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A wide variety of recombinant proteins has been produced in the dicot model plant,
Arabidopsis thaliana. Many of these proteins are targeted for secretion by means of
an N-terminal endoplasmic reticulum (ER) signal peptide. In addition, they can also
be designed for ER retention by adding a C-terminal H/KDEL-tag. Despite extensive
knowledge of the protein trafficking pathways, the final protein destination, especially of
such H/KDEL-tagged recombinant proteins, is unpredictable. In this respect, glycoproteins
are ideal study objects. Microscopy experiments reveal their deposition pattern and
characterization of their N-glycans aids in elucidating the trafficking. Here, we combine
microscopy and N-glycosylation data generated in Arabidopsis leaves and seeds, and
highlight the lack of a decent understanding of heterologous protein trafficking.
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INTRODUCTION
Recombinant proteins are often produced in eukaryotic host
organisms to ensure proper folding, disulfide bridge forma-
tion and N-glycan processing. By fusing the protein of interest
to an N-terminal endoplasmic reticulum (ER) signal peptide,
they co-translationally enter the ER and travel along the secre-
tory pathway, where N-glycosylation takes place on the con-
sensus Asn-X-Ser/Thr motif. The N-glycan composition is of
crucial importance for the protein structure, stability, half-life
and function, and is primarily determined by the production
host (Jacobs and Callewaert, 2009). In molecular farming, where
plants are used as production systems, heterologous proteins tar-
geted for secretion typically contain complex-type N-glycans with
ß-1,2-xylose and core α-1,3-fucose residues. These are poten-
tially immunogenic and are hence unwanted for therapeutic
protein production (Gomord et al., 2005). Therefore, significant
efforts went into the development of glyco-engineered produc-
tion platforms that prevent plant-specific N-glycosylation in the
Golgi complex (Gomord et al., 2010; Castilho and Steinkellner,
2012). Alternatively, heterologous glycoproteins can be retained
in the ER by adding a C-terminal H/KDEL-tag. Whereas both
HDEL- and KDEL-tagged endogenous proteins are found in
plants (Napier et al., 1992), the vast majority of heterologously
expressed, ER-retained proteins carry the KDEL-tag. Typical for
H/KDEL-tagging is the formation of Man8GlcNAc2 (Man8) N-
glycans. However, as ER retention is based on retrograde traffick-
ing from cis-Golgi to ER, the glycoproteins transiently encounter
cis-Golgi processing enzymes, such as α-1,2-mannosidase, result-
ing in partially trimmed N-glycans, such as Man7 and Man6. In
addition to the desired N-glycan profile, H/KDEL-tagging can
also enhance protein accumulation levels, presumably because

the ER is a favorable compartment for protein folding and stor-
age (Fiedler et al., 1997; Petruccelli et al., 2006). However, such
an increased accumulation is not always observed (Loos et al.,
2011a,b).

In contrast to this black and white distinction between secre-
tion and H/KDEL-mediated ER retention, numerous protein
localization studies reported unexpected outcomes. Drawing
clear conclusions from these experiments proved hard, because of
the different proteins of interest, plant species, tissues, promoters,
regulatory sequences, targeting signals and achieved accumula-
tion levels (De Muynck et al., 2010). Moreover, protein trafficking
has also been shown to change throughout development (Arcalis
et al., 2010; Wang et al., 2012). In this review, we provide a detailed
overview of protein localization studies in leaves and seeds of the
dicot model plant, Arabidopsis thaliana. By limiting ourselves to
Arabidopsis, we eliminate organismal specificity and highlight tis-
sue (i.e., leaves vs. seeds) and protein specificity in heterologous
protein trafficking.

In Arabidopsis, most recombinant proteins have been pro-
duced in seeds, providing the advantage of long-term storage
capacity, high protein content and productivity, and no interfer-
ence with vegetative plant growth (Stoger et al., 2005; Kermode,
2012). In head-to-head comparisons with the same protein of
interest, Arabidopsis seeds were more positively evaluated than
those of tobacco, petunia and maize in terms of protein accu-
mulation levels (Loos et al., 2011a; Morandini et al., 2011).
However, the impact of such comparisons is limited due to the
different efficiencies of regulatory sequences and codon usage
across organisms. Nevertheless, one of the highest accumulation
levels achieved in plants is still that of the seed-produced G4
scFv in Arabidopsis (i.e., 36.5% of total soluble protein (TSP) in
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homozygous seeds) (De Jaeger et al., 2002). De Wilde et al. (2013)
showed that VHH-Fc and scFv-Fc accumulation levels of 1% or
more in Arabidopsis seeds trigger an unfolded protein response,
because an enhanced expression of genes involved in protein fold-
ing, glycosylation, protein translocation, degradation and vesicle
trafficking was observed. However, despite such an altered gene
expression profile, Arabidopsis seeds often fail to provide a 100%
N-glycan site occupancy (Table 1B; 3–18 and 26).

TRAFFICKING OF PROTEINS TARGETED FOR SECRETION
In leaves, heterologous proteins that carry an N-terminal ER sig-
nal peptide, are efficiently secreted to the apoplast (De Wilde
et al., 1996; Peeters et al., 2001) (Table 1A; 1–3) and mainly
carry complex-type N-glycans (Schahs et al., 2007) (Table 1A; 5
and 6). Of note, Loos et al. (2011b) found that an anti-hepatitis
A virus scFv-Fc (HA78) contained complex-type N-glycans as
expected, while an anti-HIV scFv-Fc (2G12) was completely
covered with oligomannosidic N-glycans (Table 1A; 7 and 8).
Because the authors could not detect antigen-binding activity for
this 2G12 scFv-Fc, they postulated that it was not folded prop-
erly and activated the ER-associated protein degradation path-
way, hence preventing further N-glycan maturation in the Golgi
apparatus.

In seeds, despite successful examples of protein secretion with
complex-type N-glycans, some exceptions stress the lack of a
decent understanding of secreted heterologous protein traffick-
ing. For example, HA78 and 2G12 monoclonal antibodies (mAbs)
were both found in the apoplast and in electron-opaque Golgi-
attached dense vesicles (DVs) in developing seeds (Loos et al.,
2011a) (Table 1B; 8 and 11). DVs are distinct from clathrin-
coated vesicles that normally mediate protein secretion, and are
considered the main pathway for massive seed storage protein
transport from the trans-Golgi network to the protein storage
vacuole (PSV) (Robinson et al., 2005; Vitale and Hinz, 2005;
Otegui et al., 2006; Wang et al., 2012) (Figure 1; blue stars). Their
electron-opaque content reflects the aggregated state of the stor-
age proteins. Possibly, the highly abundant storage proteins, such
as globulins, exhibit a dominant sorting effect that leads to partial
trapping of the heterologous proteins in DVs. A similar mech-
anism, imposed by endogenous seed storage proteins, has been
proposed for recombinant phytase in ER-derived prolamin bodies
of rice endosperm (Drakakaki et al., 2006). In agreement with the
co-sorting hypothesis to the PSV via DVs in Arabidopsis, gluco-
cerebrosidase that was targeted for secretion, was mainly located
in the apoplast and to a minor extent in PSVs in mature seeds (He
et al., 2012a) (Table 1B; 22). Alternatively, partial mislocalization
of secreted proteins to DVs and PSVs can also be explained by
the presence of cryptic vacuolar specific sequences (Jolliffe et al.,
2005).

Both the HA78 and 2G12 mAbs were produced as scFv-Fc
moieties, using the same targeting and regulatory sequences (Loos
et al., 2011b) (Table 1B; 13 and 16). On the one hand, labeling in
apoplast and Golgi-attached DVs was obtained for HA78 scFv-Fc
(identical as for HA78 mAb) in developing Arabidopsis seeds. In
mature seeds, PSVs were devoid of label, so the question remains
where the DV-localized HA78 scFv-Fcs of the developing embryos
ended up. Instead, the final destinations of HA78 scFv-Fc were
the apoplast and “globular, membrane-delimited structures of

around 200 to 400 nm in diameter.” The latter were termed ER-
derived vesicles (ERVs), because ribosomes were observed on
their surface, but their specific formation in later developmental
stages was unclear. This dual deposition pattern was in accordance
with the presence of both complex-type and oligomannosidic N-
glycans. On the other hand, 2G12 scFv-Fc exclusively contained
Man7 and Man8 N-glycans, and was observed in ERVs and the
swollen nuclear envelope. This aberrant localization is in agree-
ment with the proposed improper folding of 2G12 scFv-Fc (see
above in Arabidopsis leaves).

TRAFFICKING OF PROTEINS TARGETED FOR ER-RETENTION
Only one study has been performed in Arabidopsis leaves, in
which a KDEL-tagged Fab fragment was detected intracellularly,
most likely in the endomembrane system (Peeters et al., 2001)
(Table 1A; 4).

In seeds, only Loos et al. (2011a) conclusively demonstrated
successful ER retention, more in particular for a minor frac-
tion of KDEL-tagged 2G12 mAb (Table 1B; 10). All other studies
describe distinct deposition patterns (Figure 1). First, the most
prevalent observation is the formation of ERVs, in a process that
is not fully understood (Van Droogenbroeck et al., 2007; Loos
et al., 2011b; Morandini et al., 2011; He et al., 2012b) (Table 1B;
3, 14, 17, 20 and 24). Their origin resembles KDEL-vesicles (KV)
of Vigna mungo seeds, by which SH-EP, a KDEL-tagged vacuolar
proteinase, is shuttled from the ER to the PSV upon germina-
tion (Toyooka et al., 2000). Moreover, the C-terminal KDEL-tag
of SH-EP was shown to be essential for KV formation (Okamoto
et al., 2003). Similarly, after producing GFP-KDEL in tobacco
leaves, so-called protein bodies were observed in most transfor-
mants with a GFP accumulation level of at least 0.2% of TSP
(Conley et al., 2009; Gutiérrez et al., 2013). Taken together, it
seems that the KDEL-tag ensures a local protein build-up in the
ER lumen, from which ERVs, KVs or protein bodies are formed.
From results obtained in mature Arabidopsis seeds, two hypothe-
ses were made. On the one hand, ERVs can represent the end-
stage of heterologous protein trafficking (Van Droogenbroeck
et al., 2007; Morandini et al., 2011; Loos et al., 2011b), which
sometimes are observed together with equal amounts of protein
deposited in the swollen nuclear envelope (Loos et al., 2011b)
(Table 1B, 14 and 17). On the other hand, ERVs can mediate
a Golgi-independent pathway to the PSV. This was demon-
strated by the EndoH sensitivity of the GAD67/65 glycoprotein
(Morandini et al., 2011) (Table 1B; 19) and the large fraction
of oligomannosidic N-glycans on 2G12 mAb (Loos et al., 2011a)
(Table 1B; 10). A similar ER-derived Golgi-independent pathway
toward the PSV has been described for endogenous seed stor-
age proteins in pumpkin seeds, where the shuttle vesicles were
termed precursor-accumulating (PAC) vesicles (Hara-Nishimura
et al., 1998). The authors hypothesized that the PAC pathway
has evolved for efficient, massive transport of unglycosylated seed
storage proteins to the PSV. Of note, vacuole biogenesis might also
represent an ER-to-vacuole route, because the ER was recently
proposed as the main membrane source for lytic vacuole forma-
tion (Viotti et al., 2013). Although such a mechanism has not
yet been observed for PSVs, it is tempting to state that some ER-
retained heterologous proteins are trapped into a PSV precursor
in a similar process (Figure 1).
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Table 1 | Overview of recombinant protein production in Arabidopsis leaves (A) and seeds (B), in which white boxes indicate recombinant

proteins targeted for secretion, and gray boxes correspond to KDEL-tagged proteins.

production

host a
protein of

interest b
Localizationc N-glycosylationd N-glycan

occupancy e
accumulation

level f
reference g

(A) PROTEIN ANALYSIS IN ARABIDOPSIS LEAVES

1 WT MAK33 mAb apoplast n.d. n.d. n.d. De Wilde et al.,
1996

2 WT MAK33 Fab apoplast n.a. n.a. n.d. De Wilde et al.,
1996

3 WT MAK33 Fab apoplast n.a. n.a. up to 6.5% of TSP Peeters et al., 2001

4 WT MAK33 Fab endomembrane system n.a. n.a. up to 5.9% of TSP Peeters et al., 2001

5 WT 2G12 mAb n.d. GnGnXF, MGnXF,
MMXF, Man7–9

100% 0.05–0.2% of TSP in
young plants

Schahs et al., 2007

6 XT/FT k.o. 2G12 mAb n.d. GnGn, MGn,
Man4–9

100% 0.05–0.2% of TSP in
young plants

Schahs et al., 2007

7 WT 2G12 scFv-Fc n.d. Man4–9 n.d. n.d. Loos et al., 2011b

8 WT HA78 scFv-Fc n.d. GnGnXF, MGnXF,
MMXF

n.d. n.d. Loos et al., 2011b

(B) PROTEIN ANALYSIS IN ARABIDOPSIS SEEDS

1 WT human
α-L-iduronidase

n.d. N-glycans with ß-
1,2-xylosylation,
oligomannosidic
N-glycans

n.d. up to 0.006% of
TSP

Downing et al.,
2006

2 cgl human
α-L-iduronidase

apoplast (developing
seeds)

mainly
oligomannosidic
N-glycans

n.d. up to 1.8% of TSP Downing et al.,
2006

3 WT MBP10 scFv-Fc periplasmic space,
ER-derived spherical
bodies

Man5–9 60–65% up to 12.4% of TSP Van Droogenbroeck
et al., 2007

4 WT HA78 scFv-Fc n.d. Man5–9 60–65% up to 13.1% of TSP Van Droogenbroeck
et al., 2007

5 WT EHF34 scFv-Fc n.d. Man5–8 60–65% up to 13.9% of TSP Van Droogenbroeck
et al., 2007

6 WT MBP10 scFv-Fc n.d. Man7–8 78% n.d. Henquet et al., 2011

7 alg3-2 MBP10 scFv-Fc n.d. Man5,
Man7/Glc2Man5

69% n.d. Henquet et al., 2011

8 WT 2G12 mAb apoplast, Golgi-attached
dense vesicles
(developing
seeds)—apoplast

GnGnXF, MGnXF,
Man7–8

<100% up to 3.6 μg/mg DW Loos et al., 2011a;
Arcalis et al., 2013

9 XT/FT k.o. 2G12 mAb n.d. GnGn, MGn,
Man7–8

<100% up to 2.1 μg/mg DW Loos et al., 2011a

10 WT 2G12 mAb PSV, ER (developing
seeds)

GnGnXF, Man6–8 <100% up to 3.0 μg/mg DW Loos et al., 2011a

11 WT HA78 mAb apoplast, Golgi-attached
dense vesicles
(developing seeds)

GnGnXF, Man5–8 <100% up to 8.8 μg/mg DW Loos et al., 2011a

12 XT/FT k.o. HA78 mAb n.d. GnGn, MGn,
Man5–8

<100% up to 9.8 μg/mg DW Loos et al., 2011a

13 WT 2G12 scFv-Fc ER-derived vesicles,
nuclear envelope
(developing and mature
seeds)

Man7–8 <100% up to 0.8 μg/mg DW Loos et al., 2011b

(Continued)
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Table 1 | Continued

production

host a
protein of

interest b
Localizationc N-glycosylationd N-glycan

occupancy e
accumulation

level f
reference g

14 WT 2G12 scFv-Fc ER-derived vesicles,
nuclear envelope

Man7–8 <100% up to 0.8 μg/mg DW Loos et al., 2011b

15 XT/FT k.o. 2G12 scFv-Fc n.d. Man7–8 <100% up to 3.5 μg/mg DW Loos et al., 2011b

16 WT HA78 scFv-Fc apoplast, Golgi,
Golgi-attached dense
vesicles (developing
seeds)—apoplast,
ER-derived vesicles

GnGnXF, MGnXF,
Man5–9

70% up to 8.0 μg/mg DW Loos et al., 2011b

17 WT HA78 scFv-Fc PSV, ER-derived vesicles
(developing
seeds)—ER-derived
vesicles, nuclear
envelope

Man7–8 <100% up to 3.9 μg/mg DW Loos et al., 2011b

18 XT/FT k.o. HA78 scFv-Fc n.d. GnGn, MGn,
Man6–8

66% up to 9.4 μg/mg DW Loos et al., 2011b

19 WT glutamic acid
decarboxylase
GAD67/65

PSV oligomannosidic
N-glycans

100% 1.5–5.4% of TSP (up
to 4.5 μg/mg DW)

Morandini et al.,
2011

20 WT interleukin-10 apoplast, ER-like
membrane
compartments

n.a. n.a. 0.1–0.7% of TSP (up
to 0.82 μg/mg DW)

Morandini et al.,
2011

21 WT proinsulin PSV n.a. n.a. < 0.01% of TSP
(up to 0.005 μg/mg
DW)

Morandini et al.,
2011

22 cgl glucocerebrosidase apoplast, PSV MGnXF, MMXF,
Man5F, Man4-8

n.d. up to 0.1% of TSP He et al., 2012a

23 WT human
α-L-iduronidase

n.d. complex-type
N-glycans,
Man5–8

n.d. up to 0.46% of TSP He et al., 2012b

24 cgl human
α-L-iduronidase

punctate vesicles,
apoplast (developing
seeds)—ER or
ER-derived
compartments, PSV

GnGnXF, MGnXF,
MMXF, Man5–9

n.d. up to 0.61% of TSP He et al., 2012b

25 WT pVHH7-hGFc
(VHH-Fc)

n.d. N-glycans without
α-1,3-fucosylation

100% up to 16.3% of TSP De Buck et al., 2013

26 WT sV3A (sVHH-Fc) n.d. oligomannosidic
N-glycans

<100% up to 5 μg/mg DW Virdi et al., 2013

27 WT GP3, GP4 and GP5
antigens

n.d. oligomannosidic
N-glycans

n.d. up to 2.7% of TSP Piron et al., 2014

n.d., not determined; n.a., not applicable.
aalg3-2, α-1,3-mannosyltransferase mutant (Henquet et al., 2008); cgl, complex glycan mutant (Von Schaewen et al., 1993); WT, wild-type; XT/FT k.o., ß-1,2-

xylosyltransferase and core α-1,3-fucosyltransferase knockout line (Strasser et al., 2004).
bFab, fragment antigen-binding; mAb, monoclonal antibody; scFv-Fc, single-chain variable fragment fused to a fragment crystallisable; VHH-Fc, variable domain of

the heavy chain of the heavy-chain antibody fused to a fragment crystallisable.
c In mature, dry seeds unless mentioned otherwise.
d Glc2Man5, Glc2Man5GlcNAc2;GnGn, GlcNAc2Man3GlcNAc2;GnGnXF, GlcNAc2Man3GlcNAc2XylFuc; Man4–9, Man4−9GlcNAc2; Man5F, Man5GlcNAc2Fuc; MMXF,

Man3GlcNAc2XylFuc; MGn, GlcNAc1Man3GlcNAc2; MGnXF, GlcNAc1Man3GlcNAc2XylFuc.
eSometimes determined ourselves based on available figures in the corresponding references.
f In our experience, 1% of TSP corresponds to about 2.5 μg/mg DW. DW, dry weight; TSP, total soluble protein.
gStudies were ordered chronologically.
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FIGURE 1 | Schematic representation of the different localizations of

KDEL-tagged recombinant proteins in Arabidopsis seeds. Recombinant
proteins are depicted as brown dots, and globulin seed storage proteins as
blue stars. During their transport, globulins aggregate in the periphery of the
Golgi cisternae, from where they bud into DVs toward the PSV. In one
occasion, they were observed in the PS because of a disturbed protein
trafficking of endogenous proteins (Van Droogenbroeck et al., 2007). The

ER-to-provacuole hypothesis, as depicted at the bottom, is based on recent
observations of lytic vacuole biogenesis (Viotti et al., 2013). CCV,
clathrin-coated vesicle; CW, cell wall; DV, dense vesicle; ER, endoplasmic
reticulum; ERV, ER-derived vesicle; IC, intercellular space; MVB,
multivesicular body; PS, periplasmic space; PSV, protein storage vacuole; PM,
plasma membrane; SNE, swollen nuclear envelope; TGN, trans-Golgi
network.

Second, partial leakage to the Golgi has been observed because
KDEL-tagged proteins accumulated in the apoplast (Morandini
et al., 2011) (Table 1B; 20) or carried complex-type N-glycans
(Loos et al., 2011a) (Table 1B; 10). Such ER leakage has also
been described in Medicago and tobacco (Triguero et al., 2005;
Petruccelli et al., 2006; Abranches et al., 2008). The authors
suggested several factors that might influence successful ER reten-
tion. For example, one should consider the amount of KDEL-
tags per assembled molecule, and the accessibility and integrity
of the KDEL-tag. Remarkably, based on western blot analysis
of subcellular fractions, He et al. (2012b) suggested a Golgi-
dependent route toward the PSV for KDEL-tagged human α-L-
iduronidase (Table 1B; 24). Unfortunately, electron microscopy
localization studies on mature seeds confirming this hypothesis,
were lacking.

Third, after producing KDEL-tagged MBP10 scFv-Fc in
Arabidopsis seeds, an electron-opaque periplasmic space (PS)
between the plasma membrane and cell wall was observed in
which most of the MBP10 was deposited (Van Droogenbroeck
et al., 2007) (Table 1B; 3). Moreover, MBP10 exclusively
contained oligomannosidic N-glycans, pointing to a Golgi-
independent route from the ER to the PS. Because ER-resident
proteins, such as calreticulin and binding protein, were also
present in the PS, and because of the very high MBP10 accu-
mulation level (up to 12.4% of TSP), the authors proposed an
overcharge of the ER storage capacity. Interestingly, globulin
storage proteins were also deposited in the PS.

In several other studies, localization experiments were out-
of-scope. However, N-glycan analyses were performed and only
oligomannosidic N-glycans were detected (Henquet et al., 2011;
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De Buck et al., 2013; Virdi et al., 2013; Piron et al., 2014)
(Table 1B; 6, 7 and 25–27). Although the authors probably
assumed successful ER retention, we conclude that, based on the
aforementioned detailed localization studies, these KDEL-tagged
glycoproteins can also reside in ERVs, the PSV (by bypassing the
Golgi complex) or the PS.

CONCLUDING REMARKS
It is critical for recombinant protein production that the plat-
form is reliable and predictable in terms of product quality. In this
respect, the ER retention of KDEL-tagged recombinant proteins
in Arabidopsis, has proven to be unpredictable, and similar obser-
vations were made in other plant production systems. Therefore,
H/KDEL-tagged proteins, produced in plants, should always be
analyzed in terms of final destination and N-glycan composition,
unless of course, if the actual N-glycan composition is of less
importance (e.g., for diagnostic proteins) and does not influence
the final product performance.

Obviously, additional investigations are needed. For exam-
ple, one could analyse the influence of the protein accumulation
level by comparing protein localizations in low and high express-
ing lines. Alternatively, the promoter sequences used might also
severely impact the observed protein localization. To this end,
promoters with different temporal and spatial expression pat-
terns, especially during seed development, could be worthwhile
to study. Further, deletion and swapping experiments can reveal
whether particular protein domains of the heterologous protein
contain certain localization motifs resulting in the lack of ER
retention. Finally, most of the manuscripts discussed here, did
not verify KDEL-tag accessibility or integrity. For future reports
on H/KDEL-tagged protein production in plants, it would thus
be valuable to include, for example, western blot or immuno-
precipitation analyses with commercially available anti-H/KDEL
antibodies. In case recognition by these antibodies fails, linker
sequences can be used to improve H/KDEL-tag accessibility. We
conclude that such investigations will result in a much better
predictability of the ER retention of overexpressed H/KDEL-
tagged proteins in plants, and eventually contribute to the further
establishment of the field of plant molecular farming.
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