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Essential oil from Gaultheria procumbens is mainly composed of methylsalicylate (MeSA)
(>96%), a compound which can be metabolized in plant tissues to salicylic acid,
a phytohormone inducing plant immunity against microbial pathogens. The potential
use of G. procumbens essential oil as a biocontrol agent was evaluated on the
model plant Arabidopsis thaliana. Expression of a selection of defense genes was
detected 1, 6, and 24 h after essential oil treatment (0.1 ml/L) using a high-throughput
qPCR-based microfluidic technology. Control treatments included methyl jasmonate and a
commercialized salicylic acid (SA) analog, benzo(1,2,3)-thiadiazole-7carbothiolic acid (BTH).
Strong induction of defense markers known to be regulated by the SA pathway was
observed after the treatment with G. procumbens essential oil. Treatment induced the
accumulation of total SA in the wild-type Arabidopsis line Col-0 and analysis of the
Arabidopsis line sid2, mutated in a SA biosynthetic gene, revealed that approximately 30%
of MeSA sprayed on the leaves penetrated inside plant tissues and was demethylated
by endogenous esterases. Induction of plant resistance by G. procumbens essential oil
was tested following inoculation with a GFP-expressing strain of the Arabidopsis fungal
pathogen Colletotrichum higginsianum. Fluorescence measurement of infected tissues
revealed that treatments led to a strong reduction (60%) of pathogen development and
that the efficacy of the G. procumbens essential oil was similar to the commercial product
BION®. Together, these results show that the G. procubens essential oil is a natural source
of MeSA which can be formulated to develop new biocontrol products.
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INTRODUCTION
Plant are constantly challenged by harmful microorganisms and
diseases caused by fungal, bacterial, or viral phytopathogens pose
severe threats to crop productivity worldwide (Fisher et al., 2012).
Controlling plant diseases requires the use of massive amounts of
synthetic pesticides, the breeding of resistant plant varieties, and
agronomical strategies such as crop rotation. The development of
an environmental-friendly and sustainable agriculture drives the
search for alternative strategies and among these the use of natural
compounds able to stimulate the plant immune system.

Plants possess the intrinsic capacity to respond efficiently to
pathogen attacks by mounting immune responses. The first line
of microbial perception occurs through the detection of molec-
ular patterns exposed or released by microbial molecules and
named PAMPs (or MAMPs; Pathogen (or Microbial) Associated
Molecular Patterns). These molecular patterns interact with
specialized receptors and the perception of PAMPs induced a

signaling cascade which culminates with the expression of defense
genes (Boller and Felix, 2009).

Thus, inducing resistance to pathogens by mimicking PAMPs
activity could represent an attractive strategy to protect plants
against diseases. Several products from natural sources, mainly
algal polysaccharides, have been used as plant defense activa-
tors. These include β 1,3 glucan from the brown algae Laminaria
digitata, ulvans from the green algae Ulva sp. sulfated fucans
and carrageenans (Klarzynski et al., 2000, 2003; Mercier et al.,
2001; Jaulneau et al., 2010, 2011). However, probably the most
successful commercial compound inducing plant defense reac-
tions is the chemical benzo(1,2,3)-thiadiazole-7carbothiolic acid
(BTH) (also named acibenzolar-S-methyl, ASM) (Lawton et al.,
1996). BTH has been shown to efficiently control diseases on
several crops in field experiments demonstrating that eliciting
plant defenses can constitute an alternative strategy to chemi-
cal fungicides (Walters et al., 2013). In fact BTH is a functional
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analog of the phytohormone salicylic acid (SA), a major signal-
ing compound controlling the development of a part of immune
responses in concert with jasmonic acid (JA) and ethylene.
A tightly balance hormonal control determine the type of defense
against a given pathogen (Bari and Jones, 2009). SA signaling
pathway has been implicated in the induction of defense against
biotrophic pathogens and acts antagonistically of the JA pathway
involved against necrotrophs (Glazebrook, 2005). SA produced at
the infection site is the initial signal which engages the systemic
induction of defense responses, a phenomenon called Systemic
Acquired Resistance (SAR). Construction of transgenic plants
expressing a bacterial salicylate hydroxylase able to convert SA to
the inactive product catechol, demonstrated the essential role of
SA in SAR (Delaney et al., 1994). In Arabidopsis, accumulation of
SA induces the nuclear localization of the central immune regu-
lator Non Expressor of Pathogenesis-Related Protein 1 (NPR1).
NPR1 is a transcriptional regulator which controls the expression
of a wide range of SAR-related genes, among these genes coding
the Pathogenesis-Related 1 protein (PR1) (Pajerowska-Mukhtar
et al., 2013).

Two biosynthetic pathways are involved in the biosynthesis of
SA derived from phenylalanine or chorismic acid. In Arabidopsis,
the chorismic acid pathway is the major route to SA. Chorismic
acid is the substrate of isochorismate synthases (ICSs) which pro-
duce isochorismate, a direct precursor of SA. The essential role
of ICSs genes has been demonstrated by the isolation of mutants
such as sid2 (Wildermuth et al., 2001). In sid2 mutants, accu-
mulation of SA upon pathogen infection reaches only 5–10%
of wild type level (Wildermuth et al., 2001). However, it has
been shown from grafting experiments that SA is not the mobile
signal inducing SAR (Vernooij et al., 1994). Several mobile sig-
nals have been identified including the methylated SA derivative,
methyl SA (MeSA), a dicarboxylic acid, azelaic acid (AzA), an
abietane diterpenoid, dihydroabetinal (DA), and a phosphory-
lated sugar derivative, glycerol-3-phosphate (G3P) (Shah et al.,
2014). While the function of these metabolites depends on SA,
only MeSA is directly linked to SA synthesis since this com-
pound is produced upon the transfer of a methyl group from
the donor S-adenosyl methionine methylation catalyzed by a SA-
methyltransferase (SAMT). In tobacco, silencing of a SAMT gene
and grafting experiments demonstrated the essential role of MeSA
synthesis in the development of SAR upon infection with the
tobacco mosaic virus (Park et al., 2007). In the distal leaves, MeSA
is converted to SA by the action of MeSA esterases, enzymes which
has been shown essential for the expression of SAR in tobacco
leaves (Aviv et al., 2002; Park et al., 2007).

Since SAR can protect efficiently plants against a wide range
of microbial pathogens, molecules which induce this response
can represent an attractive strategy to protect plants. The main
advantage of this strategy is the use of non-toxic natural products
instead of chemical fungicides which are harmful for the envi-
ronment. However, the induction of SAR through the salicylate
pathway for use in organic agriculture would require the identifi-
cation of natural sources of active compounds. The plant genus
Gaultheria (Ericaceae) includes several species largely present
in Asia and North America, growing as evergreen shrub. Most
Gaultheria species are regarded as traditional herbal medicine,

notably used in the treatment of pain. Highly relevant to this
biological activity is the composition of Gaultheria essential oil
(GEO) which contains more than 96% methylsalicylate (MeSA)
and several derivatives of MeSA has been identified (Liu et al.,
2013; Nikolic et al., 2013).

Here, we used a new high-throughput Q-PCR microfluidic
method to analyze in a single Q-PCR run the expression of
biomarker genes related to plant defense after treatment of
Arabidopsis plant with GEO. Determination of SA levels after
treatment of sid2 plants showed that MeSA from GEO is readily
absorbed and metabolized by plant tissues. Our results demon-
strate that GEO is a natural source of MeSA which can substitute
to synthetic SA analogs for agronomic applications.

MATERIALS AND METHODS
PLANT, FUNGAL STRAINS, AND CHEMICALS
Arabidopsis thaliana lines used were Col-0 wild-type, transgenic
line PR1-GUS (Shapiro and Zhang, 2001), sid2 (Wildermuth
et al., 2001), and NahG mutant plants. For treatment assays, seeds
were soaked in water for 40 min, and then treated for 30 min in
2.4% sodium hypochlorite solution, followed by four washings
in sterile water. The surface-sterilized seeds were transferred into
wells of 24-well microtiter plates (2 seeds per well), containing
300 μl of Murashige and Skoog medium (MS; Sigma-Aldrich)
supplemented with 1% sucrose. The plates were incubated under
16 h illumination period (270 μmol m−2 s−1) and 8 h night
period at 23◦C on a rotary shaker at 90 rpm for 3 days and then on
a static tray for 12 days. For SA analysis and pathogenicity tests,
plants were grown on pots (Jiffy, Lyon, France) in a growth cham-
ber under 12 h light (270 μmol m−2 s−1), at 23◦C and 12 h dark
at 20◦C during 3 weeks.

A Colletotrichum higginsianum transgenic strain expressing the
green fluorescent protein (O’Connell et al., 2004) was used to
pathogenicity assays. The strain was grown on Mathur’s agar
medium (glucose 2.8 g/L; MgSO4 1.22 g/L; KH2PO4 2.72 g/L;
peptone 2.8 g/L; Agar 30 g/L) in the dark at 23◦C. After 10
days of growth, fungal spores were recovered with sterile water
and the concentration was adjusted after counting the spores.
GEO and synthetic methyl salicylate were obtained from Nat’Ex
Biotech (Toulouse, France). Methyl jasmonate was obtained from
Sigma-Aldrich. Flg22 peptide was synthesized by Proteogenix
(Strasbourg, France) with purity greater than 90%. Chitin
oligomers obtained from Crab shell chitin (CSC, Sigma-Aldrich)
were prepared as described by Nars et al. (2013). BTH formulated
as BION® was obtained from Syngenta.

PLANT TREATMENTS
For the treatment of plant grown in 24-well microtiter plates,
chemicals were added in the liquid MS medium after 10 days of
growth. Foliar treatments were done on 3-week old plants grown
on pot by spraying 1 ml/pot of the chemicals using a manual
spray.

GUS ACTIVITY ASSAYS
Total proteins were extracted from 100 mg of treated plants
after grinding in liquid nitrogen, with 100 μl of GUS buffer
(100 mM Phosphate buffer pH7, 0.1% TritonX-100, 10 mM
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β-mercaptoethanol) (Jefferson et al., 1987). Glucuronidase activ-
ity was measured by fluorometric assay with 25 μl of protein
extracts and 1 mM MUG (4-methylumbelliferyl glucuronide,
Sigma) in a total reaction volume of 200 μl. Fluorescence was
measured every 5 min during 120 min on a TriStar LB 941
Multimode Microplate Reader (Berthold Technologies) at 37◦C
with 360 nm excitation and 460 nm emission. The fluorimeter
was calibrated with freshly prepared MU (4-methylumbelliferone
sodium salt, Sigma-Aldrich) standards in the same GUS buffer.
Protein concentration was determined by the method of Bradford
on 96 well plates. Two hundred microliter of Bradford reagent
(Bio-Rad Laboratories) were added to 10 μl of samples. After
incubation (15 min, 25◦C), absorbance was measured at 565 nm.
Standard curve was done with 1–20 μg of BSA (Sigma-Aldrich).
Glucuronidase activity was calculated from the linear part of the
reaction (between 20 and 100 min) and expressed as nkatal/mg of
total proteins.

GENE EXPRESSION ANALYSIS
Total RNAs were extracted using the SV Total RNA Isolation
System kit (Promega®, Charbonnières, France). For each
sample, 1 μg of total RNA was reverse-transcripted with
the High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems®, Courtaboeuf, France). High-throughput Q-PCR
was performed using the BioMarkTM HD System (Fluidigm®,
Issy les Moulineaux, France). Briefly, cDNAs were diluted
to ∼50 ng/μl prior to be submitted to specific target amplifica-
tion (STA) by 14 cycles of PCR amplification (95◦C for 15 s and
60◦C for 4 min) in a reaction mix containing the 96 primer pairs
(50 nM) and the TaqMan® PreAmp Master Mix (1:2) (Applied
Biosystems®, Courtaboeuf, France). Primer sequences are pre-
sented in the Table S1. Pre-amplified cDNAs were diluted with TE
buffer (1:5) and used for Q-PCR array analysis in a reaction mix
containing TaqMan Gene expression Master mix, DNA Binding
Dye Sample Loading Reagent and EvaGreen®. Data were ana-
lyzed with the BioMark Real-Time PCR Analysis Software Version
2.0 (Fluidigm). The NormFinder software (Andersen et al., 2004)
was used to determine the best housekeeping genes. Relative gene
expression was calculated over three independent experiments
and significant gene deregulations were determined by student
t-test.

SA ANALYSIS
For determination of SA content, 100 mg of leaf tissue were
ground in liquid nitrogen, and 50 ng of an internal standard
(o-anisic acid, oANI) were added before the extraction of total SA.
Total SA (free SA and SA conjugates) was extracted by methanolic
extraction followed by acid hydrolysis. The hydrolysate was then
subjected to organic phase partitioning (ether). After extraction,
organic phase was evaporated and sample diluted with 100 μl
of acetonitrile/water/formic acid (50/50/0.1%, v/v/v). Analysis
was performed with a reversed phase high-performance liquid
chromatography (HPLC, Ultimate 3000, ThermoScientific) cou-
pled with fluorescence detection (Jasco FP-920). SA and oANI
were separate on a XBridge reverse phase column (25 cm ×
4.6 mms × 5 μm, Waters) and a XBridge guard column (2 cm ×
4.6 mm × 5 μm, Waters) by gradient elution with a binary

system of acetonitrile-water-formic acid. Mobile phase consisted
of acetonitrile-formic acid (100: 0.1%, v/v) and water-formic acid
(100: 0.1%, v/v) at a flow rate of 0.8 mL/min. Fluorescence detec-
tion set at excitation/emission wavelengths 294/359 nm for oANI
and 305/407 nm for SA. SA was quantified using Chromeleon
6.8 chromatography software (ThermoScientific). Corrections
for losses were made for each individual sample according to
recoveries of the internal standard.

PATHOGENICITY TESTS
Infection tests were performed on 3 weeks old A. thaliana Col-0
plants. Foliar tissues were sprayed with BION® or GEO and inoc-
ulation was done 48 h after treatment. A spore suspension of
C. higginsianum-GFP at 105 spores/ml was sprayed on the plants.
The fungal colonization was evaluated after 7 days by GFP quan-
tification. Proteins were extracted from 100 mg of five aerial parts
of plants after grinding in liquid nitrogen, with 200 μl of extrac-
tion buffer (100 mM Phosphate buffer pH7, 0.1% TritonX-100,
100 mM NaCl, 10 mM EDTA, and 1 mM PMSF). GFP fluores-
cence was measured on 200 μl of protein extracts with 485 nm
excitation and 535 nm emission during 1 min on TriStar LB
941 Multimode Microplate Reader (Berthold Technologies) and
expressed in RFU (Relative Fluorescence Unit).

RESULTS
DOSE-DEPENDENT INDUCTION OF THE SAR MARKER PR1 BY GEO
As a first approach to study GEO elicitor activity, PRI-GUS
plants (Shapiro and Zhang, 2001) grown in microtiter plates were
incubated in GEO solutions at various concentrations and β-
glucuronidase activity was measured 48 h after treatment. A 5
fold increase in β glucuronidase activity was observed at the low-
est GEO concentration (0.2 μl/ml), reaching a maximum activity
(25 fold increase) at 2 μl/ml with no symptom of phytotoxic-
ity (Figure 1). A concentration of 1 ml/L was chosen for further
studies.

INDUCTION OF GENE EXPRESSION UPON GEO TREATMENTS
To construct a diagnostic chip to monitor plant defense responses,
marker genes corresponding to various classes of immune
responses were selected by mining transcriptomic databases
(Winter et al., 2007; Hruz et al., 2008) and bibliographic data
(Table S2). The categories selected included genes induced by
phytohormones (SA, JA, ethylene, and absicic acid), by microbial
PAMPs (FLG22, chitosaccharides, harpin, and lipopolysaccha-
rides), pathogen infection and housekeeping genes. To validate
the selection of marker genes, Arabidopsis plants (Col-0) grown
in microtiter plates were treated with solutions containing
mehyljasmonate (MeJA), FLG22 peptide, BTH (BION® formu-
lation), and chitosaccharidic fragments obtain from crab shell
chitin (DP 6-9) (Nars et al., 2013). RNAs were extracted 1,
6, and 24 h after treatments and gene expression was ana-
lyzed by real-time quantitative-RT PCR using the dynamic array
(Figure 2). Normalization was done using the standard gene
AT5G46630 encoding a clathrin adaptor complex medium sub-
unit family protein, selected upon analysis of the results with
the Normfinder algorithm (Andersen et al., 2004). Genes falling
in the JA and SA category were mainly up-regulated following
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the corresponding treatment (MeJA and BION®, respectively),
excepted for the WAK1 gene (At1G21250) and the ankyrin gene
(At5G54610) which showed a strong up-regulation 1 h after
treatment by both phytohormones. Similar induction of PAMP-
induced markers was obtained following Flg22 and COS treat-
ment. Together these results show that the selection of marker
genes used combined with the microfluidic dynamic array is
a useful approach to determine the activity of plant immunity
elicitors.

The dynamic array was used to determine the activity of GEO.
The product was mixed with a wetting agent and spray at 0.1%
final concentration on Col-0 leaves. Expression of marker genes
by the microfluidic dynamic array was determined 1, 6, and 24 h
after the treatment. GEO strongly induced SA marker genes but

FIGURE 1 | Dose-dependent induction of PR1::GUS gene by GEO foliar

treatments. PR1::GUS Arabidopsis leaves were treated with various
concentrations of GEO. GUS activity was determined 48 h after the
treatment. Three independent biological experiments were performed for
each condition. Bars: standard error to the mean.

not genes falling into other categories (Figure 2) suggesting that
GEO activity is mainly due to MeSA. To confirm this result,
GEO activity was compared with the activity of pure MeSA.
β-glucuronidase activity from GEO or MeSA treated-PR1::GUS
plants were analyzed 48 h after the treatment. A similar induction
of the glucuronidase activity was observed (Figure 3). Expression
of a selection of defense genes was analyzed by real-time quan-
titative RT-PCR. Again, similar values were obtained in both
treatments showing that GEO display a comparable activity to
MeSA (Figure 3).

ACCUMULATION OF SALICYLIC ACID IN WILD-TYPE AND sid2 PLANTS
TREATED WITH GEO
The effect of GEO on SA accumulation was studied on wild-
type Col-0 plants, sid2 plants mutated in the gene coding the
SA biosynthetic enzyme ICS (Wildermuth et al., 2001) and NahG
plant expressing a bacterial SA hydroxylase. The rationale behind
the use of sid2 plants was to determine the proportion of exter-
nal MeJA which accumulate inside the plant tissues and sub-
sequently demethylated by endogenous esterases. Treatments of
Col-0 plants with GEO solution led to a strong increase of total
SA content in treated leaves. The background level of SA was
found to be lower in control sid2 and NahG plants compared to
Col-0. However, treatment with GEO led to an increase of SA
content only in sid2 plants and not in NahG leaves (Figure 4).
This suggests that MeSA from GEO penetrated sid2 leaves and
was efficiently demethylated by endogenous SA esterases.

TREATMENT WITH GEO PROTECTS PLANT TO FUNGAL INFECTION
To evaluate the effect of GEO treatment on fungal disease, we
used the Arabidopsis pathogen C. higginsianum (O’Connell et al.,
2004). Col-0 plants treated with the wetting agent or with a solu-
tion containing GEO at 0.1% were inoculated with a conidial sus-
pension of a GFP-expressing C. higginsianum strain. Six days after
inoculation, BION® and GEO treated-leaves showed reduced
symptoms compared to control plants (Figure 5). Quantification
of GFP-fluorescence indicated a reduction of about 60% of the
fungal development in treated-leaves (Figure 5). Additionally, the

FIGURE 2 | GEO treatment induces SA-regulated defense genes.

Gene expression after GEO treatment of Arabidopsis leaves with
various compounds (MeJA, SA, FLG22, COS, BION, GEO) was

analyzed using the microfluidic dynamic array. Treatments were
clustered using the HCE clustering software and default
parameters.
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FIGURE 3 | GEO and MeSA show similar activity on defense gene

expression. PR1::GUS Arabidopsis leaves were treated with GEO or MeSA
solution at 1 μl/ml. GUS activity (A) was analyzed 48 h after treatments and
defense gene expression (B) was analyzed by Q-PCR 1, 6, and 24 h
post-treatments. Control plants were treated with a solution containing the
wetting agent.

effect of successive GEO, MeSA, and BION® treatments on plant
development was also evaluated over a 6 weeks period. It was
previously shown that successive treatment of Arabidopsis with
BION® can affect several fitness parameters (Van Hulten et al.,
2006). Weekly treatments of GEO and MeSA did not induce
a detectable effect on plant development (Figure 6). However,
weekly BION® treatments led to decrease of about 50% of aerial
part weight of the plants in agreement with previous results (Van
Hulten et al., 2006).

DISCUSSION
Here, we investigate the biological activity of an essential oil
from the medicinal plant Gaultheria procumbens. Expression
analysis showed that treatment of Arabidopsis leaves induced SA-
dependent genes, similarly to the SA analog BTH, the active
ingredient of the commercialized product BION®, and to MeSA.
The potential use of essential oils for the control of plant dis-
eases has been mainly linked to a direct effect on the growth
of pathogenic fungi (Yoon et al., 2013). However, a still largely
unexplored effect of essential oils could be their activity on plant
immunity. While a direct effect of high concentration of GEO on

FIGURE 4 | GEO treatments increase total salicylic acid content. Col-0,
sid2, and NahG plants were treated with GEO at 1 μl/ml. Total SA was
determined 4 days after treatments. Two biological replicates were
analyzed with similar results. Bars: standard errors to the mean.

the growth of filamentous fungi was recently reported (Nikolic
et al., 2013), we did not observe an inhibitory effect of C. hig-
ginsianum growth at a concentration of 1 μl/ml (not shown).
These results suggest that MeSA is the main active ingredient of
GEO through the induction of SA-dependent immune responses
resulting in an increase resistance to pathogenic fungi.

The development of a collection of marker genes represent-
ing various classes of immune responses as well as housekeeping
genes and the use of a microfluidic high-throughput real-time
reverse transcription-Q-PCR platform [the BioMark HD (TM)
system from Fluidigm] allowed us to identify the mode of action
of GEO. This technology enabled the analysis in a single Q-PCR
run of the expression of 96 markers in 96 cDNA preparations. To
our knowledge, this system was never used to study the activity
of compounds active on plants. While our selection of marker
genes was dedicated to identify compounds inducing immune
responses, this approach could be used to characterize other types
of compounds acting on resistance against abiotic stress or stimu-
lating developmental processes. Thus, the Biomark system could
represent an attractive and cost-effective alternative method to
other systems based on the use of microarrays (Von Rad et al.,
2005).

To determine whether GEO treatment allowed the accumula-
tion of SA inside plant tissues, we used the sid2 mutant defective
in the ICS involved in the main SA biosynthetic pathway in
Arabidopsis (Wildermuth et al., 2001). Treatment of sid2 leaves
led to accumulation of SA suggesting that MeSA from GEO is
efficiently demethylated by A. thaliana MeSA esterases. Multiple
esterases able to efficiently demethylate MeSA have been iden-
tified in A. thaliana (Vlot et al., 2008). The effect of GEO on
induced resistance was measured on Arabidopsis leaves inoculated
with the fungal pathogen C. higginsianum. It has been previously
shown that Arabidopsis plants expressing the bacterial salicylate
hydroxylase gene NahG are hypersusceptible to C. higginsianum
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FIGURE 5 | GEO treatment induces resistance against the foliar

pathogen C. higginsianum. Col-0 plants were treated with GEO at 1 μl/ml
or BION (40 μg/ml) and inoculated with a conidial suspension of a
GFP-expressing strain of C. higginsianum 48 h later. Macroscopic
symptoms (A) and GFP fluorescence (B) were analyzed 7 days after
inoculation.

suggesting a role of the SA-dependent pathway in the defense
against this fungus (O’Connell et al., 2004). Additionally, ben-
zothiadazole treatments have been shown to reduce anthracnose
symptoms on various plants further supporting a role of the SA
pathway in Colletotrichum immune responses (Bigirimana and
Hofte, 2002; Smith-Becker et al., 2003; Zhu et al., 2008). Thus,
this pathosystem was very well-suited to evaluate the impact of
GEO treatments on SA-induced plant resistance. In our exper-
imental conditions, GEO was as effective as BION® to reduce
C. higginsianum development.

Interestingly, GEO treatments did not strongly modify the
expression of housekeeping genes whereas significant repres-
sion of genes coding enzymes involved in primary metabolism
was observed after treatment with BION®. Correlatively, no
effect on plant growth was observed after repeated application
of GEO whereas a significant reduction of plant biomass was
obtained with BION® treatments. The effect of benzothiadazole
treatments on plant development is well-documented and has

FIGURE 6 | Effect of successive GEO treatments on plant development.

Fifteen-days old plants were treated weekly with wetting agent, Bion®

(40 μl/ml), and GEO (1 μl/ml) during 6 weeks. Photos (A) were taken after 6
weeks and fresh weight of plant tissues (B) was determined at 2, 4, and 6
weeks after the first treatment. Bars: Standard error to the mean.

been associated to a reduction of plant growth and seed produc-
tion in several plant species (Heil et al., 2000; Cota-Arriola et al.,
2013). Negative effects of SA or its synthetic analogs has been
attributed to toxic effects of SA and allocation costs (Vos et al.,
2013). It is thus surprising that negative effects on plant develop-
ment were not observed upon GEO treatments. While this point
deserves further experimental work, it can be hypothesized that
GEO treatment leads to a progressive accumulation of SA inside
plant tissues since it required a demethylation step to be con-
verted into an active product. This is not the case for BTH which
is directly active on SA receptors (Fu and Dong, 2013).

To conclude, we show here that the essential oil from
G. procumbens could be a valuable natural source of MeSA for
biocontrol applications. MeSA has been detected in the composi-
tion of essential oils from various sources (Flamini et al., 2002;
Nebie et al., 2004; Paudel et al., 2013; Radoias and Bosilcov,
2013) but in lower proportion than in GEO and associated
with other metabolites which can display toxic effects from the
plants or environmental organisms. However, additional assays
are required to evaluate the activity of GEO in the field since
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activity of natural compounds can be challenged by environmen-
tal conditions and responses to abiotic stresses (Walters and Heil,
2007). Further studies will focus on the development of GEO for-
mulations able to preserve GEO activity during product storage
and field treatments.
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