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Over the last several decades, the distribution of the black mangrove Avicennia germinans
in the Gulf of Mexico has expanded, in part because it can survive the occasional
freeze events and high soil salinities characteristic of the area. Vessel architecture may
influence mangrove chilling and salinity tolerance.We surveyed populations of A. germinans
throughout the Gulf to determine if vessel architecture was linked to field environmental
conditions. We measured vessel density, hydraulically weighted vessel diameter, potential
conductance capacity, and maximum tensile fracture stress. At each sampling site we
recorded mangrove canopy height and soil salinity, and determined average minimum
winter temperature from archived weather records. At a subset of sites, we measured
carbon fixation rates using a LI-COR 6400XT Portable Photosynthesis System. Populations
of A. germinans from cooler areas (Texas and Louisiana) had narrower vessels, likely
reducing the risk of freeze-induced embolisms but also decreasing water conductance
capacity. Vessels were also narrower in regions with high soil salinity, includingTexas, USA
and tidal flats inVeracruz, Mexico.Vessel density did not consistently vary with temperature
or soil salinity. In abiotically stressful areas, A. germinans had a safe hydraulic architecture
with narrower vessels that may increase local survival. This safe architecture appears to
come at a substantial physiological cost in terms of reduction in conductance capacity and
carbon fixation potential, likely contributing to lower canopy heights.The current distribution
of A. germinans in the Gulf is influenced by the complex interplay between temperature,
salinity, and vessel architecture. Given the plasticity of A. germinans vessel characters, it
is likely that this mangrove species will be able to adapt to a wide range of potential future
environmental conditions, and continue its expansion in the Gulf of Mexico in response to
near-term climate change.

Keywords: elasticity, evolution, phenotypic plasticity, safe xylem hydraulic architecture, salt marsh, Spartina
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INTRODUCTION
Coastal wetland environments in the tropics are primarily com-
prised of mangrove forests, but salt marshes are dominant in
temperate latitudes (Saintilan et al., 2014). In the northern half
of the western hemisphere, there is a transition between these
two ecosystems in the Gulf of Mexico along the roughly 2200 km
stretch of shoreline between La Pesca, Tamaulipas (Mexico) and
Tampa, FL (USA). Over the last several decades, populations of
mangroves (e.g., Avicennia spp.) have begun to expand into areas
of salt marsh (Spartina alterniflora and other species) along the
Texas, Louisiana, and Florida coasts, as well as in Australia and
other regions of the world (Perry and Mendelssohn, 2009; Everitt
et al., 2010; Krauss et al., 2011; Montagna et al., 2011; Williamson
et al., 2011; Raabe et al., 2012; Bianchi et al., 2013; Cavanaugh et al.,
2014). In some regions, forests of Avicennia germinans have com-
pletely replaced S. alterniflora (Sherrod and McMillan, 1981). The
distribution of A. germinans is expected to continue expanding
over the next several decades in response to climate change, which

may alter the frequency of freezing temperatures, the amount
of rainfall, and the rate of sea level rise (Osland et al., 2013;
Cavanaugh et al., 2014).

Many species of salt marsh plants can survive in both tem-
perate and tropical climates, but mangrove forests are found
exclusively in tropical and subtropical latitudes (Tomlinson, 1994;
Duke et al., 1998; Spalding et al., 2010). Avicennia germinans is the
only mangrove tree species found in the subtropical northern Gulf
of Mexico. Thus, the anatomical and physiological adaptations of
A. germinans may play an important role in determining the range
of mangrove forest distribution, and consequently of salt marsh
distribution, in the northern Gulf of Mexico, and will influence
the potential for further mangrove expansion in the region. Given
the important global role of mangroves as ecosystem engineers,
this expansion may have implications for a variety of ecosystem
services (Ellison et al., 2005).

Temperature is widely recognized as a major driver of these
coastal changes (e.g., McMillan and Sherrod, 1986; Osland et al.,
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2013; Cavanaugh et al., 2014). Interactions between biotic and
abiotic characteristics of mangrove trees and their surround-
ing environment are also likely to influence the rate of change.
For example, freezing temperatures may be fatal to mangroves,
especially in arid and saline soils, contributing to low soil
water potential (Quisthoudt et al., 2012); this creates more neg-
ative xylem pressures, increasing the likelihood of catastrophic
embolism formation (Stuart et al., 2007). Embolisms are pockets
of air that can form following cavitation, when sudden changes
in hydraulic tension (e.g., due to a rapid drop in temperature
or water stress in drought conditions) in the xylem cause liquid
water to vaporize. After a period of time, air will fill these vapor-
filled conduits, forming embolisms that disrupt the transport of
xylem sap (Tyree and Sperry, 1989). Embolisms can sometimes
be repaired when pressure within the xylem forces air out of the
conduit through pits (pores) in the lateral sides of the vessels and
back into solution (Holbrook and Zwieniecki, 1999), though in
severe cases, embolism formation can cause plant mortality (Urli
et al., 2013). Therefore, plants with better resistance to embolism
are more likely to survive conditions, such as freezing temper-
atures, that cause rapid changes in xylem pressure. Laboratory
studies have demonstrated that several mangrove tree species with
narrower vessel elements are better able to prevent the forma-
tion of freeze-induced embolisms and consequently have a greater
chilling tolerance (Stuart et al., 2007), though vessel plasticity and
chilling tolerance vary widely among mangrove species (Chave
et al., 2009).

Based on previous laboratory work on mangroves (Stuart et al.,
2007), we expected that in field populations, A. germinans xylem
vessel architecture (using hydraulically weighted vessel diameter
and density as proxies) would vary with winter temperature min-
ima and soil salinity. Hydraulically weighted vessel diameter (Davis
et al., 1999; Stuart et al., 2007; Charrier et al., 2013) is a relatively
unexplored trait in any mangrove species across a large spatial
scale. Therefore, our objective was to investigate how xylem vessel
characteristics influence mangrove distribution by systematically
comparing A. germinans vessel anatomy across its distribution in
the Gulf of Mexico. We hypothesized that vessel architecture would
vary across the Gulf of Mexico, with narrower vessels and greater
vessel densities in more northern latitudes.

MATERIALS AND METHODS
Field sites were coastal or estuarine A. germinans (black mangrove)
populations distributed throughout the Gulf of Mexico. Sites were
grouped into four regions of the Gulf: Veracruz (Mexico), and
Texas, Louisiana, and FL (USA; Table 1; Figure 1). Each region was
considered to be a separate population for statistical analyses. Aver-
age winter temperature minima were determined from climatic
records (previous 10–30 years) archived in the National Oceanic
and Atmospheric Administration’s National Climatic Data Cen-
ter (Table 1). Entire pieces of stem (1–1.5 cm thick and ≈30 cm
long) were clipped from three or more mature (reproductive) A.
germinans trees at each site (one per tree, n ≥ 3). Within each
site, all sampled trees were approximately the same height and at
least 10 m apart. At the USA sites, samples were collected from
A. germinans stands in the mid- to high intertidal zone. In Ver-
acruz, wood samples were collected from two distinct zones. In

high salinity mudflat or sand flat areas, termed “tidal flats,” A. ger-
minans typically had dwarf morphology (<3 m tall). In low to
moderate salinity interdistributary flood basins, trees were typi-
cally over 10 m tall. The Veracruz tidal flat and flood basin localities
were treated as separate populations in statistical analyses. Sam-
ples were collected at chest height for taller trees or at a height
of about one meter for shorter trees. We chose stems with fresh,
healthy, green leaves. Each sample was placed in a sealed plastic
bag, transported to the laboratory, and dried at 60◦C for 7–10 days.

The transverse edge of each wood sample presented a cross
section of the mangrove stem. This edge was ground with pro-
gressively finer grades of sandpaper (200, 400, 800 grit) and
cut into sections 0.5–1.0 mm thick. Each section was dehy-
drated through a graded ethanol series, immersed in Histo-
Clear (National Diagnostics, Atlanta, GA, USA), placed on a
slide with the sanded side facing upward, and mounted to a
slide and coverslip with Permount mounting medium (Fisher
Scientific, Fair Lawn, NJ, USA). Slides were viewed on an Axio-
phot microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY,
USA) at 200x magnification with differential interference con-
trast optics. Three equally spaced areas of 8.12 × 10−2 mm2 in
each wood section were photographed with an Axiophot cam-
era, and xylem characteristics were calculated with Zeiss Axiocam
software. The radial growth of Avicennia is relatively unique
among mangroves in that it occurs through several vascular
cambia that are arranged in patches, creating non-concentric
groups of xylem tissue surrounded by internal phloem tissue
(Robert et al., 2014). The cross sections we examined were large
enough to capture the heterogeneity of this complex patchi-
ness (Robert et al., 2011). We focused our examinations on the
outermost portion of the stems, which contained the youngest
xylem and were most likely to be related to the environmen-
tal conditions we measured in the soil samples. Hydraulically
weighted vessel diameter (hereafter “vessel diameter”) was cal-
culated as: Dh = ∑

D5/
∑

D4 where D was the diameter
of each individual xylem vessel (Sobrado, 2007; Charrier et al.,
2013). Total cross-sectional vessel area (sum of the cross-
sectional areas of all xylem vessels per field of view, scaled to
mm2 of stem) was calculated as a relative measure of poten-
tial conductance capacity (Davis et al., 1999). Vessel density was
calculated as the number of xylem vessels per mm2 of stem,
not excluding internal phloem from the stem area measure-
ments.

One soil core (2 cm wide, 10 cm deep) was taken at the base
of every sampled tree. The section of the core between 2.5 and
5.0 cm from the surface of the soil was removed, placed in a sealed
bag, and transported to the laboratory for further analysis. In the
laboratory, each soil sample was dried at 70◦C for at least 72 h.
Soil salinity was measured by filtering a portion of a saturated soil
paste (Richards, 1954) through two layers of No. 2 Whatman fil-
ter paper onto a Leica® temperature-compensated refractometer.
The saturated soil paste technique was preferred over measure-
ments of pore water salinity because salinities in tidally influenced
brackish and salt marshes frequently change and soil paste-derived
measurements of soil salinity provide a better long-term indica-
tion of relative salinity history across large distances than single
“snapshot” measurements of porewater salinity.
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Table 1 | Site locations and average minimum winter (December-February) temperatures over a 10–30 year period.

Site Region Latitude Longitude Average winter

minimum

temperature (◦C)

Tampa Florida 27◦ 41.957′N 82◦ 42.885′W 18.0

Tarpon Springs Florida 28◦ 13.136′N 82◦ 45.249′W 17.5

Cedar Key Florida 29◦ 9.123′N 83◦ 1.841′W 14.2

Grand Isle Louisiana 29◦ 15.796′N 89◦ 58.212′W 15.3

Port Fourchon Louisiana 29◦ 6.929′N 90◦ 12.822′W 15.3

Cocodrie Louisiana 29◦ 10.480′N 90◦ 38.925′W 15.3

Sabine Pass Texas 29◦ 41.332′N 93◦ 50.576′W 15.4

Galveston Texas 29◦ 19.935′N 94◦ 44.890′W 18.5

San Luis Pass Texas 29◦ 5.125′N 95◦ 8.376′W 18.5

Port O’Connor Texas 28◦ 27.813′N 96◦ 24.982′W 17.9

Aransas Pass Texas 27◦ 51.110′N 97◦ 5.049′W 19.6

Corpus Christi Texas 27◦ 35.677′N 97◦ 16.414′W 19.6

Port Isabel Texas 26◦ 0.448′N 97◦ 18.464′W 19.5

Mata de Chávez Veracruz: Tidal flat 22◦ 5.508′N 97◦ 51.652′W 21.2

El Llano Veracruz: Tidal flat 19◦ 39.947′N 96◦ 24.173′W 21.2

La Mancha Veracruz: Tidal flat 19◦ 35.588′N 96◦ 23.217′W 21.2

Caño Grande Veracruz: Flood basin 19◦ 33.883′N 96◦ 23.262′W 21.2

Laguna del Ostión Veracruz: Flood basin 18◦ 10.710′N 94◦ 38.280′W 21.2

Average winter temperature minima were determined from climactic records (10–30 years) archived in the National Oceanic and Atmospheric Administration’s National
Climatic Data Center.

FIGURE 1 | Mangrove collection sites in the Gulf of Mexico. Sites were located in Florida (FL, USA), Louisiana (LA, USA), Texas (TX, USA), and Veracruz (VC,
Mexico).
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Mangrove canopy height was calculated around trees where
wood samples were collected (n ≥ 3/site). A digital photograph was
taken parallel to the ground at a height of ∼1.5 m; each photograph
contained a benchmark of known height (e.g., a one meter tall
marker pole). The pixel height of the benchmark was determined.
Pixel length was converted to meters and used as a coarse but
consistent calculation of canopy height.

Biomechanics tests were performed on three or more wood
samples per site after sections had been prepared for vessel diam-
eter measurements. Each sample was dried for several days before
analysis in order to desiccate the xylem parenchyma. Bark was
peeled away to expose the xylem before each fracture test. In
each test, a wood sample (standardized to 25 cm long) was
placed in an MTS Insight 30 kN (kilonewton) tensile tester (MTS
Systems Corporation, Eden Prairie, MN, USA) configured to
conduct a three-point flexural test. The sample supports had a
span of 20 cm and the head moved at a speed of 0.03 cm/s.
Maximum tensile fracture stress (hereafter “maximum stress;”
N/mm2) at fracture was calculated as: Smax = 3PL/πR3 where
Smax was the maximum stress at fracture, P was the maximum
load (lbf) at fracture, L was the support span (mm), and R
(mm) was the average radius of the sample at its center and each
edge.

Photosynthetic performance was measured on mangroves at
two sites in Texas: Galveston and Sabine Pass (Figure 1). Real-
time photosynthetic measurements and fluorescence light curves
were collected on cloud- and rain-free days between May 5 and
May 20, 2011. Preliminary observations indicated that rates of
carbon fixation in A. germinans were positive between 0900 and
1300, but all measurements for this study were collected between
0900 and 1100 to avoid mid-day photosynthetic depression. Data
were collected with a LI-6400XT Portable Photosynthesis System
(LI-COR, Lincoln, NE, USA) following Madrid et al. (2012). In
brief, carbon fixation, as estimated by chlorophyll fluorescence,
was measured simultaneously with oxygen consumption at 1800,
1500, 1000, 500, 250, 100, 50, 25, 15, and 0 μmol m−2 s−1

PAR on five mature trees/site (one tree/day). Oxygen consump-
tion potential and carbon fixation rates were compared with
previously published values in order to assess the relative pho-
tosynthetic performance of A. germinans in the northern Gulf of
Mexico.

To reduce the heteroscedasticity of variances, all dependent
variables (canopy height, soil salinity, hydraulically weighted ves-
sel diameter, vessel density, total vessel area, and maximum stress)
were square root transformed and normalized to a mean of
zero and a standard deviation of one. Data were analyzed with
one-way Analysis of Variance (ANOVA), with region (Florida,
Louisiana, Texas, Veracruz flood basin, and Veracruz tidal flat) as
the independent variable. Differences among regions were assessed
with post hoc Tukey tests. Principal components analysis (PCA)
was used to explore which variables contributed to differences
among regions, and to assess relationships among the dependent
variables.

RESULTS
Mangrove canopy height varied significantly among study regions
(Table 2). The tallest trees exceeded 20 m in height and were found

Table 2 | Results of one-way ANOVA comparing tree and

environmental characteristics among five regions of the Gulf of

Mexico.

df MS F P

Canopy height 4 40.0 270.2 <0.001

Soil salinity 4 19.4 33.6 <0.001

Hydraulically weighted vessel diameter 4 19.5 32.8 <0.001

Vessel density 4 4.6 4.9 0.001

Total vessel area 4 11.9 15.6 <0.001

Maximum stress 4 12.2 19.8 <0.001

in the southernmost interdistributary flood basin sites in Veracruz,
Mexico (Figure 2A). In contrast, trees in Texas and Louisiana were
often less than one meter tall. Trees in Florida and the Veracruz
tidal flat areas were intermediate in height, about three meters
tall.

Soil salinity varied significantly among regions (Table 2). Soil
salinity exceeded 30 parts per thousand (ppt) at sites in Texas and
the Veracruz tidal flat areas, but was less than 10 ppt in the Veracruz
interdistributary flood basins (Figure 2B).

Vessel characteristics varied significantly among regions
(Table 2), but not all characteristics had the same spatial pat-
terns. Hydraulically weighted vessel diameters were lowest in
Texas and up to 30% wider in Florida and the Veracruz flood
basins (Figure 2C). Vessel density was relatively similar among
sites, though it was higher in Florida than in Louisiana or the
Veracruz flood basins (Figure 2D). Total cross-sectional vessel
area was up to 50% higher in Florida than in all other study
regions (Figure 2E). Maximum stress at fracture was more than
50% lower in Texas mangroves than at all other sites (Figure 2F;
Table 2).

Principal components analysis revealed three significant prin-
cipal components (PC; eigenvalue >1) that accounted for 76.8%
of the variability among samples. The first PC (34.8%) was pos-
itively correlated (coefficient ≥0.35) with vessel diameter, total
vessel area, and maximum stress at fracture, and inversely corre-
lated with soil salinity (Table 3; Figure 3). The second PC (22.9%)
was inversely correlated with vessel density, soil salinity, canopy
height, and minimum winter temperature. The third PC (19.1%)
was positively correlated with canopy height and total vessel area,
and inversely correlated with canopy height and minimum winter
temperature.

All five regions had distinct tree characteristics and environ-
mental conditions (Figure 3). Trees in Florida were generally
aligned with PC1, indicating that they tended to grow in mod-
erate salinity soils and had wider hydraulically weighted vessel
diameters and higher total vessel area (Table 3; Figure 2). Trees
in Louisiana were correlated with PC2 and PC3, indicating that
they grew in a cooler climate and had shorter canopies and
narrower vessels. Trees in Texas were inversely related to PC1,
indicating that they grew in higher soil salinities and had nar-
rower vessels, lower vessel area, and shorter canopies (Table 3;
Figure 2). Trees in the Veracruz flood basins were directly related
to PC1 and inversely related to PC3, suggesting that they grew
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FIGURE 2 | Anatomical, biomechanical, soil, and canopy features of

Avicennia germinans throughout the Gulf of Mexico: Florida (FL),

Louisiana (LA),Texas (TX),Veracruz tidal flats (VC-tf), and Veracruz

interdistributary flood basin (VC-fb). (A) Mangrove canopy height; (B) Soil

salinity; (C) Hydraulically weighted xylem vessel diameter; (D) Xylem vessel
density; (E) Total xylem vessel area; (F) Maximum tensile fracture stress of
mangrove branches. Error bars represent one SE. Letters indicate significant
differences among regions from Tukey post hoc tests.

in a warmer climate with lower salinity soils and had taller
canopies, wider vessels, lower vessel density, and higher total
vessel area. Trees in the Veracruz tidal flat areas were inversely

Table 3 | Summary of results from principal components analysis,

showing the correlation coefficients of each response variable with

the three significant principal components.

PC1 PC2 PC3

Canopy height (cm) 0.341 −0.358 −0.516

Soil salinity −0.406 −0.349 0.017

Hydraulically weighted vessel diameter (μm) 0.564 −0.106 −0.037

Vessel density (#/mm2) 0.059 −0.432 0.594

Total vessel area (mm2/mm2 xylem) 0.512 −0.286 0.348

Maximum stress (n/mm2) 0.318 0.314 −0.277

Minimum temperature −0.184 −0.610 −0.427

Total variance explained (%) 34.8 22.9 19.1

Strong correlations (≥0.35) are indicated in bold type.

related to PC3, suggesting that they had lower vessel density, lower
total vessel area, a relatively tall canopy, and grew in a warmer
climate.

Avicennia germinans photochemical oxygen consumption (JO2)
potential at two Texas sites neared maximum at 500 PAR
(Figure 4A). Rates of carbon fixation (PN) were less than those
of oxygen consumption, and were still increasing at the maximum
PAR used in this study (1800; Figure 4B). To assess overall photo-
synthetic efficiency, the rates of oxygen consumption and carbon
fixation were compared. The relationship between JO2 and PN was
non-linear (Figure 4C), indicating inefficient carbon fixation.

DISCUSSION
Populations of A. germinans from cooler areas, namely those pop-
ulations in Texas and Louisiana, had narrower vessels than
populations from warmer habitats, particularly those in Florida
and the Mexico fringe zones. At relatively high hydraulic ten-
sion, wider vessels will cavitate more than narrower vessels –
as air bubbles come out of solution during the freezing and
thawing process, they coalesce more easily in wider vessels,
thus causing embolisms (Davis et al., 1999). Therefore, narrower
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FIGURE 3 | Principal components analysis depicting the three

significant principal components and the relative relationships among

study regions and among plant and environmental characters. Units
follow Figure 2.

vessels can reduce the frequency of freeze-induced embolisms
and potentially increase chilling tolerance (Stuart et al., 2007;
Charrier et al., 2013). Our study confirmed the link between ves-
sel diameter and freezing risk in the field. Vessel characteristics
in trees are often plastic (Chave et al., 2009), sometimes respond-
ing to environmental conditions on seasonal time scales (Arnold
and Mauseth, 1999) and influencing cavitation risk in response
to environmental stressors including freezing temperatures and
drought (Choat et al., 2012). Recent physiological studies in Avi-
cennia marina demonstrate that patchy xylem growth in this
clade has allowed for constant and purposeful changes in wood
anatomy in response to abiotic factors including salinity and
drought (Robert et al., 2011, 2014). Our lab methodology sought
to capture the variability introduced by xylem patchiness within
the stem, and sampling a large number of trees across many study
sites made our dataset relatively robust for drawing regional-level
conclusions. Therefore, our study provides convincing field evi-
dence that A. germinans may use plastic vessel architecture to
tolerate the cooler subtropical climate of the northern Gulf of
Mexico.

Our findings also provide an explanation for the results
observed by McMillan (1975), Markley et al. (1982), and McMil-
lan and Sherrod (1986) in their transplant experiments. These
authors collected A. germinans from some of the localities where
we collected our samples (Port Isabel, Aransas Pass, Galve-
ston, Port Fourchon, Cedar Key, Tampa) and demonstrated
through freezing and transplant experiments that plants from
Texas had greater freeze tolerance than those from Louisiana,
and that plants from Louisiana had greater freeze tolerance
than those from Florida. Accordingly, we found that ves-
sels were narrower in Texas than in Louisiana, and narrower
in Louisiana than in Florida. Therefore, it is likely that
the different A. germinans freezing tolerances among regions

FIGURE 4 | Average photosynthetic performance of A. germinans

across two sites inTexas. (A) Oxygen consumption potential (JO2);
(B) carbon fixation rates (PN); (C) the relationship between oxygen
consumption potential and carbon fixation rates, as a measure of overall
photosynthetic efficiency. Error bars represent one SD.

(McMillan, 1975; Markley et al., 1982; McMillan and Sherrod,
1986) are at least partially driven by differences in vessel diam-
eters.

Although hydraulically weighted vessel diameter was linked
to local temperature minima, it was also related to other
environmental factors, namely soil salinity. In fact, our analy-
sis revealed that soil salinity was more strongly correlated with
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the first two principal components, suggesting that vessel char-
acteristics may be more strongly linked to soil salinity than to
winter temperature. Vessels were narrowest in the regions with
higher soil salinity, including Texas and Veracruz tidal flats. The
Veracruz tidal flat was among the warmer sites, with no freez-
ing risk. Therefore, the small vessel diameter in that region was
likely driven by the extremely high soil salinity. This inverse
relationship between salinity and vessel diameter had not been
previously reported in A. germinans, though other mangrove
species, including Laguncularia racemosa (Sobrado, 2007) and
A. marina (Robert et al., 2009) have narrower vessels in saline
conditions.

In contrast to the link between soil salinity and vessel diam-
eter, we did not observe a strong relationship between vessel
density and soil salinity. In species from warmer climates where
freezing events are less likely, mangroves often have higher ves-
sel densities at higher salinities (Schmitz et al., 2006; Sobrado,
2007; Robert et al., 2009). In these cases, vessel density increases
at high salinity as a form of “safe hydraulic architecture,” where
vessel redundancy helps protect the plant from the effects of
cavitation, thus preserving the capacity of the water transport
system (Robert et al., 2009). In the case of high salinity, a por-
tion of the vessels may fail due to freeze- or salinity-induced
embolism, but if vessel density is high, then there are likely to
be other vessels to compensate for the loss, and hydraulic con-
duction capacity is maintained (Schmitz et al., 2006; Ewers et al.,
2007). In our case study, A. germinans formed narrower vessels
that are less susceptible to embolism formation in response to
cooler temperatures, but did not produce them at an increased
density. Consequently, as soil salinity increases and tempera-
ture goes down, water conduction capacity in A. germinans will
decrease.

Lower water conductance capacity is likely linked to a decrease
in productivity. Accordingly, we observed very low rates of carbon
fixation in mangrove populations with high soil salinity and low
temperature minima. The carbon fixation potentials we measured
in A. germinans from Galveston and Sabine Pass, Texas were near
3 μmol CO2 m−2 s−1. In contrast, previous studies documented
rates of carbon fixation (reported in μmol CO2 m−2 s−1) from
10 to 15 in populations of A. germinans (Krauss et al., 2006), 15 in
A. marina (Naidoo, 2006) and 10 in L. racemosa (Sobrado, 2005)
from the tropics. Carbon fixation is the primary source of energy
derived through photochemistry, and efficient fixation would be
indicated by a linear relationship between JO2 and PN with a slope
of one. Instead, we detected a non-linear relationship between JO2

and PN and values of PN were much less than JO2. Thus, energy
transfer to the carbon fixation reactions was inefficient, lowering
the overall rates of carbon fixation. This is a typical water stress
response (Chaves et al., 2009) and is likely due to the extremely
low water potentials of the highly saline soils in which the plants
were growing, the reduced diameter and relatively low density
of their vessels that result in low water transport capacities, or
both.

Mangrove canopy height is frequently linked to temperature,
with shorter canopies at higher latitudes (Méndez-Alonzo et al.,
2008). This geographic pattern is often directly attributed to
tree dieback in freeze-prone areas (Stevens et al., 2006; Soares

et al., 2012). Our study demonstrated that vessel architecture
also played a role in limiting canopy height. In particular, A.
germinans in cooler areas had developed a safe hydraulic archi-
tecture with a higher density of narrower vessels, and these
vessel features also occurred in high salinity areas. Although
these vessel characteristics are likely effective at increasing survival
in abiotically stressful areas, they have substantial physiological
costs in terms of reduction in xylem conductivity and car-
bon fixation potential. Therefore, areas with frequent freezing
events or extremely saline soils will require vessels with such a
narrow diameter that photosynthetic output may not be suffi-
cient for long-term growth, reproduction, and survival. Thus,
while A. germinans vessel architecture is conducive to survival
in cooler climates, there is a limit to this capacity. The popu-
lations we surveyed in the northwestern Gulf of Mexico likely
have the most extreme vessel sizes and density and are in the
most stressful abiotic conditions that A. germinans is capable of
tolerating.

The current distribution of A. germinans in the Gulf of
Mexico is likely limited by the complex interplay between tem-
perature, hydroperiod, and salinity, and vessel architecture.
However, environmental conditions in the Gulf are expected
to change in response to near-term climate change. Likely
outcomes include increases in temperature (Keim et al., 2011),
thus decreasing freezing risk for mangroves. Decreases in pre-
cipitation and increased urban and agricultural demand for
freshwater are likely to increase estuarine salinity (Gibson et al.,
2005; Keim et al., 2011), possibly increasing salinity stress. Sev-
eral models predict that changes in temperature, salinity, and
sea level will cause mangrove expansion into higher latitudes
(Doyle et al., 2010; Osland et al., 2013). This expansion has
already been documented in many regions, including the Gulf
of Mexico (e.g., Saintilan et al., 2014). Given the wide varia-
tion range of A. germinans vessel characters, it is likely that
this mangrove species will be able to thrive in a wide range of
potential future environmental conditions, and continue its near-
term expansion at the expense of salt marshes in the Gulf of
Mexico.
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