown
is the frequency of metabolites that detected a given number of nuclear
genome Quantitative trait loci (QTLs) in the Bay × Sha RIL population (gray)
and the Kas × Tsu RIL population. Inset shows a magnification of the X
axis in the four to eight QTL region.

Pearson and Spearman Rank correlation tests). Thus, the new QTL
found as population size increased were not of smaller effect but
instead of similar effect size to those found with smaller population
sizes.

COMPARATIVE METABOLIC DIVERSITY BETWEEN RIL AND GWA
POPULATIONS
A common concern affecting RIL populations is that there are only
two alleles per locus and thus might be limited in their genetic vari-
ation relative to species-wide diversity (Kim et al., 2007; Nordborg
and Weigel, 2008). A proposed solution to this limitation is the use
of unstructured GWA mapping populations that sample greater
genetic diversity (Atwell et al., 2010; Chan et al., 2010a, 2011). This
bi-allelic aspect of RIL populations is suggested to constrain RIL
populations to simply sampling a subset of phenotypic variation
in the more genetically diverse unstructured GWA populations.
To assess how this bi-allelic structure may or may not constrain
a RIL population, we compared the metabolomic analysis of two
RIL populations with a GWA population using 135 metabolites
detected in all three experiments (Rowe et al., 2008; Atwell et al.,
2010; Chan et al., 2010a). These 135 metabolites included most of
the known primary compounds (Rowe et al., 2008; Atwell et al.,
2010; Chan et al., 2010a). Using the available data, we determined
genetic CV for all 135 metabolites measured in each of the pop-
ulations (Rowe et al., 2008; Atwell et al., 2010; Chan et al., 2010a;
Figure 9). Comparing the genetic CV showed that the RIL popula-
tions could capture a majority of the genetic variance controlling
metabolite variation within Arabidopsis (Figure 9). Additionally,
both RIL populations identified variance not present in the acces-
sions as they had at least 14 metabolites showing twice the genetic
variance found in the accessions (Figure 9). In contrast, there were
only five metabolites showing elevated variation in the accessions
that was not captured in the two RIL populations (oxoproline,
glycerol and three unknowns; Figure 9). Thus, while RILs have
lower genetic diversity at individual loci than the accessions, this
does not limit the associated phenotypic diversity.

FIGURE 6 | Comparison of QTL detection across populations. Shown
is the number of QTL identified across five different RIL populations of
Arabidopsis with different line numbers. Blue shows the estimated
log-linear relationship of QTL # identified per Line # while Orange shows
the estimated linear relationship. SE of the estimated relationships are
shown in filled color. Slopes and confidence intervals were obtained using
Pearson correlation of either the linear or log-adjusted data. Plots are
shown in linear scales for comparison purposes. (A) Aliphatic glucosinolate
traits (B) Indolic glucosinolate traits.

DISCUSSION
ESTIMATING THE NUMBER OF QTLS PER BI-PARENTAL POPULATION
Obtaining an accurate estimate of how many QTLs exist within a
single population is a key parameter for any quantitative modeling
study. However, there is no empirical understanding for how this
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FIGURE 7 | Comparative prediction of QTL detection across population

size. The slope and 95% confidence interval in the slope for both the linear
and log-linear regression of QTL number by line number was obtained for
the aliphatic (A) and indolic (B) glucosinolates across five populations
where they were measured with the same experimental design and
technical protocol. These estimated slopes were then use to plot the
predicted QTL number detected per populations of a given line under the
linear and log-linear predictions. Yellow shows the linear prediction and blue
the log-linear prediction.

parameter, QTLs per population, should be set within modeling
studies. This leads to a massive range of values in these modeling
studies complicating any true comparison between these model-
ing studies (Zeng et al., 1999b; Otto and Jones, 2000; Xu, 2003;
Slate, 2013; Guo et al., 2014). Even the analysis of individual large
populations reporting large numbers of loci controlling nearly all
of the heritability are likely under-estimates due to insufficient
recombination between loci (McMullen et al., 2009; Huang et al.,
2010; Kump et al., 2011; Tian et al., 2011; Bloom et al., 2013; Albert
et al., 2014). In addition to modeling studies, understanding how
many QTLs exist within a single population is fundamental to
knowing how to design future mapping populations especially
with the interest in multi-parent populations (Kover et al., 2009;
McMullen et al., 2009). To date, these populations have been
modeled and structured based on the assumption that existing
bi-parental populations have identified the majority of identifi-
able QTLs in those populations (Kover et al., 2009; McMullen et al.,
2009).

FIGURE 8 | Comparison of QTL Effect sizes by population size. Shown
is the number of QTL identified across three different RIL populations of
Arabidopsis with different line numbers. Two smaller populations could not
be included because estimates of additive effects were not published.
(A) Aliphatic glucosinolate traits (B) Indolic glucosinolate traits.

Thus, we conducted a meta-analysis of existing metabolite QTL
mapping within simple bi-parental Arabidopsis populations to
begin an empirical assessment of how many QTLs are present in
a given mapping population. As expected, including more lines in
a bi-parental did lead to more identified QTLs. However, the rela-
tionship between line number and QTL number equally fit a linear
and log-linear relationship even with 411 lines (Figure 6). Extend-
ing these linear and log-linear relationships showed that it would
require 950 or more lines for even a simple bi-parental popula-
tion before we could tell which relationship accurately describes
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FIGURE 9 | Comparative phenotype diversity in 96 Arabidopsis

accessions to RIL populations. (A) Comparison of Genetic CV for 135
metabolites measured in the Bay × Sha RILs and96 Arabidopsis
accessions. (B) Comparison of Genetic CV for 135 metabolites measured
in the Kas × Tsu RILs and96 Arabidopsis accessions.

the true number of metabolite QTL per population (Figure 7).
Accurately testing which model best describes QTL number per
a bi-parental population is essential given that most multi-parent
populations are stopping at 1000 lines under the assumption that
this is sufficient to identify all the QTLs (Flint et al., 2005; Kover
et al., 2009). However, our meta-analysis suggests that 1000 lines
are only just sufficient in a bi-parental population much less a
population with multiple alleles per locus. This indicates that at
least one bi-parental population of more than 1000 lines should
be developed in Arabidopsis to tests if the QTL identification
power of a population is a linear or log-linear relationship to its
size.

The above analysis is focused on metabolite related QTLs and
as such may not be broadly reflective of all traits. For example,
expression linked traits show higher average heritability than the
metabolomic traits but lower heritability than the glucosinolate
related traits used in this study (Keurentjes et al., 2007; West et al.,
2007; Rowe et al., 2008; Kliebenstein, 2009; Jimenez-Gomez et al.,
2011; Joseph et al., 2013a). Most physiological and defense related
phenotypes have heritability’s similar to these metabolomic results
within these populations (Joseph et al., 2013b). Given the poten-
tial for different genetic architectures in each trait, it argues that

there needs to be a broader effort to test if the if the link between
QTL identification power and population size is affected by the
phenotype being studied.

QTL EFFECT SIZE DISTRIBUTION
In contrast to most quantitative theory, our analysis found that
larger population sizes identified QTLs with a similar distribution
of effect sizes as smaller populations (Beavis, 1994, 1998). A possi-
ble explanation for how the new QTLs found with increasing line
numbers is that there might be a significant confounding issue
of linked QTLs in most existing populations (Yamamoto et al.,
2014). If two QTLs were linked and had opposing effects there is
a high likelihood that in small populations the region would be
missed. This is because the two QTLs effects would cancel each
other out and the lack of recombination would not allow either
locus to be detected. Thus, when these loci are identified in larger
populations they could have effect sizes similar to QTLs that are
not linked. This linkage of opposing effects has previously been
found using larger Arabidopsis populations (Wentzell et al., 2007;
Rowe and Kliebenstein, 2008; Rowe et al., 2008). Another possibil-
ity is that if two QTLs are linked with a similar direction of effects,
they might be identified as a single locus in smaller populations
but with an inordinately large effect size (Yamamoto et al., 2014).
Then upon increasing the number of lines, the two loci would
separate into two QTLs of smaller effect than the original locus
(Hansen et al., 2007). Combinations of loci with both similar and
opposing effects have been found when conducting fine-scale dis-
section of Arabidopsis QTLs (Kroymann and Mitchell-Olds, 2005;
Wentzell et al., 2008). Thus, the base assumption that increasing
the population sizewill solely identify QTLs of smaller effect size
is not supported by this empirical meta-analysis.

CONCLUSION
Our meta-analysis of QTL analysis using metabolite phenotypes
across multiple Arabidopsis RIL populations shows that it is not
possible to accurately estimate how many QTLs are present in a
single population with two alleles per locus. This is in contrast
to the myriad of modeling studies that make explicit assumptions
about this variable. Future work will be required to extend these
populations to larger sizes to provide a direct and empirical esti-
mate of how many QTLs may exist in a population. Conducting
these experiments will then provide a more firm foundation for
extensions of similar estimates into multi-parent populations and
further into the entire species. It is only then that we will have
a true view of how many naturally variable genes causally affect
variation within the plant metabolome.
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