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Over the last two decades coast live oak (CLO) dominance in many California coastal
ecosystems has been threatened by the alien invasive pathogen Phytophthora ramorum,
the causal agent of sudden oak death. In spite of high infection and mortality rates in
some areas, the presence of apparently resistant trees has been observed, including trees
that become infected but recover over time. However, identifying resistant trees based
on recovery alone can take many years. The objective of this study was to determine if
Fourier-transform infrared (FT-IR) spectroscopy, a chemical fingerprinting technique, can
be used to identify CLO resistant to P. ramorum prior to infection. Soft independent
modeling of class analogy identified spectral regions that differed between resistant and
susceptible trees. Regions most useful for discrimination were associated with carbonyl
group vibrations. Additionally, concentrations of two putative phenolic biomarkers of
resistance were predicted using partial least squares regression; >99% of the variation
was explained by this analysis. This study demonstrates that chemical fingerprinting can
be used to identify resistance in a natural population of forest trees prior to infection with a
pathogen. FT-IR spectroscopy may be a useful approach for managing forests impacted by
sudden oak death, as well as in other situations where emerging or existing forest pests
and diseases are of concern.
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INTRODUCTION
Sudden oak death is a highly destructive disease that has
caused extensive mortality of oaks and tanoaks in coastal cen-
tral and northern California and southwest Oregon over the
last two decades (Rizzo et al., 2002; reviewed in Rizzo and
Garbelotto, 2003; McPherson et al., 2005, 2010; Meentemeyer
et al., 2008; Brown and Allen-Diaz, 2009; Davis et al., 2010;
Cobb et al., 2012). Few management options exist for con-
trolling the disease and they are all centered on preventa-
tive management and silvicultural practices (reviewed in Rizzo
and Garbelotto, 2003) since little, if anything, can be done
once trees become infected (reviewed in Grunwald et al.,
2008). Individual high value trees can be protected by treat-
ing them preventatively with phosphonate-based fungicides
(Garbelotto and Schmidt, 2009). However, arguably the best
management practice for sudden oak death in oak wood-
lands would focus on the identification and utilization of resis-
tant germplasm, since genetic resistance is the cornerstone of
plant protection against insect pests and diseases in conducive
environments.

Coast live oak (CLO—Quercus agrifolia Née) is a highly sus-
ceptible host of Phytophthora ramorum Werres et al., the causal
agent of sudden oak death. During the early to mid-2000s, the
CLO infection rate in some populations was found to be as high
as 5.0% y−1, with a mortality rate of 3.1% y−1 (McPherson et al.,
2010). In sites heavily impacted by the disease, the loss of CLO
basal area over a 20 year period was predicted to be 59–70%
(Brown and Allen-Diaz, 2009). Even with high infection and
mortality rates, variation in CLO susceptibility to the pathogen
has been observed in laboratory assays (Dodd et al., 2005) and
within natural populations in field studies (McPherson et al.,
2005; Ockels et al., 2007; Nagle et al., 2011). Trees considered nat-
urally resistant to P. ramorum never show symptoms of infection
(e.g., bleeding exudate and discoloration of phloem tissue), they
do not host bark and ambrosia beetles—often associated with
infection (Rizzo and Garbelotto, 2003; McPherson et al., 2005,
2008), or appear to recover following infection (Nagle et al., 2011;
McPherson et al., 2014). Additionally, when trees are artificially
inoculated with a pathogen, resistance can be defined based on
canker length, where resistant trees are those with canker lengths
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that do not differ significantly from mock inoculations or with
canker lengths below some critical threshold—a criterion that has
been used for pine (Gordon et al., 1998) and more specifically for
CLO infected with P. ramorum (McPherson et al., 2014).

While the mechanism(s) of CLO resistance to P. ramorum
is unknown, some studies support the hypothesis that plant
specialized metabolites, in particular phenolic compounds, are
important for CLO defense against P. ramorum (Ockels et al.,
2007; Nagle et al., 2011). Moreover, Stong et al. (2013) found
that tannin-enriched extracts and ground foliage from Oregon
white oak (Quercus garryana Dougl. Ex Hook) and California
black oak (Q. kelloggii Newberry), a susceptible host of P. ramo-
rum, adversely affect the growth of P. ramorum. Tannin-enriched
extracts also inhibited the production of P. ramorum zoospores
and elicitin, which is positively correlated with P. ramorum
growth and zoospore production (Stong et al., 2013). A reanal-
ysis of Nagle et al. (2011) phenolic data (McPherson et al., 2014)
revealed that concentrations of certain phenolic compounds
(hereafter referred to as putative phenolic biomarkers of resis-
tance), quantified from asymptomatic phloem of trees already
infected with P. ramorum, could be used to identify resistant CLO.
One of these biomarkers is ellagic acid, a byproduct of ellagi-
tannin hydrolysis (Ascacio-Valdes et al., 2011), which has previ-
ously been associated with CLO defense and resistance (Ockels
et al., 2007; Nagle et al., 2011). Ellagic acid has also been shown
to inhibit the growth of certain invasive Phytophthora species
in vitro, including P. cinnamomi Rands (Cahill and McComb,
1992), a generalist pathogen associated with oak decline through-
out North America and Europe (Brasier, 1996; Tainter et al.,
2000; Nagle et al., 2010) and P. ramorum (McPherson et al.,
2014), in the latter case at in planta-relevant concentrations.
Still, CLO resistance cannot be predicted by measuring the
concentration of a single phenolic compound, but instead can
be predicted only when several phenolic compounds are used
concurrently in a predictive model (McPherson et al., 2014).
Thus, techniques that examine a broader spectrum of plant-
derived chemicals may be more useful for the identification of
resistant CLO.

One technique that is capable of producing comprehensive
chemical fingerprints is Fourier-transform infrared (FT-IR) spec-
troscopy. FT-IR spectroscopy has many advantages over more
traditional methods of chemical fingerprinting (e.g., high per-
formance liquid chromatography-mass spectrometry), such as its
rapidity and reproducibility in the analysis of solid, liquid, or
gaseous samples (Fiehn, 2001). Infrared (IR) spectroscopy can
be used to produce chemical fingerprints, which then can be
used to identify or discriminate between samples, because spec-
tra, which are produced by measuring changes in the molecular
absorption of IR radiation, are determined based on qualita-
tive and quantitative attributes of the chemicals (i.e., functional
groups) present in a given sample (Diem, 1993; Guillén and
Cabo, 1997; reviewed in Rodriguez-Saona and Allendorf, 2011).
This is because the molecular structure of compounds influences
how IR radiation is absorbed and consequently the mechanical
motion of the molecules (either vibrational or rotational) (Diem,
1993; Guillén and Cabo, 1997; reviewed in Rodriguez-Saona and
Allendorf, 2011).

While spectroscopy has been used to determine the water sta-
tus of CLO foliage (Hunt and Rock, 1989; Pu et al., 2003; Cheng
et al., 2011) there are no reports of its use for chemically fin-
gerprinting CLO phloem tissue. However, FT-IR spectroscopy
has been used to monitor specialized metabolite production
in grapevine (Schmidtke et al., 2012) and for qualitative and
semi-quantitative analysis of birch bark extracts (Cîntǎ-Pînzaru
et al., 2012). The technique was also used successfully to iden-
tify markers of potato resistance to late blight disease caused by
Phytophthora infestans (Mont.) de Bary (Taoutaou et al., 2012), to
monitor chemical changes in elm wood following infection with
the pathogen Ophiostoma novo-ulmi Brasier (a causal agent of
Dutch elm disease) (Martín et al., 2005), to distinguish between
resistant and susceptible elms post-inoculation (Martín et al.,
2005), and was able to discriminate between elm clones of differ-
ing levels of susceptibility to O. novo-ulmi based on the analysis of
healthy tissue (Martin et al., 2008).

Based on the evidence that quantitative differences in the
constitutive chemical composition of CLO phloem tissue are
associated with resistance to P. ramorum, the objectives of this
study were to determine if FT-IR spectroscopy could be used
to (1) discriminate between resistant and susceptible trees, and
(2) predict the concentration of putative phenolic biomark-
ers of resistance, by analyzing phloem tissue collected prior to
infection.

MATERIALS AND METHODS
INOCULATION AND RESISTANCE SCREENING
In July 2010, two phloem samples were collected with a cord-
less drill equipped with a 1.9 cm diameter drill bit from the
main stem of 154 haphazardly selected, apparently disease-free
(asymptomatic) CLO from two sites (37◦ 55′ 12.23′′ N, 122◦
8′ 8.73′′ W and 37◦ 56′ 8.57′′ N, 122◦ 7′ 40.46′′ W), cover-
ing ∼8 ha in total, within Briones Regional Park (Contra Costa
Co., CA, USA), an area just outside the then-known area of
infestation, for which no records of natural disease incidence
were known prior to the start of the study (Brown and Allen-
Diaz, 2009) and in which only a small number of symptomatic
CLO were observed in the vicinity of the plots at the initia-
tion of the study. Phloem samples from each tree were pooled,
placed on dry ice in the field, and then frozen at −18◦C until
October 2010, when they were shipped on dry ice to The Ohio
State University. Following shipping, all samples were stored
at −80◦C.

In September 2010, each tree stem was inoculated at breast
height at the two ends of a 1/3 circumference arc with a plug of
P. ramorum isolated from an Umbellularia californica (Hook. and
Arn.) Nutt. (California bay laurel) in Contra Costa Co. and grown
on 1/3 V8 medium (inoculum kindly provided by Dr. David
Rizzo, UC Davis). Inoculations were performed according to the
methods of McPherson et al. (2008). Inoculations were conducted
under a California Department of Food and Agriculture permit
released to Dr. David Rizzo and were necessary because, at the
initiation of this study, no other methods were available to screen
trees for resistance.

Resistance was determined by observing trees 10, 14, 22, and
34 months following inoculation and separating them into three
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groups based on the disease phenotypes of Nagle et al. (2011):
in remission—trees were initially symptomatic (only bleeding
exudate observed) but appeared to recover quickly (no more
bleeding)—trees considered most resistant; symptomatic—trees
continued to bleed and/or beetle activity and/or Annulohypoxylon
fruiting bodies were observed; and susceptible—trees had
brown or leafless crowns, or inoculated stems had snapped
(some with green foliage)—trees considered dead and most
susceptible.

Support for the phenotypic groupings was sought by cal-
culating the mean length of the two external cankers on each
tree ∼10 months following inoculation (McPherson et al., 2014).
Only phloem from trees classified as resistant (i.e., in remission)
(n = 22) or susceptible (n = 24) 22 months post-inoculation
(Conrad et al., unpublished) was used for the present analysis,
since these trees were considered most resistant and susceptible,
respectively, and thus were ideal for testing whether or not FT-IR
spectroscopy could be used to distinguish between resistant and
susceptible CLO.

FT-IR SPECTROSCOPY
Phloem tissue was finely ground in liquid nitrogen and stored
at −80◦C. 100 ± 1 mg fresh weight (FW) of finely ground phloem
tissue was extracted two times with 0.5 mL of HPLC grade
methanol (Fisher Scientific, Pittsburgh, PA, USA) for 24 h at 4◦C,
as described in Nagle et al. (2011). Extracts were pooled and
stored at −80◦C until analysis.

The ability of FT-IR spectroscopy and chemometric analy-
sis to discriminate between extracts from resistant and suscep-
tible CLO was then tested on two separate instruments. The
first was an Excalibur 3500GX FT-IR spectrometer (benchtop)
(Digilab, Randolph, MA, USA), equipped with a triple-bounce
zinc selenide, attenuated total reflectance (ATR) accessory and a
potassium bromide beamsplitter. The second instrument was a
Cary 630 FT-IR spectrometer (portable) (Agilent Technologies
Inc., Santa Clara, CA, USA) equipped with a five-bounce zinc
selenide ATR accessory. Bounce number indicates the number of
times the sample comes in contact with the IR beam. Spectra
were collected over a range of 4000–700 cm−1 at 4 cm−1 reso-
lution and an interferogram of 64 scans was co-added for each
sample. Spectral data were displayed in terms of absorbance and
viewed using Win-IR Pro Software (Agilent Technologies Inc.,
Santa Clara, CA, USA).

Methanol extracts were concentrated prior to analysis on
the benchtop unit. Methanol was completely evaporated from
aliquots of extract using a Savant SpeedVac DNA 120 (Thermo
Scientific, Asheville, NC, USA) at room temperature and with a
low drying rate. Resulting pellets were re-suspended in methanol
to a final concentration of 10 times (10x) that of the original
extract. 5µl of 10x extract were loaded onto the ATR acces-
sory crystal and allowed to sit for ∼60 s; this allowed methanol,
which interferes with the spectra of plant extracts, to evaporate
before analysis. For analysis with the portable unit, 50 µl of crude
methanol extract were loaded onto the ATR accessory crystal.
Samples were brought to dryness using a water aspirator and then
analyzed. Two technical replicates were analyzed on each unit for
each extract (biological replicate).

STATISTICAL ANALYSIS
Confirming resistance phenotypes
Canker length was compared between resistant and susceptible
trees using an independent samples t-test (IBM SPSS Statistics
21). Assumptions were tested prior to analysis using Shapiro-
Wilk’s and Levene’s tests for normality and homoscedasticity,
respectively. Canker length data were log transformed in order to
satisfy the assumption of normality and the Welch-Satterthwaite
method was used to account for a lack of homoscedasticity
between groups (Welch, 1938, 1947; Satterthwaite, 1946; reviewed
in Ruxton, 2006).

FT-IR spectroscopy
Data collected from the portable unit and benchtop unit were
analyzed using the chemometric software Pirouette version
4.0 (Infometrix Inc., Woodville, WA, USA). Soft independent
modeling of class analogy (SIMCA) was used to discrimi-
nate between resistant and susceptible trees, while partial least
squares regression (PLSR) was used to predict the concentra-
tion of two putative phenolic biomarkers of resistance, ellagic
acid and an uncharacterized flavonoid (FLV1). Ellagic acid and
FLV1 were quantified (mg g−1 FW) based on HPLC analy-
sis using a modification of the method described in Nagle
et al. (2011) and using an ellagic acid standard curve for
compound quantification, as described in Ockels et al. (2007)
(Conrad et al., unpublished). SIMCA is a classification tech-
nique that develops principal components models for each train-
ing group (i.e., resistant and susceptible CLO) and identifies
variables that are important for discriminating between groups
(Subramanian et al., 2007). PLSR uses multivariate analysis to
reduce high dimensional, potentially collinear data (e.g., spectral
frequencies), and regression analysis to estimate the concentra-
tion of variables of interest (e.g., concentrations of phenolic
compounds), while maximizing covariance (Wilkerson et al.,
2013).

FIGURE 1 | External canker length (±standard error) measured 10

months following inoculation with P. ramorum. Resistant trees (n = 22)
have significantly smaller canker lengths than susceptible trees (n = 24)
(independent t-test, P < 0.001). Statistical analysis performed using log
transformed data.
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FIGURE 2 | Solid line—raw infrared spectrum from coast live oak phloem extracts; dashed line—second derivative infrared spectrum. The second
derivative spectrum was used to resolve overlapping bands (peaks) and to identify differences in the spectra of resistant and susceptible trees.

Technical replicates from each biological replicate were ana-
lyzed separately. For SIMCA analysis, data were transformed
using the standard normal variate (SNV) approach and by tak-
ing the second derivative (with a 21 points Savitzky and Golay
polynomial filter) (Savitzky and Golay, 1964). For PLSR, data
were transformed using the divide by sample 2-norm function.
SIMCA 3D class projection plots were used to visualize cluster-
ing patterns of resistant and susceptible trees. SIMCA Coomans
plots and discriminating power plots were used to identify spec-
tral region(s) that had the highest discriminating power between
resistant and susceptible trees (Coomans and Broeckaert, 1986;
Subramanian et al., 2007). Coomans plots and 3D class projec-
tion plots were also used to identify outliers, which were then
removed from the model. For PLSR, loadings and scores plots
were used to visualize data and identify the infrared region that
best explained the observed variation, respectively. PLSR model
performance was evaluated in terms of outlier diagnostics, leave-
one-out cross validation, and number of factors included in the
model (Wilkerson et al., 2013). Outliers were trimmed based on
the methods of Wilkerson et al. (2013), and sample sizes reported
reflect the number of technical replicates used for each analysis.

RESULTS
RESISTANT PHENOTYPES
CLO classified as resistant (n = 22) in 2012 based on symp-
tom expression had significantly smaller external canker lengths
10 months post-inoculation, compared to trees classified as
susceptible (n = 24) (t = 8.475, df = 27, P < 0.001) (Figure 1).

FT-IR SPECTRA AND SIMCA ANALYSIS
Spectral data were collected from the mid-IR region
(4000–700 cm−1), and overlapping peaks were resolved by
using SNV and second derivative functions (Figure 2, Table 1).
Only quantitative spectral differences were observed between
resistant and susceptible trees (Figure 3). Differences between
extracts from resistant and susceptible trees were observed only
after spectral transformation, and were most visible around 1305,
1735, and 1772 cm−1.

Table 1 | Wavenumber ranges and associated functional groups.

Wavenumber

range (cm−1)

Assignment References

2840–3040 -C-H (CH2) stretching Diem, 1993; Koca et al., 2010

2860–2760 -C-H (CH2) stretching Diem, 1993; Koca et al., 2010

1650–1740 C=O stretching Diem, 1993

1520–1650 C=C (benzene ring) Martín et al., 2005

1400–1480 C-O stretching, CH2,
CH3

Diem, 1993; Guillén and
Cabo, 1997

1400–1180 C-O stretching, CH2

stretching, C=O
Koca et al., 2010;
Carballo-Meilan et al., 2014

1200–800 C-O stretching
(carbohydrate region)

Martín et al., 2005

Spectral ranges based on peak presence in raw infrared spectrum.

A 4-factor SIMCA identified two spectral regions that were
most important for reliably discriminating between resistant and
susceptible trees, regardless of instrument used. This included
spectra from ∼1250 to 1350 cm−1 and 1700 to 1800 cm−1,
which corresponded primarily to carbonyl (C=O) group stretch-
ing vibrations. Using data collected from the benchtop system
(with outliers removed), 100% of extracts from resistant trees
(n = 24) and 100% of extracts from susceptible trees (n =
36) were correctly classified, with an interclass distance of 2.4
(the larger the interclass distance, the less likely samples will
be classified as both resistant and susceptible by the SIMCA
model) (Figures 4, 5). For data collected from the portable
unit (with outliers removed), 100% of extracts from resistant
trees (n = 25) and 97% of extracts from susceptible trees (n =
31) were correctly classified, with an interclass distance of 2.3
(Figures S1, S2).

PLSR ANALYSIS
Normalized (divide by sample 2-norm) spectra between
1202–1802 cm−1 (benchtop unit) and 1200–1801 cm−1 (portable
unit) could be used to predict the concentration of two putative
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FIGURE 3 | Second derivative and SNV-transformed spectra. Spectral
bands with high discriminating power are indicated with arrows.
Black—resistant trees; Red—susceptible trees.

FIGURE 4 | SIMCA 3D class projection plot for spectral data,

transformed using SNV and second derivative. Data collected from the
Excalibur 3500GX (benchtop) unit equipped with triple-bounce ATR
accessory. Closed diamonds—resistant trees; open diamonds—susceptible
trees. Dashed lines indicate the 95% confidence interval for each group.

phenolic biomarkers of resistance, ellagic acid and FLV1, inde-
pendently (Table 2). For ellagic acid, a 4-factor PLSR analysis
explained >99.9% of the variation in the concentration of ellagic
acid, regardless of instrument used, with a strong positive corre-
lation (rbenchtop = 0.84; rportable = 0.75) between the predicted
and measured concentrations (Figure 6, Figure S3). The standard
error of cross-validation (SECV), an approximation of the
anticipated error when independent samples are predicted using
the model, for ellagic acid was 0.08–0.09%. A 3-factor PLSR
analysis explained >99.9% of the variation in the concentration
of FLV1, regardless of instrument used, with a strong positive
correlation (rbenchtop = 0.78; rportable = 0.84) between measured
and predicted concentrations and a SECV of 0.03% (Figure 7,
Figure S4). Loadings plots for factor 4 (ellagic acid) and factor 3
(FLV1) overlaid with preprocessed spectral data indicate areas of

FIGURE 5 | SIMCA Coomans plot with 4 factors (dashed lines indicate

critical sample residual thresholds) based on transformed (SNV and

second derivative) data. Data from the Excalibur 3500GX (benchtop) unit
equipped with triple-bounce ATR accessory. Closed diamonds—resistant
trees; open diamonds—susceptible trees. This plot shows the relative,
dimension-free distance of a sample from a given class, resistant (x-axis) or
susceptible (y-axis), based on the 4 factor SIMCA analysis.

the spectrum which correspond with high loading values (either
positive or negative) for ellagic acid (Figure 8, Figure S5) and
FLV1 (Figure 9, Figure S6). Areas of the spectrum overlapped
with high loading values are likely important for predicting the
concentration of each biomarker.

DISCUSSION
For the first time, we demonstrate that chemical fingerprint-
ing, based on FT-IR spectroscopy of phloem extracts combined
with chemometric analysis, can be used to predict resistance in
a natural population of CLOs prior to infection by an impor-
tant invasive pathogen, P. ramorum. Chemical fingerprints were
also used to predict the concentration of two putative pheno-
lic biomarkers of CLO resistance, ellagic acid (McPherson et al.,
2014) and FLV1 (Conrad et al., unpublished). Variability in spec-
tral intensities was observed within resistant and susceptible trees;
however, resolution of overlapping peaks by normalization and
transformation, along with outlier trimming, made it possible
to develop strong predictive models. Spectral bands correspond-
ing to carbonyl group vibrations were consistently important for
distinguishing between resistant and susceptible CLO, regardless
of instrument sensitivity. Instrument sensitivity was dependent
on the specific configuration of the ATR accessory, with the five-
bounce ATR accessory (portable unit) more likely to detect subtle
differences between groups than the triple-bounce ATR accessory
(benchtop unit) (Agilent Technologies, 2013).

Two spectral ranges, corresponding primarily to carbonyl
group vibrations, had the greatest discriminating power between
resistant and susceptible trees in 3-dimensional space using a
4-factor SIMCA. While spectral bands with the greatest dis-
criminating power differed slightly depending on the instrument
used, in general, bands previously associated with plant spe-
cialized metabolites were most important. Band 1305 cm−1 was
previously found in free quercetin (Torreggiani et al., 2005).
Quercetin may be important for plant defense because under
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Table 2 | Results of PLSR analysis for ellagic acid and FLV1.

Compound Range Instrument # Factors % variance rval* SECV** % N

(mg g−1 FW) explained (mg g−1FW) Removed***

Ellagic acid 0.04–0.62 Benchtop 4 99.94 0.84 0.08 15

Portable 4 99.94 0.75 0.09 13

FLV1**** 0.03–0.47 Benchtop 3 99.91 0.78 0.03 15

Portable 3 99.92 0.84 0.03 22

*Correlation coefficient of cross-validation—correlation coefficient describing the direction and strength of the relationship between cross-validated predicted and

actual concentrations.
**Standard error of cross-validation—standard error of cross-validated predicted concentrations.
***N = 93.
****In ellagic acid equivalents.

FIGURE 6 | PLSR correlation plot showing the relationship between

the concentration of the phenolic biomarker of resistance, ellagic acid,

determined by HPLC analysis, and the predicted concentration of

ellagic acid based on FT-IR spectra. Spectra collected from the Excalibur
3500GX (benchtop) unit equipped with triple-bounce ATR accessory.
Spectral data were normalized with divide by sample 2-norm
transformation. Closed diamonds—resistant trees; open
diamonds—susceptible trees. Statistical analysis reported in Table 2.

certain conditions it scavenges free radicals and chelates metal
ions (Torreggiani et al., 2005). Furthermore, quercetin inhibits
the growth of Phytophthora megasperma Drechsler in vitro, a
pathogen of olive roots and many other woody species (Báidez
et al., 2006). Two bands at 1735 cm−1 (Bovi Mitre et al., 2004)
and 1772 cm−1 (Genta et al., 2010) were previously associated
with lactones. While we do not know exactly which compounds
in our extracts are responsible for these two bands, we do know
that ellagic acid is a dilactone (Ascacio-Valdes et al., 2011) with
absorbance in the same range that we used for the SIMCA analysis
(Figure S7). Moreover, this corroborates previous studies, which
examined the relationship between CLO phenolics and defense
and/or resistance to P. ramorum. Ockels et al. (2007) found that
ellagic acid was associated with CLO defense, and Nagle et al.
(2011) found that trees more resistant to P. ramorum had higher
levels of ellagic acid in their phloem tissue compared to more sus-
ceptible CLO. McPherson et al. (2014) identified ellagic acid as
one of four putative phenolic biomarkers of resistance in asymp-
tomatic tissue of already infected trees, and also found that ellagic

FIGURE 7 | PLSR correlation plot showing the relationship between

the concentration of the phenolic biomarker of resistance, FLV1, in

ellagic acid equivalents (mg g−1 FW), determined by HPLC analysis,

and the predicted concentration of FLV1 based on FT-IR spectra.

Spectra collected from the Excalibur 3500GX (benchtop) unit equipped with
triple-bounce ATR accessory. Spectral data were normalized with divide by
sample 2-norm transformation. Closed diamonds—resistant trees; open
diamonds—susceptible trees. Statistical analysis reported in Table 2.

acid inhibited the growth of P. ramorum at in planta-relevant
concentrations in vitro.

In addition to using FT-IR spectra to discriminate between
resistant and susceptible CLO, PLSR was used to predict the
concentration of two putative phenolic biomarkers of resis-
tance, ellagic acid (McPherson et al., 2014) and FLV1 (Conrad
et al., unpublished). Predicted concentrations of each phenolic
biomarker were strongly positively correlated with measured con-
centrations of each compound, regardless of instrument used,
confirming that FT-IR spectroscopy can be used to identify
and/or quantify phytochemical features associated with resistant
trees. Bands associated with aromatic ring (C=C) and carbonyl
(C=O) group vibrations had the highest loading values. Some
of the bands identified as being important, based on correla-
tion spectrum plots (data not shown), were previously found
to be associated with oak tannin (Gust, 1991), C=O stretching
associated with elm defense (Martín et al., 2005), and phe-
nols and C-C bending in gallic acid (Mohammed-Ziegler and
Billes, 2002). The potential association of one of these bands
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FIGURE 8 | Ellagic acid PLSR loadings plot with divide by sample

2-norm transformed data for the 4th factor (solid line), the main factor

of discrimination between resistant and susceptible trees, with raw

spectra (absorbance) overlaid (dashed line). Data collected from the
Excalibur 3500GX (benchtop) unit equipped with triple-bounce ATR
accessory. High loading values, either positive or negative, indicate
informative spectra.

with gallic acid is of particular interest, since gallic acid was
found at higher concentrations in P. ramorum infected phloem
tissue and has been shown to inhibit the growth of multiple
Phytophthora species in vitro, including P. ramorum (Ockels et al.,
2007).

Taken together these results suggest that FT-IR spectroscopy is
a viable approach for chemically fingerprinting methanol extracts
from CLO phloem tissue. By performing chemometric analysis
on data collected from FT-IR spectroscopy, we were able to (1)
discriminate between CLO resistant and susceptible to P. ramo-
rum prior to infection with the pathogen and (2) estimate the
concentration of two putative constitutive phenolic biomarkers
of resistance. In the future, these models can be used to predict
whether or not an uninfected CLO will be resistant to P. ramorum,
though they may need to be refined (by incorporating data from
additional CLO), depending on the accuracy required in future
predictions.

Knowledge of resistant (or susceptible) CLO in the landscape
may be useful for homeowners, extension agents, or forest
managers interested in protecting high-value trees with chemical
treatments, protecting stands with high levels of resistance from
development and fire, or for the development of sudden oak
death management and risk assessment plans. In some areas
where many resistant trees are present, the best form of man-
agement may be no intervention (allowing naturally resistant
trees to replenish the seed bank), or may be limited only to the
removal of hazardous trees. Furthermore, the approach detailed
in this study may be appropriate for use in other forest pathogen
and pest systems where the main objective is to identify resistant
germplasm.
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