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Plant height is an important agronomic and horticultural trait that impacts plant
productivity, durability and esthetic appeal. A number of the plant hormones such as
gibberellic acid (GA), auxin and ethylene have been linked to control of plant architecture
and size. Reduction in GA synthesis and auxin transport result in dwarfism while ethylene
may have a permissive or repressive effect on tissue growth depending upon the
age of plant tissues or the environmental conditions considered. We describe here an
activation-tagged mutant of Populus tremula x P alba clone 717-1B4 identified from 2000
independent transgenic lines due to its significantly reduced growth rate and smaller
leaf size. Named dwarfy, the phenotype is due to increased expression of PtaACC
SYNTHASES, which codes for an enzyme in the first committed step in the biosynthesis
of ethylene. Stems of dwarfy contain fiber and vessel elements that are reduced in length
while leaves contain fewer cells. These morphological differences are linked to PtaACS8
inducing different transcriptomic programs in the stem and leaf, with genes related to
auxin diffusion and sensing being repressed in the stem and genes related to cell division
found to be repressed in the leaves. Altogether, our study gives mechanistic insight into

the genetics underpinning ethylene-induced dwarfism in a perennial model organism.
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INTRODUCTION

Reduced plant height, or dwarfism, is an important agronomic
trait linked to higher yields (Huang et al., 1996; Yang and Hwa,
2008), easier harvesting (Adkins et al., 2010) and reduced nutrient
demand on soils (Sieling and Kage, 2008). Leaf size, meanwhile,
is linked to productivity, predation (Faeth, 1991) and the water
status of the plant (Scoffoni et al., 2011). While both height and
leaf size are complex traits, they appear to be genetically regu-
lated by a similar panel of plant hormones (Valdovinos et al.,
1967; Ephritikhine et al., 1999; Qi et al., 2011; Luo et al., 2013)
and cytochrome P450s (Zhang et al., 2014), as well as abiotic fac-
tors such as temperature (Yang et al., 2014) and photoperiod (Li
et al., 2014). Reductions in organ size are a result of two differ-
ent physiological phenomena: smaller cells and impeded cellular
division (Beemster et al., 2003). These two factors may work inde-
pendently or synergistically to affect plant stature and organ size
(Beemster et al., 2005; Skirycz et al., 2010). Newly produced plant
tissues first exhibit growth due to rapid cellular division, a phase
that is replaced in a distal-proximal manner by cellular expansion
in progenitor cells (Donnelly et al., 1999). Due to the integrated
control between these two processes, genetic mutations to sin-
gle genes can have a drastic impact on plant stature as a whole

or at the level of a specific tissue. Altered expression of genes
such as ARABIDOPSIS VACUOLAR H+-PYROPHOSPHATASEI
(AVPI; Li et al, 2005), CYTOKININ RESISTANTI (CNRI;
Guo et al.,, 2010), and ISOPENTENYL TRANSFERASE3 (IPT3;
Nobusawa et al., 2013) impact tissue size due to a difference in
the total number of cells produced, while EXPANSINIO (EXP10;
Cho and Cosgrove, 2000), ARGOS-LIKE (Hu et al., 2006), and
RETINOBLASTOMA-RELATED PROTEINI (RBRI; Sabelli et al.,
2013) change the final size of plant tissues as a function of altered
cell expansion.

The best studied genetic influences on dwarfism are genes
and signaling pathways related to hormone production and sen-
sitivity. Within these studies, ethylene, gibberellic acid (GA),
auxin, and brassinosteroids (BR) have all been implicated with
a role in cell division, cellular growth and overall plant archi-
tecture. Blocked BR synthesis (Nakaya et al., 2002) and reduced
GA biosynthesis (Tong et al., 2007; Li et al., 2011) or increased
GA catabolism (Busov et al., 2003; Schomburg et al., 2003;
Curtis et al.,, 2005; Lee and Zeevaart, 2005; Dijkstra et al.,
2008; Zawaski et al.,, 2011) induce dwarfism in a wide range
of model plant systems. Auxin transport, meanwhile, is a criti-
cal component of proper plant stem elongation. In rice, auxin
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transport inhibition has been correlated to slower stem elonga-
tion (Yamamoto et al., 2007; Domingo et al., 2009) while reduced
basipetal auxin transport in maize and Arabidopsis thaliana results
in stunted plant development (Lantican and Muir, 1969; Geisler
et al.,, 2003, 2005; Multani et al., 2003; Geisler and Murphy,
2006). Treatment of plant tissues with ethylene, a gaseous plant
hormone, results in stunting (Vahala et al,, 2013), a pheno-
type that has been linked to the induced expression of cer-
tain ETHYLENE RESPONSE FACTORs (ERFs; Dubois et al.,
2013; Vahala et al., 2013). There also appears to be extensive
cross-talk between the different hormone pathways with compo-
nents of the ethylene pathway controlling GA biosynthesis (Qi
et al,, 2011) and the activity of DELLA proteins (Luo et al,
2013). Ethylene can also regulate auxin diffusion and biosynthesis
(Valdovinos et al., 1967; Stepanova et al., 2005; Ruzicka et al.,
2007; Swarup et al., 2007).

Here we characterize an activation tagged mutant of Populus
tremula x P. alba clone 717, named “dwarfy,” exhibiting severe
dwarfism with both reduced stature and smaller leaves. We show
that the gene responsible for this phenotype is annotated as the
poplar 1-aminocyclopropane-1-carboxylate synthase (ACS) gene
PtaACS8. Ethylene is synthesized in two enzymatic steps from
the substrate S-adenosyl-methionine (SAM). The first step is the
conversion of SAM into 1-aminocyclopropane-1-carboxylic acid
(ACC) by the activity of ACSs followed by the conversion of ACC
to ethylene catalyzed by ACC OXIDASEs (ACOs). Ethylene is then
perceived by a family of membrane bound receptors that induce
the transcription of ETHYLENE RESPONSE FACTORs (ERFs)
which, in turn, controls transcription and, ultimately, plant devel-
opment. We demonstrate that increased expression of PtaACS8
in the dwarfy line results in significantly higher levels of ethylene
in all aerial tissues of the plant. Morphologically, the increased
expression of PtaACS8 in the stem results in shorter vessels and
fibers in secondary growth while endogenous over-expression
of the PraACS8 gene in the leaves results in the production of
fewer cells. The reduced growth of stem cells is accompanied by a
repression of auxin transport and signaling genes while reduction
in cell number in leaves is concurrent with a large reduction in the
transcript abundance of a number of cell-cycle genes. Therefore,
we conclude that increased expression of PraACS8 induces stem
dwarfism and reduced leaf size through separate genetic pathways.

MATERIALS AND METHODS

PLANT MATERIAL

All plants used in Figures 1, 4, 6 were grown under greenhouse
conditions at the Canadian Forest Service (CFS), Fredericton,
New Brunswick, Canada, while plants used for data analysis
in Figures 2, 3, 5 were grown under greenhouse conditions at
Queen’s University, Kingston, Ontario, Canada. In the former
situation, plants were grown under natural daylight and temper-
ature, while in the latter situation, photoperiod was maintained
at 16 h per day and temperature at 25°C. The dwarfy mutant was
generated as described by Harrison et al. (2007) in a P. tremula x
P. alba clone 717-1B4 background and all comparisons of dwarfy
were made with this hybrid (wildtype). The dwarfy mutant was
initially identified based on the dwarf characteristics such as plant
height and leaf size among others in the mutant.

T-DNA INSERTION ANALYSIS

Southern analysis of the dwarfy poplar mutant line was done and
confirmed the presence of one T-DNA insertion event (Harrison
et al., 2007). Genomic DNA (gDNA) was extracted from CFS
greenhouse dwarfy mutant leaves using the cetyltrimethylammo-
nium bromide (CTAB) method and gDNA was quantified using
an Nanodrop1000 spectrophotometer and quality was checked on
0.8% (w/v) agarose Tris-acetate EDTA ethidium bromide gel. To
identify the site of T-DNA insertion, the Genome Walker™ uni-
versal kit (Clontech, http://www.clontech.com) was used accord-
ing to the manufacturer’s protocol to create 4 restriction digested
gDNA libraries. Each library was analyzed by primary and nested
PCR using T-DNA vector specific primers (VSP 1 and VSP 2)
designed from the T-DNA sequence and adapter primers AP1
& AP2 provided in the kit (Table S1). Primary PCRs were done
on 1 pl of each library except using High Fidelity Platinum Taq
(Invitrogen) for the PCR reaction mix. Primary PCR reactions
from each library were diluted 50 times in H,O and 1pl of
the each dilution was used for nested PCR analysis using the
same PCR reaction components except primers VSP2 & AP2 were
used. Cycling parameters for both primary & nested PCRs were
the same ones stated in the kit except that the elongation time
was increased to 5 min. Primary and nested PCRs were analyzed
by gel electrophoresis and bands from the nested PCR reaction
that were over 1kb in size were subcloned in pCR4-topo vec-
tor using the TOPO TA cloning kit (Invitrogen, http://www.
invitrogen.com) and fully sequenced at the McGill University and
Genome Quebec Innovation Centre (http://gginnovationcenter.
com). Based on flanking sequence information, a flanking gDNA
primer FSP1 was designed and PCR was done on dwarfy gDNA
using FSP1 and VSP 2 primers to confirm the location of the
T-DNA insertion site. This amplicon was TOPO TA cloned and
fully sequenced. Localisation of insertion site was determined
by BLASTn using flanking sequence as query against the P. tri-
chocarpa genome (Tuskan et al., 2006) (Populus trichocarpa v3.0,
DOE-JGI, http:://www.phytozome.net/poplar).

AFFYMETRIX ARRAY ANALYSIS

For gene expression analysis, total RNA was extracted from 0.5g
of different tissues of wildtype and dwarfy taken from CFS green-
house grown plants using a modification of Chang et al., 1993
and the RNeasy kit (QIAGEN). Total RNA quality and quan-
tity was determined by Nanodropl1000 and by electrophoresis.
Triplicate samples of dwarfy and wild-type leaf and stem total
RNA were sent to the Microarray Centre (University Health
Network, Toronto (UHN)) for sample processing and analysis.
Sample quality was verified with the Agilent 2100 Bioanalyser
before analysis with the GeneChip® Poplar Genome Array. Data
was also analyzed by the Microarray Center (UHN) using Gene
Spring software.

ISOLATION OF ACS8 CANDIDATE GENE CODING SEQUENCE

The ACS8 c¢DNA was isolated from wild-type leaf tissues
using the Smart RACE kit (Clontech, http://www.clontech.com)
according to manufacturer’s protocol. One microgram of total
RNA was used to produce the 5'&3'RACE ready products and
ACS8 gene specific primers ACS8RACE.fwd and ACS8RACE.rev
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FIGURE 1 | Endogenous over-expression of PtaACS8 results in a
dwarfed growth phenotype in P tremula x P alba clone 717-1B4. (A)
A representative image of the dwarfy mutant P tremula x F alba clone
as compared to wildtype (717) after 4 months of growth. (B) Graphical
mean height growth of dwarfy (gray data points) and wildtype (black
data points) over two growth seasons. (C) Graphical representation of
the genes found within a 30kb window around the insertion of the
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activation tagging -DNA in the dwarfy mutant. (D) Fold change in the
genes found in the genomic vicinity of the T-DNA insertion in the dwarfy
mutant as compared to wildtype in immature leaves (black bars), mature
leaves (gray bars), stem (white bars). (E) Comparison of ethylene
evolution in three different tissues of dwarfy (gray bars) and wildtype
(black bars). All values +Standard Error (SE). In (D,E), *significantly
different from wildtype (p < 0.05).

were used along with the Universal Primer (UP) provided
in the kit (TableS1). 5&3’ RACE products were subcloned
in pCR4-topo vector using the TOPO TA cloning kit and
sequenced. Gene specific primers; ACS8-ATG.fwd and ACSS8-
Stop.rev primers were designed and used to isolate the full
ACS8 CDS using the 3'RACE ready product previously generated
and the amplicon was cloned in pBluescript II (4) (Fermentas,
http://www.fermentas.com) using HindIII-Xbal restriction sites.

The resulting construct carrying the full ACS8 CDS was fully
sequenced.

AGROBACTERIUM TUMEFACIENS MEDIATED TRANFORMATION OF P
TREMULA X P. ALBA CLONE 717-1B4

In order to generate a binary plant transformation vec-
tor,ACS8/pBluescript II (4) construct was digested with EcoRI
and subcloned in pART7 (Gleave, 1992) and verified by
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FIGURE 2 | Plant growth retardation in dwarfy mutant is significantly
correlated to the expression level of PtaACS8. (A) A representative
image of one independent line of the 35S::PtaACS8 mutant P tremula x
P alba clone as compared to wildtype (717) after 2 months of growth.
Scale bar = 8cm. (B) Relative expression of PtaACS8 in wildtype,
dwarfy and 6 independent transgenic lines containing the 35S::PtaACS8
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construct. (C) Internode length of wildtype, dwarfy and 6 independent
transgenic lines containing the 35S::PtaACS8 construct. (D) Correlation
between PtaACS8 expression levels and internode length in wildtype,
dwarfy and 6 independent transgenic lines containing the 35S::PtaACS8
construct. All values +Standard Error (SE). In (B,C), *significantly
different from wildtype (p<0.05).

restriction digest for correct orientation between the CaMV pro-
moter and ocs 3’ region. The ACS8/pART7 construct was subse-
quently digested with NotI and the whole cassette was ligated in
the binary vector pART 27 (Gleave, 1992) prior to Agrobacterium
tumefaciens transformation in line 717-1-B4 (Harrison et al.,
2007). Out of 17 independent transgenic lines generated, 6 lines
survived the transfer to greenhouse conditions and these lines
were analyzed. Total RNA from leaf tissue was extracted from
newly transformed lines and RT-qPCRs were done for gene
expression analysis of lines generated using the procedures as
stated below. Each line was analyzed in duplicate technical repli-
cates. Internode lengths were measured after 3 months of growth.

QUANTITATIVE GENE EXPRESSION ANALYSIS
For in gene expression analysis in transgenic 35S::PtaACS8 lines,

total RNA was extracted from 100 mg of shoot apical tissue using
the RNeasy kit (QIAGEN). Total RNA quality and quantity was

determined by Nanodropl000 and by electrophoresis. Two to
four micrograms of total RNA was treated with Turbo DNasel
(Ambion, http://www.ambion.com) and RT-qPCR was done
with 50 ng of total RNA/reaction using the one step Quantitect
SYBR Green RT-PCR kit (QIAGEN, http://www.qgiagen.com).
RT-qPCR cycling conditions were: 30 min at 50°C for reverse
transcriptase reaction and 15min at 95°C for enzyme inactiva-
tion followed by 40 cycles of 15s at 94°C, 15s denaturation at
55°C (annealing) and 30s at 72°C elongation followed by fluo-
rescence measurement. The relative expression of PtaACS8 was
compared to the UBQI0 reference gene (Plett et al., 2010).

The amplification efficiencies of each gene primer set were
determined by E = 10171/5°P¢l and were calculated using the
slopes of n-fold serial dilution standard curves. Fold change
ratios were determined using the comparative Ct method (AACt
method) since amplification efficiencies were approximately
equal in all target and reference genes measured in the study.
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FIGURE 3 | Elevated expression levels of PtaACS8 result in significant
changes in stem architecture and physical characteristics. (A) Transverse
cross section of wild-type and dwarfy stems at the leaf 10-11 internode as
observed under brightfield and UV autofluorescence. Scale bar = 1 mm for
first two images and 100 um for the third panel (B) Vessel and fiber lengths
of wild-type (black bars) and dwarfy (gray bars) stems between the leaf 10-11
internode. (C) Transverse cross section of wildtype and dwarfy stems at the
leaf 20-21 internode as observed under brightfield and UV autofluorescence.
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stems between the leaf 20-21 internode. Vessel (E) and fiber (F) density in
wild-type and dwarfy stems between the leaf 20-21 internode. (G) Vessel
diameter in wild-type and dwarfy stems between the leaf 20-21 internode.
Relative percentage of carbon (H), nitrogen (I) and sulfur (J) in the stems of
wildtype and dwarfy. All values +Standard Error. *Significantly different from
wildtype (p < 0.05).

www.frontiersin.org

November 2014 | Volume 5 | Article 514 | 5



http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive

Plett et al.

Poplar ACS8 induces dwarfism

A
Cont. EtOH. +GA. Cont. EtOH. +GA.
B P. tremula x P. alba dwarfy
!g 20 - clone 717-1B4.
£ 18 1
3 16
: 14 A
3 [
© 12 4
[eo]
g 10 A T
© 8 - 4
S 6
[
I 4
3 2 3
o 0 - §
Cont. EtOH. +GA. Cont. EtOH. +GA.
P. tremula x P. alba dwarfy
p clone 717-1B4. E
60 1
. *
E 50 - =
£
L
'6’ 40 A -
c
(0]
— 30 -
(]
3
£ 20 1
2
E 10 .
0 T y
Cont. AVG.

FIGURE 4 | Application of GA and AVG to dwarfy apexes induces
faster growth rate. (A) Representative image of GA influence on the
growth rates of dwarfy and wildtype (+GA) as compared to ethanol
control (+EtOH) and untreated control (Cont.). (B) Mean heights of
wild-type and dwarfy saplings treated with GA (+GA) as compared to
ethanol control (+EtOH) and untreated control (Cont.).

(C) Representative image of water and (D) AVG influence on the
growth rates of dwarfy and wild-type. Parentheses indicate growth of
main stem for the treatment period. Scale bar = 3cm. (E) Mean
internode lengths wild-type and dwarfy saplings treated with AVG as
compared to water control (Cont.). All values £SE. *Significantly
different from wildtype (p < 0.05).

Samples were analyzed in triplicates of each wildtype and the
dwarfy mutant plants. Each total RNA sample was analyzed in
duplicate. A No Reverse Transcriptase (NoRT) for each sample
was included and a No Template Control (NTC) was included

for each primer pair to make sure no contamination was present
in the experiments. Amplicon specificity was confirmed by elec-
trophoresis (single band at the right size), by melt curve analysis
(single peak and Tm) and by sequencing.
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FIGURE 5 | Elevated expression levels of PtaACS8 result in significant cell density (B), trichome density (C) and stomate density (D) in fully
changes in leaf architecture and physical characteristics. (A) A expanded leaves of dwarfy (gray bars) as compared to wild-type leaves (black
representative image of fully expanded leaves of wildtype, one independent bars). Relative percentage of carbon (E), nitrogen (F), and sulfur (G) in mature
line of the 35S::PtaACS8 mutant P tremula x P alba clone 717-1B4 and leaves of wildtype (black bars) and dwarfy (gray bars). All values £SE.
dwarfy, respectively, after 2 months of growth. Scale bar = 2 cm. Epidermal *Significantly different from wildtype (p < 0.05).

ETHYLENE DETERMINATION

Leaf and stem samples were removed from wild-type and dwarfy
poplar plants between 10 AM and 12 PM, and incubated in 20 mL
headspace vials for 4 h at ambient temperature. Fresh weight was

recorded and time between vial seal and sample injection were
noted to have an exact incubation time. Ethylene content within
this headspace was determined by gas chromatography cou-
pled to a flame ionization detector (Gas Chromatography- Flame
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FIGURE 6 | dwarfy mutants exhibit pre-mature leaf senescence.
Comparison of leaf senescence rates in wildtype and dwarfy mutant clones
within their first year of growth in August (A), September (B), October (C),
and November (D). Leaf numbers on wild-type trees (E) and dwarfy trees (F)
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over the same time period are presented. £SE; superscript letters indicate
significant differences between treatments as determined by One-Way
analysis of variance (ANOVA) followed by a Tukey HSD (honestly significant
difference) multiple comparison test (p < 0.05).

Ionization Detector GC-FID, Agilent 7890A) with an injector
(splitless mode) temperature of 240°C and oven temperature
at 60°C (isothermal) using helium as carrier gas (3 mL/min).
A30m x 0.53mm ID (30 pm average thickness) Carboxen 1006
PLOT column (Supelco, Sigma Aldrich, Ontario Canada) was
used to separate ethylene from the mixture. The FID (heated
to 240°C) hydrogen:air:makeup flows were 30:400:25 (mL/min).
Two measurements of 0.1 mL gas aliquot was taken from a
headspace vial using a gas tight syringe (Hamilton 1700 series)
and immediately injected for each sample. At these conditions,
the observed retention time of ethylene was 3.14 min. A calibra-
tion curve was generated to cover the range of 0.1-20 mg ethylene.
Ethylene standard gas mixture was made by drawing a volume of

99.5% ethylene (Praxair) and injecting it in a previously vacuum-
purged sealed headspace vial (volume determined by water capac-
ity), then breaking the vacuum with a syringe needle and filling
the vial with ambient air to atmospheric pressure. The diluted
ethylene was allowed to stand for 1h to reach dispersal equi-
librium. Increasing volumes were injected to cover the desired
ethylene range and each injection was repeated in triplicate.

PHYSICAL CHARACTERISTICS ANALYSIS

Cuttings of wildtype and dwarfy were established by cutting
4-5 cm shoot explants from stock plants. Cuttings were planted in
Jiffy 42 mm peat plugs grown under greenhouse conditions June
to August (natural lighting, watered twice daily) for 7 weeks. After
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7 weeks, cuttings were transferred to greenhouse pots (15cm
diameter, 19cm long). After a total of 9 weeks, 3 trees were
randomly selected every month and height was measured and
data analyzed using basic statistical tools in Excel (Microsoft
Office). Leaf cell size, trichome density and cell density were per-
formed as per Plett et al. (2010). Fiber and vessel isolation and
measurements were performed as per Chaffey et al. (2002).

GA AND ETHYLENE BIOSYNTHETIC INHIBITOR GROWTH EFFECT
ANALYSIS

Plants used for GA effect on growth were grown under normal
greenhouse conditions as mentioned above. A triplicate (for GA)
or a duplicate (for AVG) of wild-type and dwarfy plants of simi-
lar heights, grown for 5 weeks from cuttings, were used for each
treatment for the experiment. Plant height was measured before
the experiment and measured prior to each new application of GA
or AVG. A total of 3 applications of 10 pul of 3 mM GA/water or
ETOH (for GA analysis) or of water or 100 uM AVG were added
every fourth day to the shoot apex of each plant and the total
length of the experiment was 12 days. Data was analyzed using
the height difference between the first measurement (before first
application) and before 3rd application (3rd measurement), since
2 of the dwarfy/GA treated shoot apex samples had dried up and
were dead before the final measurement.

PERCENT CARBON, NITROGEN AND SULFUR ANALYSIS

Dried leaf, stem, and roots samples from both wildtype and
dwarfy were ground with a bead mill, and kept under vacuum
in order to keep moisture out of the samples prior to carbon (C),
nitrogen (N) and sulfur (S) analysis (CNS) by the CFS analytical
laboratory according to the method of Kalra and Maynard (1991).
A triplicate of each clone for each tissue types was measured and
data was analyzed using basic statistical tools in Excel (Microsoft
Office). Results presented are the measure of C, N and S from
healthy mature leaves and internode tissues harvested in June of
the growing season.

RESULTS

ENDOGENOUS OVER-EXPRESSION OF PtaACS8 INDUCES DWARFISM
IN POPULUS

From a large population of activation-tagged P. tremula x P.
alba clone 717-1B4 (2000 independent transgenic lines; Harrison
et al., 2007), we identified one line with a consistent reduction
in growth rate over multiple growing seasons (Figures 1A,B).
This mutant was named dwarfy. Using Southern blotting only
one T-DNA insert in dwarfy and located this insert on chro-
mosome 2 using a modified TAIL PCR was identified. Within
a window of +20Kb around the T-DNA, 3 genes anno-
tated in Phytozome (Figure 1C) were found as follows: a gene
of unknown function (Potri.002G11400; +14.4 Kb up-stream),
PtaACC SYNTHASES (PtaACSS8; Potri.002G113900; 13.1 Kb
down-stream) and PtaEARLY-RESPONSE TO DEHYDRATION 4
(ERD4; Potri.002G113800; 16.9 Kb down-stream). A quantifica-
tion of the expression of these genes in the dwarfy mutant line
relative to wild-type P. tremula x P. alba clone 717-1B4 demon-
strated that only PtaACS8 exhibited increased gene expression in
all aerial tissues of the plant (Figure 1D). As ACC synthases are

involved in the first step in the biosynthesis of the plant hor-
mone ethylene, ethylene production was measured in the same
three compartments as used for gene expression analysis in wild-
type and mutant plants (i.e., young and mature leaves and stem
tissues). Compared to wildtype, the mutant line produced 14 x
higher levels of ethylene in younger leaves and 6 x higher levels of
ethylene in mature leaves and the stems (Figure 1E).

To verify that increased transcript abundance of PtaACS8 was
indeed responsible for the dwarfism phenotype of the mutant,
the Potri.002G113900 gene was cloned and expressed ectopically
in the P. tremula x P. alba clone 717-1B4 genetic background
under the control of the 35S-cauliflower mosaic virus promoter.
We were able to regenerate six independent transgenic lines from
callus culture which, when grown alongside age-equivalent wild-
type (i.e., propagated at the same time and treated in the same
manner as the 355::PtaACS8 lines), displayed a dwarf phenotype
(Figure 2A). This reduction in growth and internode length was
significant as compared to wildtype in all lines tested although
the plants were consistently bigger than dwarfy (Figures 2A,B).
The discrepancy in height difference is likely due to the fact that
none of the 35S::PtaACS8 transgenic lines displayed the same
level of PtaACS8 transcript accumulation as dwarfy (Figure 2C).
As there was a significant correlation between the transcript
abundance of PtaACS8 and the dwarf phenotype in the trans-
genic lines (Figure 2D; r = 0.91; p < 0.001), we conclude that
increased transcript abundance of PtaACS8 in the original dwarfy
transgenic line is responsible for the reduction in plant stature.

INCREASED TRANSCRIPT ABUNDANCE OF PtaACS8 LEADS TO
ALTERED STEM CHARACTERISTICS

The dwarfy mutant line exhibited alterations to the morphol-
ogy of all aerial parts of the plant. While the internode length
of the dwarfy line was significantly reduced (Figure 2B), there
were also significant alterations to the microscopic anatomy of
the stem (Figure 3). Due to the great difference in height of
the two plants being compared, we used a plastochron index to
identify and compare the same internode between the mutant
line and wildtype. We used different microscopy techniques to
observe different stem properties: brightfield to gain a general
over-view of the stem architecture, UV excitation to differentiate
chlorophyll autofluorescence (red signal) from secondary cell wall
fluorescence (blue-green signal; Figures 3A,C). In young stems
(internode between leaves 10 and 11), there was a reduction in
the amount of secondary xylem formed in dwarfy as compared
to wildtype (Figure 3A) as well as a significant reduction in the
length of xylem fibers and vessels (Figure 3B; p < 0.05). In older
stem tissues (internode between leaves 20 and 21), the reduc-
tion in secondary xylem formation (Figure 3C) and fiber/vessel
lengths were still observed (Figure 3D). Detailed analysis of wood
formation in these older tissues also revealed a difference in cell
density: dwarfy had a higher density of xylem vessels per square
millimeter with a significantly smaller outer diameter as com-
pared to wild-type stems (Figures 3A,C,E-G) while there was no
significant difference in the density of fibers. As alterations to the
cell make-up of the stem and alteration in growth rate may influ-
ence nutrient deposition in the stem, we analyzed the percentage
of carbon, nitrogen and sulfur in these mature internodes of both
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wildtype and dwarfy. No significant difference in percent accu-
mulation of carbon and sulfur in the stems of dwarfy and wildtype
were observed while the stems of the former accumulated a signif-
icantly higher concentration of nitrogen-containing compounds
(Figures 3H-J; p < 0.05).

HORMONE- AND NUTRIENT-RELATED GENES DISPLAY ALTERED
ABUNDANCE IN DWARFY STEMS

In order to understand the transcriptomic profile of dwarfy stems,
we performed a whole genome oligo-array transcriptomic anal-
ysis of whole stem tissues. We found 223 genes differentially
expressed (>2-fold; p < 0.05) as compared to wild-type P. trem-
ula x P. alba clone 717-1B4 stems of the same age (Table S2).
Within these genes we found that there were a number of ethylene
and auxin related genes and genes coding for proteins involved
in nutrient transport and biosynthesis (Table 1). Genes related
to the ethylene pathway included PraACS8 (>230-fold increase)
a number of ETHYLENE RESPONSE FACTOR (ERF) genes,
two serine-threonine receptor kinases (PtaCTR3, PtaCTR4) and
two ethylene receptor genes (PtaETRI, PtaETR5). The majority

of genes associated with the auxin pathway, meanwhile, were
repressed in the stems of dwarfy while a gene encoding an
IAA-amido-synthetase glycosyl-hydrolase (GH) family protein
displayed increased abundance. Nutrient transport and synthesis
was also affected with two sugar transporters and an amino acid
transporter being repressed while the transcript accumulation of
a glutamine synthase was increased (Table 1).

GA has been linked to enhanced growth phenotypes through
the induction of auxin biosynthesis and polar transportation
(Bjorklund et al., 2007). Therefore, as our transcriptional analysis
of the dwarfy mutant indicated that auxin transport and signal-
ing was affected, we tested whether GA application to the growing
apex of dwarfy would be able to rescue the growth phenotype of
the mutant. We found that the growth rate of dwarfy was signifi-
cantly increased by treatment with GA (Figures 4A,B). Therefore
GA is able to rescue the dwarfy phenotype. We also treated
dwarfy with the ethylene biosynthetic inhibitor AVG. This treat-
ment resulted in an increase in internode length (Figures 4C-E),
demonstrating that blocking ethylene synthesis also rescues the
dwarfy phenotype.

Table 1 | Genes found to have significantly different abundance in the stems of dwarfy as compared to wildtype.

Probe RefSeq protein ID E-value Fold change Gene title

ETHYLENE RELATED

PtpAffx.202003.1.S1_at XP_002302380 0.00E+00 233.9 1-Aminocyclopropane-1-carboxylate 8 (ACS8)
Ptp.6619.1.S1_s_at XP_002315490 8.00E-144 30.5 AP2/ERF domain-containing transcription factor
PtpAffx.75787.1.A1_s_at XP_002297877 0.00E+00 20.4 AP2/ERF domain-containing transcription factor
PtpAffx.75787.1.A1_at XP_002304640 0.00E+00 14.3 AP2/ERF domain-containing transcription factor
PtpAffx.129036.1.51_at XP_002316302 1.00E-16 12.3 Ethylene-responsive protein
PtpAffx.219707.1.51_at XP_002326299 0.00E+00 8.1 AP2/ERF domain-containing transcription factor
PtpAffx.4624.1.51_at XP_002328620 0.00E+00 5.8 AP2/ERF domain-containing transcription factor
PtpAffx.572.3.S1_a_at XP_002315958 0.00E+00 5.3 AP2/ERF domain-containing transcription factor
Ptp.162.1.A1_at XP_002302732 0.00E+00 3.6 Ethylene receptor 1 (PtETR1)
PtpAffx.79014.1.51_at XP_002316514 0.00E+00 3.5 Serine/threonine protein kinase (PtCTR4)
Ptp.866.1.S1_s_at XP_002310408 4.00E-118 3.3 AP2/ERF domain-containing transcription factor
PtpAffx.208193.1.51_at XP_002311669 0.00E+00 2.8 Ethylene receptor 5 (PtETR5)
PtpAffx.122897.1.A1_at XP_002308565 1.00E-96 2.7 REVERSION-TO-ETHYLENE SENSITIVITYT (RTET)
PtpAffx.13062.4.S1_at XP_002308982 0.00E+00 2.5 ein3-binding f-box protein 4

Ptp.2044.2.51_a_at XP_002311967 0.00E+00 2.3 Serine/threonine protein kinase (PtCTR3)
AUXIN RELATED

PtpAffx.144034.1.S1_s_at XP_002310372 1.00E-06 3.2 AUXIN-REGULATED GENE INVOLVED IN ORGAN SIZE (ARGOS)
Ptp.6069.1.51_at XP_002320183 0.00E+00 2.9 GH3 family protein

Ptp.8069.1.51_at XP_002306504 0.00E+00 -2.1 NAKED PINS IN YUC MUTANTS 2 (NPY2)
PtpAffx.155898.1.51_at XP_002320550 5.00E-109 -2.3 Dopamine beta-monooxygenase
PtpAffx.97214.1.A1_at XP_002302687 2.00E-132 -2.3 Auxin-induced protein SNG4
PtpAffx.117529.1.51_at XP_002323866 0.00E+00 -3.0 MDR family ABC transporter family
PtpAffx.210100.1.51_at XP_002317029 2.00E-157 -3.1 Auxin:hydrogen symporter
PtpAffx.7696.4.S1_at XP_002312567 1.00E-75 -4.3 Auxin-responsive protein IAA4

NUTRIENT SYNTHESIS/TRANSPORT

PtpAffx.2311.1.51_s_at XP_002313246 0.00E+00 6.2 GLUTAMINE-DEPENDENT ASPARAGINE SYNTHASE 1 (ASN1)
PtpAffx.217242.1.51_at XP_002331420 3.00E-169 -2.3 Sugar transporter

Ptp.5882.1.51_at XP_002301819 3.00E-43 -2.1 RS21-C6 protein

PtpAffx.111624.1.S1_at XP_002302894 0.00E+00 -10.2 Amino acid transporter

(p < 0.05; >2-fold differential regulation). Note: In this table there are no column lines as there are in Table 2.
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INCREASED TRANSCRIPT ABUNDANCE OF PtaACS8 LEADS TO
ALTERED LEAF CHARACTERISTICS

Mature leaves in the dwarfy mutant also showed altered size when
compared to wild-type leaves (Figure 5A). The leaves of dwarfy
were much smaller than those of wildtype (Figure 1A). Despite
the alterations in leaf size, the epidermal cell size of dwarfy was not
significantly altered compared to wildtype (Figure 5B). Trichome
density was also not affected, but stomate density was signifi-
cantly higher in the dwarfy mutant (Figures 5C,D). Only nitrogen
content was significantly higher in dwarfy stems, as compared to
wildtype (Figure 3I). Unlike stems, the total percentage of car-
bon in leaves was significantly reduced in dwarfy as compared
to wildtype (Figure 5E), while nitrogen levels were not altered
(Figure 5F). Sulfur levels in mutant leaves showed a tendency
toward a lower accumulation compared to wildtype, but this dif-
ference was not found to be significant (Figure 5G; p < 0.05).
The date at which leaves became chlorotic and dropped off the
stem in dwarfy as compared to wild-type plants was assessed as
increased ethylene levels have been correlated to early leaf senes-
cence (Breeze et al., 2011; Koyama et al., 2013). When grown
under natural conditions, chlorosis of 1-year-old dwarfy leaves
happens earlier as compared to wild-type plants (Figures 6A-D)
and significant leaf drop occurred in dwarfy plants in the month
of November while there was no significant leaf drop in the same
period in wild-type trees (Figures 6E,F). It is interesting to spec-
ulate that the reduced C and S observed in the dwarfy leaves may
be related to the shorter growing season for these leaves.

SENESCENCE- AND CELL CYCLE-RELATED GENES EXHIBIT ALTERED
ABUNDANCE IN DWARFY LEAVES

We found that 183 genes were significantly regulated in fully
expanded leaves of dwarfy as compared to wild-type P. trem-
ula x P. alba clone 717-1B4. A large number of hormone-related
genes with altered transcription were observed in the stems of
dwarfy, while only two of these genes (PraACS8 and a GH3 fam-
ily protein) were significantly differentially regulated in mature
dwarfy leaves (>2-fold; p < 0.05; Table 2; Table $3). A number
of nutrient transporters displayed altered transcript abundance,
although they were different from those identified in dwarfy
stems (Table 1). Three other classes of genes were differentially
regulated in mature dwarfy leaves that were not observed in
the stems: defense-, senescence- and cell cycle/expansion-related
genes (Table 2). The majority of the defense-related genes were
associated with pathogen attack, including a chitinase, a lipase
and a glyoxal oxidase. As the leaf tissues were healthy at the time
of harvest and displayed no infection structures, the activation of
these genes is likely constitutive in the dwarfy background. Three
genes associated with leaf senescence were also up-regulated. One
group that only showed reduced levels of transcript abundance
was that of genes associated with cell cycle and cellular growth
(Table 2). Within this group of genes were a number of cyclins,
calmodulin-like proteins and one expansin.

DISCUSSION

Due to ornamental value and to wide-ranging applications within
agriculture, the genetic traits that control cell size and dwarfism
in plants have been widely studied (Valdovinos et al., 1967;

Ephritikhine et al., 1999; Busov et al., 2003; Qi et al., 2011; Luo
et al., 2013; Li et al., 2014; Yang et al., 2014; Zhang et al., 2014).
Through breeding practices and applications of growth regula-
tors, dozens of different dwarf plant varieties have been pro-
duced over the past few decades (Parker, 2012; Jiang et al., 2013;
Wang et al., 2014a,b). Largely studied in annual models such as
Arabidopsis, Zea and Oryza, control of plant stature has been
linked most readily to plant hormones. For example, Arabidopsis
mutants with increased ethylene production (e.g., eto; Woeste
et al., 1999) exhibit thickening of the hypocotyl while increased
ethylene signaling (e.g., ctri-I; ACS6PPP; Liu and Zhang, 2004)
has been found to result in reduced stature and smaller leaf size.
Due to advancements in insertional mutagenesis and other trans-
genic technologies, it is now becoming feasible to also screen
perennial plants for the genes that control dwarfism (Busov et al.,
2003; Harrison et al., 2007; Vahala et al., 2013). Here we char-
acterize a mutant line of P. tremula x P. alba clone 717-1B4 that
exhibits higher transcript accumulation of PtaACS8 and that pro-
duces a significantly higher level of ethylene in all aerial tissues as
compared to wild-type trees. Increased transcript abundance of
PtaACS8 is correlated to reduced plant stature and smaller leaves
while treatment of dwarfy shoots induces increases in internode
length. The transcriptional cascade induced by altered levels of
PtaACS8 are very different in stem and leaf tissue with a tran-
scriptional reduction in genes associated with auxin transport and
signaling evident in stems and repressed cell cycle genes in the
leaves. These results place PraACSS8, and likely ethylene, as regula-
tors that control two major morphological traits associated with
dwarfism and reduced tissue size.

Using transformation technologies such as activation tagging
is a very useful approach to identifying and characterizing the role
of genes in a physiologically relevant manner. Rather than ectopic
over-expression of a gene, the inserted enhancer used in acti-
vation tagging only enhances expression in its native expression
pattern. This mutagenesis approach has been used in a number of
model plant systems including Arabidopsis (Weigel et al., 2000),
tomato (Mathews et al., 2003), rice (Jeong et al., 2006), and poplar
(Harrison et al., 2007). Using this approach Busov et al. (2003)
were able to identify a poplar GA2-OXIDASE that resulted in a
plant with a very similar phenotype to that described here for
dwarfy; reduced stature and smaller leaves. Since their publica-
tion, dwarfism in a native dwarf plum tree cultivar has also been
linked to a GA2-OXIDASE (El-Sharkawy et al., 2012) demonstrat-
ing that findings from activation tagging studies can be extended
to natural plant populations.

As opposed to a strictly GA-dependent phenotype, our results
support the hypothesis that growth retardation in dwarfy is
driven largely by ethylene, the endpoint of the biochemical path-
way in which PtaACS8 operates. This is based on the evidence
that increased PtaACS8 transcripts are correlated to significant
increases in ethylene production in the stem (Figure 1E), whose
signal is being relayed by the activation of several ERF genes
(Table 1). Our results also demonstrate that blocking of ethy-
lene biosynthesis resuces the dwarfy phenotype (Figures 4C-E).
Further, the reduction in xylem fiber and vessel length described
here-in has also previously been observed after ethylene treat-
ment of poplar stems (Junghans et al., 2004; Love et al., 2009;
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Table 2 | Genes found to have significantly different abundance in the leaves of dwarfy as compared to wildtype.

Probe RefSeq protein ID E-value Fold change Gene title

HORMONE

PtpAffx.202003.1.51_at XP_002302380 0.00E+00 506.5 1-Aminocyclopropane-1-carboxylate 8 (ACS8)
PtpAffx.211163.1.51_s_at XP_002319260 0.00E+00 2.8 GH3 family protein

NUTRIENT TRANSPORT

PtpAffx.79594.1.51_s_at XP_002318842 8.00E-164 3.2 Sorbitol dehydrogenase-like protein
PtpAffx.15690.1.S1_at XP_002311043 0.00E+00 3.0 Proline transporter
Ptp.3435.2.51_s_at XP_002302223 0.00E+00 2.6 Amino acid permease
Ptp.1552.1.51_s_at XP_002302727 0.00E+00 2.1 SUS3 (sucrose synthase 3)
Ptp.8110.1.51_at XP_002313213 0.00E+00 -35 Oligopeptide transporter
DEFENSE

PtpAffx.77318.1.51_x_at XP_002312918 1.00E-114 10.4 Chitinase

PtpAffx.50871.1.A1_at XP_002302379 0.00E+00 5.8 Lipase

Ptp.6139.1.51_at XP_002304920 0.00E+00 4.8 Cytochrome P450
PtpAffx.136901.1.51_at XP_002306296 3.00E-165 3.6 GCL1-like

Ptp.2230.1.51_at XP_002302409 5.00E-133 3.2 Sigma factor B
PtpAffx.55005.1.A1_at XP_002322929 0.00E+00 2.8 Glyoxal oxidase-related
SENESCENCE

PtpAffx.57533.1.51_a_at XP_002320492 6.00E-165 370 Triacylglycerol lipase 2 precursor
Ptp.2629.1.51_s_at XP_002307593 2.00E-40 2.7 Senescence-associated protein-related
PtpAffx.85571.1.S1_s_at XP_002299638 1.00E-31 2.2 Senescence-associated protein-related
CELL CYCLE/EXPANSION

PtpAffx.222953.1.51_at XP_002318886 0.00E+00 -2.3 Trehalose-6-phosphate synthase
PtpAffx.50897.2.51_at XP_002310432 3.00E-55 -2.3 Calmodulin 24-like protein
PtpAffx.200879.1.51_at XP_002298451 2.00E-156 2.4 Cyclin

Ptp.5638.1.51_at XP_002307791 0.00E+00 -2.5 Cyclin B

Ptp.7389.1.51_at XP_002319120 0.00E+00 -2.5 CDC20.1

PtpAffx.162051.1.S1_a_at XP_002322260 3.00E-35 -2.8 CDC2-like protein kinases
Ptp.1602.1.51_at XP_002307822 1.00E-177 -2.9 Cyclin-dependent kinase
PtpAffx.63679.1.A1_s_at XP_002306649 0.00E+00 -4.0 Cyclin A

Ptp.2869.1.A1_at XP_002299019 0.00E+00 -4.2 Patellin-4
PtpAffx.206669.1.51_s_at XP_002308551 0.00E+00 -4.6 Calmodulin binding protein
PtpAffx.17914.3.A1_at XP_002312101 7.00E-140 -4.8 Expansin

p < 0.05; >2-fold differential regulation.

Vahala et al., 2013). While we cannot rule out the possibil-
ity that the reduced stature in dwarfy is a result of increased
ACC accumulation, our results support the hypothesis that stunt-
ing of the dwarfy stem is controlled in an ethylene-dependent
manner. Increased ethylene, however, is likely not the only
causative factor in explaining the stature of dwarfy. Rather,
ethylene appears to be influencing another pathway associated
with plant stature: the auxin pathway. We found evidence for
a repression of auxin-homeostasis and transport genes in the
stem of dwarfy (Table 1). Ethylene has long been tied to a neg-
ative effect on auxin diffusion (von Guttenberg and Steinmetz,
1947; Morgan and Gausman, 1966; Valdovinos et al., 1967;
Suttle, 1988; Andersson-Gunneras et al., 2003; Ruzicka et al.,
2007; Stepanova et al., 2007; Swarup et al., 2007). As inhi-
bition of auxin diffusion has been correlated to a reduction
in stem cell elongation of poplar (Junghans et al., 2004), pea
(Lantican and Muir, 1969), tomato (Higashide et al., 2014),
tulip (Okubo and Uemoto, 1985), Arabidopsis (Franklin et al.,

2011; Chae et al., 2012), gourds (Wang et al., 2014a) amongst
many other systems. Our results give a molecular framework
by which ethylene affects dwarfy height where increased expres-
sion of PtaACS8 results in greater production of ethylene which,
upon perception in plant stem tissue, represses genes related to
auxin diffusion and synthesis which would then curtail cell elon-
gation in the stem. GA treatment of growth apexes can also
rescue the dwarfy phenotype, although we cannot conclude from
present data if GA generates this phenotype by acting down-
stream of the ethylene signal in the dwarfy mutant or in a separate
pathway.

A different genetic pathway is likely responsible for the
observed reduction in leaf size in dwarfy. While increases in
PtaACS8 transcripts and ethylene evolution in the stem coincided
with stunted fiber and vessel growth, no change in leaf epidermal
cell size is observed despite higher levels of PtaACS8 transcripts
and higher ethylene evolution in the leaves. This would indi-
cate that the leaf is smaller due to the absolute number of cells
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making up the tissue rather than the size of cell generated. It
is interesting in the leaves of dwarfy that we see no evidence of
compensation by leaf epidermal cells to maintain a larger leaf
area. “Compensation” occurs when upstream inhibition of cell
division initiates a secondary signaling pathway that increases
cell size to maintain proper tissue growth (Hemerly et al., 1995;
DeVeylder et al., 2001; Tsukaya, 2002; Horiguchi et al., 2006).
Ethylene treatment has been associated with both stimulation of
cell division (Love et al., 2009) and inhibition of cellular divi-
sion (Edwards and Miller, 1972; Lee and LaRue, 1992; Heidstra
et al., 1997; Dubois et al., 2013; Luo et al., 2013). In Arabidopsis,
ethylene has been associated with reduced petal and leaf size in
mutants with constitutive ethylene signaling (Kieber et al., 1993;
Roman and Ecker, 1995; Luo et al., 2013) and under water lim-
iting conditions due to the activity of ERF6 through its control
of GA2-OXIDASE (Dubois et al., 2013). In the transcriptomic
analysis of dwarfy leaves we do not see evidence of either ERF
or GA2-OXIDASE genes accumulating at altered abundances.
Rather, within the group of genes regulated in dwarfy leaves,
we observed the repression of a large class of cell cycle genes
including CYCLIN-DEPENDENT KINASEI (CDK1), CYCLIN A,
and CYCLIN BI (Table2). In eukaryotic cells, CYCLIN A ini-
tiates the cellular transition from G2 to prophase after which
CYCLIN Bl enters the nucleus and, together with CDK1, induces
mitosis by phosphorylation and activation of enzymes regulat-
ing chromatin condensation, nuclear membrane breakdown and
mitosis-specific microtubule and microfilament re-orientation
(Nigg, 2001; Smits and Medema, 2001; Gavet and Pines, 2010;
Suryadinata et al., 2010; Rattani et al., 2014). As this whole suite
of proteins is necessary for cellular division, repression of their
transcription in the leaves of dwarfy, as compared to wild-type
leaves, is likely the key pathway by which leaf size is being affected.
These results are reminiscent of earlier observations that ethy-
lene in Pisum sativum stopped cell division prior to entry into
prophase (Apelbaum and Burg, 1972).

The leaf drop date of natural grown-year old dwarfy and wild-
type plants was assessed as increased ethylene levels have been
correlated to early leaf senescence (Breeze et al., 2011; Koyama
et al,, 2013). Leaf yellowing, considered to be the first visi-
ble senescent event (Quirino et al., 2000) was present in only
the dwarfy basal leaves in October (Figure 6C), while in the
wild-type, senescence related-color changes were prevalent in
November basal leaves (Figure 6D) by which time dwarfy basal
leaves had dehisced. Buchanan-Wollaston et al. (2003) noted
that plants exposed to exogenous ethylene do exhibit premature
senescence with the older leaves yellowing first; similar to the
results here-in. November dwarfy and wild-type plants both had
green apical leaves suggesting the onset of senescence and leaf
dehiscence in all but the apical leaves in the dwarfy mutant were
altered.

Our results support the hypothesis that there are two differ-
ent developmental programs regulating tissue size in the dwarfy
mutant. In the stem, we observe alterations to ethylene response
factors and an inhibition of auxin homeostasis genes suggesting
that ethylene inhibits stem elongation as previously observed in
model organisms such as Arabidopsis (Guzman and Ecker, 1990),
poplar (Junghans et al., 2004; Love et al., 2009; Vahala et al.,

2013), tobacco (Romano et al., 1993), and tomato (Huang and
Lin, 2003) through its influence on the auxin pathway. In the
leaves, we find that the leaves of dwarfy produce fewer cells and
are, thereby, smaller. This phenotype is likely tied to the differen-
tial expression of the protein group responsible for the induction
of mitosis. Altogether, our study of the dwarfy mutant poplar has
given insight into the genetics underpinning ethylene-induced
dwarfism.
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