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Arbuscular mycorrhizal fungi (AMF), belonging to the Glomeromycota, are soil microorgan-
isms that establish mutualistic symbioses with the majority of higher plants. The efficient
uptake of low mobility mineral nutrients by the fungal symbiont and their further transfer
to the plant is a major feature of this symbiosis. Besides improving plant mineral nutrition,
AMF can alleviate heavy metal toxicity to their host plants and are able to tolerate high
metal concentrations in the soil. Nevertheless, we are far from understanding the key
molecular determinants of metal homeostasis in these organisms. To get some insights
into these mechanisms, a genome-wide analysis of Cu, Fe and Zn transporters was
undertaken, making use of the recently published whole genome of the AMF Rhizophagus
irregularis. This in silico analysis allowed identification of 30 open reading frames in
the R. irregularis genome, which potentially encode metal transporters. Phylogenetic
comparisons with the genomes of a set of reference fungi showed an expansion of some
metal transporter families. Analysis of the published transcriptomic profiles of R. irregularis
revealed that a set of genes were up-regulated in mycorrhizal roots compared to germinated
spores and extraradical mycelium, which suggests that metals are important for plant
colonization.
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INTRODUCTION
The transition metals Fe, Cu and Zn play essential and catalytic
roles throughout the cell in various subcellular compartments.
These metal cofactors are critical for processes such as transcrip-
tion, translation, the production of ATP in the mitochondria and
the scavenging of toxic free radicals (van Ho et al., 2002; Schaible
and Kaufmann, 2004; Kim et al., 2008). However, these metals are
a highly reactive group of elements and are toxic at high concentra-
tions (Valko et al.,2005). Therefore, their biological concentrations
are finely regulated in living cells. To maintain micronutrient
homeostasis, all organisms have developed a complex network
of metal uptake, chelation, trafficking and storage processes (Festa
and Thiele, 2011). Transporters represent the first line of defense
to perturbations of cellular and subcellular metal homeostasis and
constitute an important component of this network. When metal
reserves are depleted, transporters contribute to the specific supply
and distribution of the needed cofactor before deficiency symp-
toms appear. However, when the concentration of metal within
the cell exceeds the cell’s buffering capacity, transporters provide
the route to expel excess cofactors before toxicity occurs (Nies,
2007). The toxic heavy metals, such as cadmium, lead, mercury,
and nickel, have no physiological function but compete with the
transporters of the essential biological metals. Therefore, the activ-
ity and specificity of the transporters of physiologically important
heavy metals also control the lethality of the toxic metals.

Arbuscular mycorrhizal fungi (AMF) are soil microorganisms
that establish symbiotic mutualistic associations with most land

plants. These fungi provide their host plants an efficient sup-
ply of low mobility mineral nutrients, mainly phosphorus and
some micronutrients such as Cu and Zn. Thanks to the hyphal
network they develop in the soil, AMF acquire nutrients not
only for their own needs, but also for delivering them to the
host plant. In return, the plant supplies the fungus with car-
bon compounds (Smith and Read, 2008). Besides improving
plant mineral nutrition, AMF can alleviate heavy metal toxicity
to their host plants (Göhre and Paszkowski, 2006; Lingua et al.,
2008). Heavy metal tolerant AMF ecotypes have been isolated
from polluted soils and these indigenous populations cope bet-
ter with heavy metal-toxicity than those isolated from unpolluted
soils (del Val et al., 1999). To persist in environments with high
heavy metal content, AMF have evolved a series of strategies to
avoid the damage produced by the metal, such as compartmental-
ization of the metal excess in some spores (González-Guerrero
et al., 2008; Cornejo et al., 2013) and highly efficient homeo-
static mechanisms (Ferrol et al., 2009; González-Guerrero et al.,
2009). Despite the central role of metal transporters in heavy
metal homeostasis, only a gene encoding a Zn transporter has
been characterized in AMF to date (González-Guerrero et al.,
2005).

With the genome of Rhizophagus irregularis available
(Tisserant et al., 2013), we have the unique opportunity to identify
and present a global view of proteins involved in heavy metal trans-
port in an AM fungus. In this work we have taken advantage of the
recently released genome sequence of R. irregularis to establish a
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repertoire of candidate genes potentially involved in the transport
of Cu, Fe and Zn in this fungus and to interpret them in light of its
extremely adaptable character to grow in conditions of heavy metal
deficiency or toxicity. This R. irregularis repertoire has been com-
pared with that present in some reference fungi. To get some clues
about the expression profiles of these genes throughout the fun-
gal life cycle, we explored the published transcriptomic profiles in
the extraradical mycelium (ERM) and symbiotic roots (intrarad-
ical mycelium, IRM) obtained using the R. irregularis expression
oligoarray (Tisserant et al., 2012) and the RNA-Seq reads obtained
from germinated spores and Medicago-colonized roots (Tisserant
et al., 2013).

MATERIALS AND METHODS
GENE IDENTIFICATION
Amino acid sequences of fungal Cu, Fe, and Zn transporters were
retrieved from the freely accessible transport databases TCDB1 and
TransportDB2. These sequences were used to search for ortholo-
gous sequences in the filtered model dataset of R. irregularis on the
JGI website3 via a protein BLAST. A second search was performed
via a keyword search directly.

Since many of the fungal reference proteins were phylogeneti-
cally distant from R. irregularis, manually curated Laccaria bicolor4

Tuber melanosporum5 and Rhizopus oryzae6 databases were used
to look for additional orthologous sequences in the filtered model
dataset of R. irregularis. This was also done via a BLASTp, run with
the standard program settings.

SEQUENCES ANALYSES
Searches for conserved domains in the orthologous proteins
found in R. irregularis were performed using the Conserved
Domain Database at NCBI7. Predictions of putative transmem-
brane domains were made using the TMHMM Server v.2.08 and
SMART software9. Full-length amino acid sequences were aligned
with the orthologous sequences of a number of fungi representa-
tives of distinct taxonomic groups by CLUSTALW10. Alignments
were imported into the Molecular Evolutionary Analysis (MEGA)
package version 6. Phylogenetic analyses were performed using the
Neighbor-Joining (NJ) method implemented in MEGA using the
Poisson correction model and pairwise deletion of gaps option for
distance computation. Bootstrap analyses were carried out with
1000 replicates.

RESULTS AND DISCUSSION
The release of the R. irregularis genome (Tisserant et al., 2013; Lin
et al., 2014) allowed making a genome-wide inventory of genes
coding for Cu, Fe, and Zn transporters. This in silico analysis

1http://www.tcdb.org/
2http://www.membranetransport.org/
3http://genome.jgi-psf.org/Gloin1
4http://genome.jgi-psf.org/Lacbi2
5http://genome.jgi.doe.gov/Tubme1
6http://genome.jgi.doe.gov/Rhior3
7http://www.ncbi.nlm.nih.gov/cdd
8http://www.cbs.dtu.dk/services/TMHMM/
9http://smart.embl-heidelberg.de/
10http://www.ebi.ac.uk/Tools/msa/clustalw2/

allowed identification of 30 open reading frames in the R. irregu-
laris genome, which potentially encode heavy metal transporters.
These candidate genes belong to several multigene families. Table 1
lists the eight phylogenetic families to which these proteins belong
and the major heavy metal substrate for each transporter. These
heavy metal transport families are described in the following
sections.

COPPER
Despite the long history of Cu as fungicide, AMF are able to grow
and persist in Cu contaminated soils. The morphological alter-
ations observed in the ERM of R. irregularis grown in vitro in
association with root organ cultures in media without Cu or with
Cu concentrations that are lethal to a majority of other organisms
reflect its extremely adaptable character (Figure 1). Several studies
have shown that AMF finely regulate the cytosolic Cu levels when
confronted to excess Cu (González-Guerrero et al., 2008) and that
the fungus responds to Cu toxicity by inactivating the excess of
Cu in the cytosol through the activity of metallothioneins and the
activation of antioxidant defenses (for a review see Ferrol et al.,
2009). However, nothing is known about the Cu transporters that
move Cu across the R. irregularis membranes. The two major fam-
ilies of Cu transporters identified in the R. irregularis genome are
described below.

The copper transporter (CTR) family
Our in silico analysis revealed that R. irregularis likely acquires
Cu through the activity of a transporter belonging to the CTR
family of Cu transport proteins. This protein family is highly
conserved across all fungal species and mediates Cu transport
into the cytoplasm. CTR proteins are small integral membrane
proteins that contain three transmembrane domains, with the
N-terminus located in the extracellular space and the C-terminus
in the cytosol. A series of clustered methionine residues in the
hydrophilic extracellular domain, and a MXXXM motif in the sec-
ond transmembrane domain, are important for Cu uptake. These
methionine residues probably coordinate Cu during the process
of metal transport (Yuan et al., 2011).

In Saccharomyces cerevisiae, Cu is transported into the cytosol
by three high-affinity transporters (CTR1, CTR2, and CTR3).
While CTR1 and CTR3 are located in the plasma membrane,
and acquire Cu from the environment (Dancis et al., 1994;
Marjorette et al., 2000), CTR2 is found in the tonoplast and pumps
Cu into the cytosol (Portnoy et al., 2001; Puig and Thiele, 2002).
The R. irregularis genome also contains three genes putatively
encoding CTRs. The predicted genes and proteins have been
named according to their orthologs in S. cerevisiae. These proteins
clustered into two different clades in a phylogenetic Neighbor-
Joining tree. RiCTR1 and RiCTR3 are more closely related to
the S. cerevisiae plasma membrane CTR proteins, while RiCTR2
is highly homologous to the fungal vacuolar CTR2 transporters
(Figure 2).

Since CTR proteins are highly specific for reduced Cu+ and Cu
widely exists as Cu2+, transport by CTR is dependent on reduction
of Cu by a ferric/cupric reductase (Hassett and Kosman, 1995).
Orthologous sequences of the fungal cell surface Cu metallore-
ductases encoded by the FRE genes are present in the R. irregularis
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Table 1 | Overview of the putative metal transporters identified in the

Rhizophagus irregularis genome.

Protein name JGI ID Major

substrate

Ratio

IRM/spore

Ratio

IRM/ERM

CTR family

CTR1 153709 Cu 0.5 –

CTR2 335281 Cu 5 2.9

CTR3 67076 Cu 0.3 –

P1B-ATPase family

CCC2.1 335789 Cu 2.6 2.6

CCC2.2 83433 Cu 1 –

CCC2.3 236684 Cu 0.7 –

CRD1 32309 Cu 1 –

SIT family

SIT1 305535 Sid.-Fe 0.6 –

SIT2 193231 Sid.-Fe 1.9 1.9

SIT3 71812 Sid.-Fe 1 –

OFet family

FTR1 347887 Fe 10 –

FTR2 34848 Fe 1.5 –

VIT family

CCC1.1 278480 Fe/Mn 0.9 3.4

CCC1.2 57183 Fe/Mn 0.04 0.1

CCC1.3 340222 Fe/Mn 2.7 –

ZIP family

ZRT1 327155 Zn 420 8

YKE4 337446 Zn 0.9 –

ATX2 80864 Mn 1.2 –

ZRT3.1 13899 Zn 3.5 –

ZRT3.2 336612 Zn 3 14

CDF family

ZnT1 70407 Zn 100 –

ZnT2 286233 Zn 1 –

MMT1 85722 Fe 2 –

MSC2 340453 Zn 0.9 0.9

ZRG17 67256 Zn 1 0.9

MnT1 232215 Mn 0.8 0.8

NRAMP family

SMF1 136431 Mn/Fe 3 0.9

SMF2 89717 Mn 6 –

SMF3.1 313253 Fe 1.9 –

SMF3.2 337501 Fe 0.7 1

Columns 1–5 contain protein name, protein JGI identification (JGI ID) number,
predicted major metal transported, ratio of expression levels in M. truncatula
symbiotic roots (IRM) to 2 d germinated spores (calculated from the RNA-seq
reads in Tisserant et al., 2013), and ratio of expression levels in IRM to ERM
(from Tisserant et al., 2012). CTR, Cu transporter; SIT, siderophore-iron (Sid.-Fe)
transporter; OFet, oxidase-dependent Fe2+ transporter; VIT, vacuolar iron trans-
porter; ZIP, zinc-iron permease; CDF, cation diffusion facilitator; NRAMP, natural
resistance-associated macrophage protein.

genome (see next section), suggesting that the Cu reduction pro-
cess is similar to that described for other fungi. Upon entering
the cytoplasm, small molecules and proteins sequester the Cu
ions, and the resulting concentration gradient drives transport
by CTR.

Inspection of the available gene expression profiles of R. irregu-
laris revealed that RiCTR2 is up-regulated in Medicago truncatula
colonized roots, suggesting that some Cu is mobilized from the
internal stores in the IRM probably to provide Cu to Cu-binding
proteins that might be required for fungal colonization (Table 1).

Copper-transporting P-type ATPases
Copper-transporting ATPases belong to the heavy metal P-type
ATPase family (HMA), also known as P1B-ATPases, which couples
ATP hydrolysis to the efflux of positively charged metals from the
cytoplasm. These proteins possess eight transmembrane domains,
a large cytoplasmic loop, including ATP-binding and phospho-
rylation sites, and at least one conserved CPX motif (i.e., CPC)
believed to be involved in metal cation translocation across the
membrane.

Four candidate genes putatively encoding Cu+-ATPases have
been found in the R. irregularis genome, which represents an
expansion compared with other fungi (Tables 1 and 2). These
genes were clustered in two different groups in a phylogenetic
tree (Figure 3). Three of them were grouped in a clade com-
prising the well characterized ortholog of S. cerevisiae CCC2,
a protein that receives Cu from the Cu chaperone ATX1 via a
direct protein–protein interaction, and pumps Cu into the late-
or post-Golgi compartment to load Cu into a multicopper oxi-
dase required for Fe uptake (see next section) and, presumably,
to other Cu-dependent proteins (Yuan et al., 1995). The other
paralog, RiCRD1, groups in a different clade comprising various
orthologs of CRD1, a plasma membrane Cu+-ATPase that plays a
major role in Cu detoxification via Cu efflux in the opportunistic
fungus Candida albicans (Weissman et al., 2000). Although it has
been suggested that functions of the fungal Cu-ATPases can be
inferred from their positions in a phylogenetic tree (Saitoh et al.,
2009), a detailed characterization of the R. irregularis paralogs is
needed to understand their physiological functions.

Analysis of the available expression profiles of R. irregularis
revealed a 2.6-fold up-regulation of RiCCC2.1 gene expression in
mycorrhizal roots relative to the expression levels in spores and
ERM. No data are still available of the expression profiles of the
other paralogs in the ERM. Up-regulation of RiCCC2.1 in the sym-
biotic stage, as it has been observed for the Cu transporter RiCTR2,
suggests a role for these proteins to supply Cu to other enzymes
required for fungal accomodation or functioning in the root tis-
sues. In this respect, it has been shown that the CTR2 ortholog of
the plant pathogen Colletotrichum gloeosporioides (Barhoom et al.,
2008) and the CCC2 orthologs of Colletotrichum lindemuthianum
(Parisot et al., 2002) and Botrytis cinerea (Saitoh et al., 2010) are
required for pathogenicity.

IRON
Iron uptake
Although Fe is abundant in nature, this metal has a low availability
because it is most commonly found as ferric hydroxide, which is
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FIGURE 1 | Effect of Cu on extraradical hyphal development of

Rhizophagus irregularis grown in vitro in association with root organ

cultures. Extraradical mycelium (ERM) was grown in minimal medium lacking

Cu (A), containing 0.5 μM Cu (B), or 500 μM Cu (C). Mycelial architecture
was altered markedly when the fungus developed in a Cu-free media (A) and
in the presence of 500 μM Cu (C).

a rather stable and poorly soluble compound. A common strategy
engaged by fungi to efficiently get the metal involves “seques-
tering” of Fe through the production and subsequent uptake of
siderophores, which are small molecules that act as high-affinity Fe
chelators (Haas et al., 2008). Another important Fe uptake mech-
anism involves a group of specialized membrane proteins that are
part of the reductive iron assimilation system (RIA). In this high-
affinity uptake machinery, the metal is reduced from Fe3+ to Fe2+
(in order to increase Fe solubility) by membrane-bound ferrire-
ductases, and then it is rapidly internalized by the concerted action
of a ferroxidase and a permease that form a plasma membrane
protein complex (Kosman, 2010).

A number of fungi harbor both types of high affinity sys-
tems, examples are Ustilago maydis, Schizosaccharomyces pombe,

Aspergillus fumigatus and Fusarium graminearum (Mei et al., 1993;
Roman et al., 1993; Askwith and Kaplan, 1997; Schrettl et al., 2004;
Eichhorn et al., 2006; Schwecke et al., 2006; Greenshields et al.,
2007). Others, such as S. cerevisiae, C. albicans and Cryptococ-
cus neoformans (Schwyn and Neilands, 1987; Lesuisse and Labbe,
1989; Howard, 1999), are unable to synthesize siderophores but
can utilize those produced by other organisms.

The siderophore pathway
Arbuscular mycorrhizal fungi are assumed to play a key role in
Fe uptake and delivery to their associated host plants. How-
ever, it is still unknown whether AMF produce siderophores.
The majority of fungal siderophores are hydroxamates. The
first committed step in the biosynthesis of fungal hydroxamate

Table 2 | Number and classification of the putative Cu, Fe, and Zn transporters identified in the genome of R. irregularis and in the genomes of

the reference fungi used in this study.
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OFet (Ftr1) 1 1 3 0 3 1 1 2 1 3 1 1 2 1

Low affinity Fe2+ transporter 0 0 0 0 0 0 0 1 0 1 0 1 0 0

NRAMP 3 1 1 1 1 0 2 3 0 1 2 1 4 4

ZIP 2 3 7 4 4 3 5 5 7 8 8 7 5 7

VIT 4 1 1 1 1 1 2 1 1 2 1 1 3 2

CTR 2 1 2 4 2 3 3 3 2 4 4 3 3 3

P1B-type ATPases 1 2 2 1 1 2 3 1 3 2 2 2 4 3

CDF 2 5 9 5 5 5 7 6 4 6 5 6 6 4

CTR, Cu transporter; OFet, oxidase-dependent Fe2+ transporter; VIT, vacuolar iron transporter; ZIP, zinc-iron permease; CDF, cation diffusion facilitator; NRAMP, natural
resistance-associated macrophage protein.
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FIGURE 2 | Phylogenetic relationships of the Rhizophagus irregularis

copper transporters (CTR) with homologous sequences from selected

species representative of the major fungal phyla. The Neighbor-Joining
tree was created with MEGA 6. Protein JGI identification numbers are
indicated. R. irregularis genes are shown in bold. Organisms: An,
Aspergillus niger ; Bc, Botrytis cinerea; Cc, Coprinopsis cinerea; Cn,
Cryptococcus neoformans; Lb, Laccaria bicolor ; Nc, Neurospora crassa; Pi,
Piriformospora indica; Pg, Puccinia graminis; Sc, Saccharomyces
cerevisiae; Sl, Suillus luteus; Tb, Tuber melanosporum; Ri, Rhizophagus
irregularis; Ro, Rhizopus oryzae; Um, Ustilago maydis. Bootstrap values
above 70 and supporting a node used to define a cluster are indicated.

siderophores is the N5-hydroxylation of ornithine catalyzed by
ornithine-N5-monooxygenase (named Sid1/SidA). The absence
of a Sid1/SidA ortholog in a fungal genome is generally taken
as a strong evidence of no siderophore production. Inspec-
tion of the R. irregularis genome indicates that it does not
contain Sid1/SidA orthologs. Similarly, the genomes of Saccha-
romycotina and Mucoromycotina and some Basidiomycota lack
genes coding for this enzyme, which is in agreement with the

observed lack of siderophore production by these fungi (Lesuisse
and Labbe, 1989; Plattner and Diekmann, 1994). Interestingly,
although the L. bicolor genome also lacks Sid1/SidA orthologous
genes, production of a set of different hydroxamate siderophores
by L. bicolor has been recently reported (Haselwandter et al.,
2013).

A gene encoding a putative bifunctional iucA/iucC siderophore
biosynthetic protein (RiSid1) that is highly expressed in mycor-
rhizal roots was found in the genome of R. irregularis. IucA and
iucC catalyse discrete steps in the biosynthesis of the siderophore
aerobactin from N epsilon-acetyl-N epsilon-hydroxylysine and
citrate. The C-terminal region of RiSid1 is related to the bacte-
rial ferric iron reductase FhuF-like transporter. The genomes of
the reference fungi used in this study also contain orthologs of this
gene. Therefore, the production of siderophores by R. irregularis
remains uncertain.

Irrespective of their ability to produce siderophores, fungi
have siderophore transporters that allow them to uptake differ-
ent types of these small chelators, including bacterial ones like
coprogen or enterobactin. This allows several fungi to take advan-
tage of the siderophores produced by other organisms, securing
in such manner their own iron needs (Haas et al., 2008; Saha
et al., 2013). This type of siderophore transporters belong to
the SIT (siderophore-iron transporter) subfamily (2.A.1.16) of
the major facilitator superfamily, a protein subfamily present
exclusively in fungi (and not in other eukaryotes or prokary-
otes). SITs are secondary transporters with 12–14 predicted
transmembrane domains, which likely function as proton sym-
porters energized by the plasma membrane potential (Haas et al.,
2003; Philpott and Protchenko, 2008). Searches in the R. irreg-
ularis genome using as query the SIT genes of S. cerevisiae and
S. pombe allowed identification of three putative siderophore
transporters (RiSIT1, RiSIT2, and RirSIT3), which are expressed
in all fungal structures (Table 1). Detailed characterization
of these transporters is needed to determine their substrate
specificity.

The reductive iron assimilation (RIA) pathway
The reductive iron assimilation pathway starts with reduction of
ferric iron sources to the more soluble ferrous iron Fe2+ by plasma
membrane-localized ferrireductases. R. irregularis contains a puta-
tive ferrireductase (RiFRE1) that displays the highest homology to
the S. cerevisiae FRE2 (23% identity and 43% similarity), a pro-
tein that can reduce oxidized forms of both Fe and Cu. RiFRE1
encodes a 541 amino acids protein that has seven transmembrane
regions, several NAD(P)H binding motifs and a FAD binding
motif.

Reduced Fe is then specifically taken up by a high-affinity trans-
port complex consisting of a ferroxidase and a Fe permease, the
oxidase-dependent Fe2+ transporter (OFeT), or non-specifically
through other plasma membrane divalent cation transporters,
as it will be discussed below. In S. cerevisiae, Fe2+ can be
also taken up by the low-affinity Fe transporter Fet4 (Dix et al.,
1994). This low-affinity system seems to be absent in R. irreg-
ularis as well as in the other reference fungi used in this study,
except the ascomycetes S. cerevisiae, A. niger, and B. cinerea
(Table 2).
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FIGURE 3 | Phylogenetic relationships of the Rhizophagus irregularis

copper-transporting P-type ATPases (CCC2) with homologous

sequences from selected species representative of the major fungal

phyla. The Neighbor-Joining tree was created with MEGA 6. Protein JGI
identification numbers are indicated. R. irregularis genes are shown in bold.
Organisms: An, Aspergillus niger ; Bc, Botrytis cinerea; Cc, Coprinopsis
cinerea; Cn, Cryptococcus neoformans; Lb, Laccaria bicolor ; Nc,
Neurospora crassa; Pi, Piriformospora indica; Pg, Puccinia graminis; Sc,
Saccharomyces cerevisiae; Sl, Suillus luteus; Tb, Tuber melanosporum; Ri,
Rhizophagus irregularis; Ro, Rhizopus oryzae; Um, Ustilago maydis.
Bootstrap values above 70 and supporting a node used to define a cluster
are indicated.

The oxidase-dependent Fe2+transporter (OFeT) family
In S. cerevisiae, the ferroxidation/permeation pathway is mediated
by the ferroxidase FET3 and the iron permease FTR1. This bipar-
tite complex operates with an apparent Km of 0.2 μM. The Fe2+ to
be transported is first oxidized by FET3, and then transported into
the cytosol as Fe3+ by FTR1 via a channeling mechanism (Kwok
et al., 2006). The advantage gained by redox coupling of this trans-
port mechanism is unclear, although it possibly imparts specificity
to transport. FET3 contains a single transmembrane domain and
an extracellular multicopper oxidase domain, showing remark-
able similarity to other multicopper oxidases, such as laccases
and ascorbate oxidases. Searches in the R. irregularis genome for

ferroxidases retrieved several genes putatively encoding multicop-
per oxidases (data not shown). The encoded proteins are more
closely related to members of the ferroxidase/laccase subfamily of
multicopper oxidases than to ferroxidases sensu stricto. Detailed
characterization of these genes will enable identification of the
FET3 ortholog.

Two putative orthologs of yeast FTR1, named RiFTR1 and
RiFTR2, have been found in the R. irregularis genome. RiFTR1 and
RiFTR2 were more similar to the FTR1 homolog of the Bryophyte
Physcomitrella patens (43% identity, 66% similarity, and 37%
identity, 60% similarity, respectively) than to fungal FTRs. Phy-
logenetic analyses of the FTR protein sequences of the reference
fungi used in this study revealed that RiFTR1 and RiFTR2 clus-
tered together and separated from the other sequences (Figure 4).
The two R. irregularis Fe permeases were predicted to have seven
transmembrane helixes and the two REXXE motifs typical of Fe
transporters.

Many fungal species, such as S. cerevisiae, C. albicans, F.
graminearum, and C. neoformans (Urbanowski and Piper, 1999;

FIGURE 4 | Phylogenetic relationships of the Rhizophagus irregularis

iron permeases (FTR) with homologous sequences from selected

species representative of the major fungal phyla. The Neighbor-Joining
tree was created with MEGA 6. Protein JGI identification numbers are
indicated. R. irregularis genes are shown in bold. Organisms: An,
Aspergillus niger ; Bc, Botrytis cinerea; Cc, Coprinopsis cinerea; Cn,
Cryptococcus neoformans; Lb, Laccaria bicolor ; Nc, Neurospora crassa; Pi,
Piriformospora indica; Pg, Puccinia graminis; Sc, Saccharomyces
cerevisiae; Sl, Suillus luteus; Tb, Tuber melanosporum; Ri, Rhizophagus
irregularis; Ro, Rhizopus oryzae; Um, Ustilago maydis. Bootstrap values
above 70 and supporting a node used to define a cluster are indicated.
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Fang and Wang, 2002; Park et al., 2006; Han et al., 2012), also
possess two or more FTR paralogs. In S. cerevisiae, ScFTH1 is
located in the vacuole and together with the ferroxidase FET5
exports Fe from the vacuole into the cytosol (Spizzo et al., 1997;
Urbanowski and Piper, 1999). However, in C. neoformans, which
possesses three FTRs, two of them are redundant (Han et al.,
2012). Functional characterization of RiFTR1 and RiFTR2 is
needed to determine if one of these Fe permeases is involved
in Fe mobilization of vacuolar stores or if they are functionally
redundant.

Expression analysis of the genes putatively involved in the fer-
roxidation/permeation pathway in the available transcriptomic
data of R. irregularis revealed that the two Fe permeases identified
in the genome are expressed in germinated spores and mycorrhizal
roots (Table 1) and that some of the putative multicopper oxidases
are expressed in all fungal structures (data not shown), which sug-
gest that the Fe reductive assimilation pathway operates in AM
fungi. Interestingly, the Fe permease RiFTR1 was up-regulated
(10-fold) during the symbiotic phase of the fungus (Table 1).
These data suggest that this high-affinity Fe uptake system plays
a role not only in Fe uptake from the soil, but also during the
biotrophic phase of the fungus. In this respect, it is notewor-
thy that full virulence of the plant pathogenic fungus U. maydis
requires a ferroxidation/permeation Fe uptake system (Eichhorn
et al., 2006) and it has been postulated that Fe acquisition through
the siderophore-mediated pathway is necessary for Epichloë festu-
cae to maintain mutualism with perennial ryegrass (Johnson et al.,
2013).

The significance of the expression profiles of the Fe uptake
systems present in R. irregularis is unknown. A recent genome-
wide analysis of transcription patterns in defined cell-types of M.
truncatula roots colonized by R. irregularis identified two metal
transporters, MtNRAMP1 and MtNRAMP3 likely playing a role in
Fe homeostasis, that were induced more than threefold in cortical
root cells colonized by arbuscules (Hogekamp and Küster, 2013).
Given that in the symbiotic interface enough Fe must be supplied
for the metabolism of the plant and the fungus and that excess Fe
must be avoided to prevent formation of reactive oxygen species,
it is tempting to speculate that maintenance of Fe homeostasis in
the symbiotic interface may be essential for the maintenance of a
successful symbiosis.

Vacuolar iron transport
Several studies have highlighted the importance of the AM fungal
vacuoles for storage and detoxification of heavy metals (Tur-
nau et al., 1993; González-Guerrero et al., 2007; Nayuki et al.,
2014). Iron is likely stored in the fungal vacuoles in the fer-
ric form as polyphosphate. In yeast, Fe is loaded into the
vacuole by CCC1, a member of the vacuolar iron transporter
(VIT) family (Li et al., 2001). Homologs are found in eukary-
otes, bacteria, and archaea. Most fungal species encode one
CCC1 protein and some others, such as Aspergillus and Rhizo-
pus species, encode two paralogs (Gsaller et al., 2012). In contrast,
three putative paralogs have been found in R. irregularis, named
RiCCC1.1, RiCCC1.2, and RiCCC1.3. As shown in the phy-
logenetic tree of fungal VITs, the three putative R. irregularis
paralogs are closely related and cluster together with the R. oryzae

homologs, clearly separated from sequences of Ascomycota and
Basidiomycota (Figure 5). The three paralogs were differentially
expressed in the different fungal structures. RiCCC1.1 was the
most highly expressed paralog in the ERM. While RiCCC1.2 was
down-regulated in mycorrhizal roots, RiCCC1.3 was up-regulated
(Table 1).

When Fe is low, mobilization of the vacuolar Fe stores should be
mediated by a Fe permease/oxidase complex, as it was discussed
in the former section, and/or by a homolog of the S. cerevisiae
NRAMP family member SMF3 that exports Fe from the vacuole
into the cytosol (see the NRAMP family section).

ZINC
In eukaryotes, Zn homeostasis is largely attributed to the coor-
dinated action of two transporter families: the ZIP (zinc-iron
permease or ZRT-IRT-like Protein) and the CDF (Cation Diffu-
sion Facilitator) families (Eide, 2006). Only three Zn transporters
of the CDF family have been characterized so far in myc-
orrhizal fungi. The first one was identified in R. irregularis

FIGURE 5 | Phylogenetic relationships of the Rhizophagus irregularis

vacuolar iron transporters (VIT) with homologous sequences from

selected species representative of the major fungal phyla. The
Neighbor-Joining tree was created with MEGA 6. Protein JGI identification
numbers are indicated. R. irregularis genes are shown in bold. Organisms:
An, Aspergillus niger ; Bc, Botrytis cinerea; Cc, Coprinopsis cinerea; Cn,
Cryptococcus neoformans; Lb, Laccaria bicolor ; Nc, Neurospora crassa; Pi,
Piriformospora indica; Pg, Puccinia graminis; Sc, Saccharomyces
cerevisiae; Sl, Suillus luteus; Tb, Tuber melanosporum; Ri, Rhizophagus
irregularis; Ro, Rhizopus oryzae; Um, Ustilago maydis. Bootstrap values
above 70 and supporting a node used to define a cluster are indicated.
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FIGURE 6 | Phylogenetic relationships of the Rhizophagus irregularis

zinc-iron permeases (ZIPs) with homologous sequences from

selected species representative of the major fungal phyla. The
Neighbor-Joining tree was created with MEGA 6. Protein JGI
identification numbers are indicated. R. irregularis genes are shown in
bold. Organisms: An, Aspergillus niger ; Bc, Botrytis cinerea; Cc,

Coprinopsis cinerea; Cn, Cryptococcus neoformans; Lb, Laccaria bicolor ;
Nc, Neurospora crassa; Pi, Piriformospora indica; Pg, Puccinia graminis;
Sc, Saccharomyces cerevisiae; Sl, Suillus luteus; Tb, Tuber
melanosporum; Ri, Rhizophagus irregularis; Ro, Rhizopus oryzae; Um,
Ustilago maydis. Bootstrap values above 70 and supporting a node
used to define a cluster are indicated.

(González-Guerrero et al., 2005), the second in Hebeloma cylin-
drosporum (Blaudez and Chalot, 2011) and more recently a new
one has been reported in the ericoid fungus Oidiodendron maius
(Khouja et al., 2013).

The zinc-iron permease (ZIP) family
The name of the ZIP family refers to the first members that were
functionally characterized, the S. cerevisiae Zn transporter ZRT1
and the Arabidopsis thaliana Fe transporter IRT1. A key feature
of the ZIP family is that, without any yet known exceptions,

these proteins transport Zn and/or other metal ion substrates
from the extracellular space or organellar lumen into the cyto-
plasm. ZIP transporters are found at all phylogenetic levels
including bacteria, fungi, plants, and mammals (Eide, 2006).
Most ZIP proteins have eight predicted transmembrane domains
and similar predicted topologies with the N- and C-termini of
the protein located on the extracytoplasmic face of the mem-
brane. A histidine-rich region present between transmembrane
regions three and four is necessary for Zn selectivity (Nishida et al.,
2008).
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FIGURE 7 | Phylogenetic relationships of the Rhizophagus irregularis

cation diffusion facilitators (CDFs) with homologous sequences

from selected species representative of the major fungal phyla. The
Neighbor-Joining tree was created with MEGA 6. Protein JGI
identification numbers are indicated. R. irregularis genes are shown in
bold. Organisms: An, Aspergillus niger ; Bc, Botrytis cinerea; Cc,

Coprinopsis cinerea; Cn, Cryptococcus neoformans; Lb, Laccaria bicolor ;
Nc, Neurospora crassa; Pi, Piriformospora indica; Pg, Puccinia graminis;
Sc, Saccharomyces cerevisiae; Sl, Suillus luteus; Tb, Tuber
melanosporum; Ri, Rhizophagus irregularis; Ro, Rhizopus oryzae; Um,
Ustilago maydis. Bootstrap values above 70 and supporting a node
used to define a cluster are indicated.

The number of ZIP genes in the genomes of the reference
fungi ranges from two to eight (Table 2). In S. cerevisiae, five
ZIP family members have been described: ZRT1, ZRT2, ZRT3,
ATX2, and YKE4. The R. irregularis ZIP family also includes five
candidate genes, which have been named according to their clos-
est yeast orthologs. The fungal ZIP family is divided into four
distinct subfamilies. One of the R. irregularis paralogs clusters
with the plasma membrane high- and low-affinity Zn trans-
porters ZRT1 and ZRT2 of S. cerevisiae in the ZRT1/ZRT2-like
group (Zhao and Eide, 1996). Two paralogs were grouped in the
ZRT3-like cluster and are closely related to the S. cerevisiae ZRT3,
which mediates Zn release from the vacuole to the cytosol (Simm
et al., 2007). The ATX2-like and YKE-like subfamilies including,
respectively, the yeast ATX2 protein involved in Mn trafficking
(Lin and Culotta, 1996) and the bidirectional Zn transporter
YKE4 (Kumánovics et al., 2006), also comprised one R. irregularis
gene each (Figure 6). ZIP member distribution in the phylo-
genetic tree was not related to organism taxonomy, but rather
to substrate specificity or subcellular location suggesting ancient

duplication events followed by subfunctionalization in a common
ancestor.

Expression analyses revealed that all the R. irregularis paralogs
were expressed in all the fungal structures tested. RiZRT1 was
highly up-regulated in mycorrhizal roots relative to the expres-
sion levels detected in germinated spores (420-fold) and in the
ERM (eightfold). The two homologs of the yeast vacuolar Zn
transporter, RiZTR3.1 and RiZTR3.2, were also up-regulated
(threefold) in mycorrhizal roots (Table 1). These expression data
suggest that the fungus takes up Zn from the apoplast of the
symbiotic interface and that a mobilization of the vacuolar Zn
stores occurs in the IRM. These data reinforce our hypothesis that
AMF must maintain proper metal homeostasis for colonization
and survival in the host roots.

The cation diffusion facilitator (CDF) family
The key feature of this family is that they transport Zn and/or
other metal ions from the cytoplasm into the lumen of intracel-
lular organelles or to the outside of the cell. Thus, CDF proteins
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work in opposition to the ZIP transporters. CDF transporters are
also found at all phylogenetic levels. Most members of this fam-
ily have six predicted transmembrane domains with the N- and
C-termini predicted to be cytoplasmic. A notable exception to
this rule is the yeast MSC2 protein that forms a heteromeric
CDF complex with ZRG17 to transport Zn into compartments
of the secretory pathway. Like the ZIP proteins, many CDF fam-
ily members have histidine rich motifs, in this case usually in the
cytoplasmic loop between transmembrane domains 4 and 5. The
majority of CDF family members are classified into three groups,
each containing characterized members that share the same speci-
ficity toward the principally transported metal, Zn, Fe/Zn, or Mn.
An additional group is the ZRG17-like subfamily, which is very
distant from the Zn-CDF but with similar biochemical charac-
teristics (Montanini et al., 2007). Six genes putatively encoding
CDFs were identified in R. irregularis, which have been named
according to their closest yeast orthologs. Three were included
in the Zn-CDF subfamily, two in the ZRC1-like cluster and
one in the MSC2-like cluster (Figure 7). The ZRC1-like cluster
comprises the yeast vacuolar Zn transporters ZRC1 and COT1
(MacDiarmid et al., 2002) and the R. irregularis CDF GiZnT1
(González-Guerrero et al., 2005, renamed here as RiZnT1). These
transporters mediate Zn uptake into the vacuole and are involved
in Zn tolerance. Members of the MSC2-cluster also transport
Zn, but into the endoplasmic reticulum. Another R. irregularis
CDF, named RiMMT1, was grouped together with the S. cere-
visiae mitochondrial Fe transporters MMT1 and MMT2 in the
Fe-CDF subfamily and it is likely to mediate the transport of Fe.
The other two homologs found, RiMnT1, and RiZRG17, were
grouped in the Mn-CDF and ZRG17-like subfamilies, respec-
tively, and are proposed to be involved in the transport of Mn
and Zn (Montanini et al., 2007; Diss et al., 2011). Although the
metal specificity of the newly identified CDF transporters of R.
irregularis has been inferred from their distribution in the phy-
logenetic tree, an exhaustive functional characterization of these
transporters is needed to confirm the transport processes mediated
by the different isoforms.

Expression analyses of the CDF family members revealed that
the different orthologs are expressed in all fungal structures ana-
lyzed, except RiZnT1 that was expressed at very low levels in
germinated spores (Table 1).

THE NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEINS
(NRAMP) FAMILY OF DIVALENT METAL TRANSPORTERS
The NRAMP family constitutes a class of divalent metal trans-
porters that are highly conserved from bacteria to mammals. These
transporters use the transmembrane proton gradient to facilitate
transport of a broad range of divalent cations toward the cytosol.
S. cerevisiae has three homologs of this family in its genome,
SMF1, SMF2, and SMF3. SMF1, and SMF2 mainly transport Mn,
although SMF1 also transports Fe. While SMF1 operates at the
plasma membrane in the uptake of either Mn or Fe (Chen et al.,
1999; Portnoy et al., 2000), SMF2 is localized on membranes of
intracellular Golgi vesicles, being involved in transport of Mn out
of the vesicles (Reddi et al., 2009). SMF3 exports iron from the vac-
uole to the cytosol (Diffels et al., 2006), and together with CCC1,
is responsible for Fe homeostasis in this organelle.

Searches in the R. irregularis genome led to the identification of
four putative NRAMP homologs, all of them having the signature
sequence DPGN. The sequences from Basidiomycota clearly sep-
arated from those of Ascomycota in the phylogenetic tree. The R.
oryzae and R. irregularis homologs were grouped together in two
different clades (Figure 8). Analysis of the available gene expres-
sion profiles of R. irregularis revealed that SMF1 and SMF3.1 are
expressed in all fungal structures and that RiSMF1 and RiSMF2
are expressed at very low levels in germinated spores (Tisserant
et al., 2012).

CONCLUSION
The present analysis aimed at establishing a repertoire of candi-
date genes that represent the genetic potential for transport of Fe,
Cu, and Zn in R. irregularis. We have revealed the presence of
at least 30 genes encoding putative transition metal transporters,
showing all of them detectable transcript levels in the fungal struc-
tures analyzed. Figure 9 summarizes the candidate genes identified

FIGURE 8 | Phylogenetic relationships of the Rhizophagus irregularis

natural resistance-associated macrophage proteins (NRAMPs) with

homologous sequences from selected species representative of the

major fungal phyla. The Neighbor-Joining tree was created with MEGA 6.
Protein JGI identification numbers are indicated. R. irregularis genes are
shown in bold. Organisms: An, Aspergillus niger ; Bc, Botrytis cinerea; Cc,
Coprinopsis cinerea; Cn, Cryptococcus neoformans; Lb, Laccaria bicolor ;
Nc, Neurospora crassa; Pi, Piriformospora indica; Pg, Puccinia graminis; Sc,
Saccharomyces cerevisiae; Sl, Suillus luteus; Tb, Tuber melanosporum; Ri,
Rhizophagus irregularis; Ro, Rhizopus oryzae; Um, Ustilago maydis.
Bootstrap values above 70 and supporting a node used to define a cluster
are indicated.
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FIGURE 9 | Schematic representation of the putative Cu, Fe, and Zn

transport systems in Rhizophagus irregularis. Transcripts for all these
transporters have been detected in symbiotic roots and germinated spores.
Discontinuous arrows refer to transporters whose transcript levels in the
ERM have not been determined yet. Transcripts up-regulated by more than
2.5-fold in the symbiotic roots are shown in the intraradical mycelium (IRM),
except ZnT1 that was expressed at very low levels in germinated spores and

SMF1 that was only up-regulated in the symbiotic roots relative to
germinated spores but not to the ERM. Putative Cu transporters (CTR) are in
dark orange; P1B -or Cu-ATPases (CCC2) in light orange; the
oxidase-dependent Fe2+transporter (OFeT) family members in brown
(ferroxidases) and blue (permeases); zinc-iron permeases (ZIPs) in green;
cation diffusion facilitators (CDFs) in gray, NRAMPs in red and VITs in purple.
ER, endoplasmic reticulum; TGN, trans-Golgi network.

in this genomic survey. The sequences and expression informa-
tion reported herein will be useful for further investigation of the
roles of these transport proteins in Cu, Fe, and Zn homeosta-
sis in AMF and in the symbiosis. A comprehensive physiological
analysis of the current dataset needs detailed characterization of
the encoded proteins. However, we would like to highlight two
features that stood out in this in silico analysis: (i) expansion of
some families of metal transporters, specifically of Cu-ATPases,
VITs, and NRAMPs, and (ii) up-regulation of a certain num-
ber of genes putatively encoding transport proteins mediating
the influx of Fe/Zn (RiFTR1, RiZRT1) and the mobilization of
the vacuolar Cu/Zn stores (RiCTR2, RiZRT3) in the intraradical
phase of the fungus. Since these transporters are unlikely to be
involved in metal transfer to the plant, they should play a role
in maintaining Fe, Cu, and Zn homeostasis in the IRM. Based
on these observations we speculate that metal homeostasis in the
places of close interactions between the plant and the fungus is
needed for symbiotic development, as it has been shown in the
mutualistic symbioses formed between Epichloë endophytes and
the Poaceae. The challenge now is to functionally characterize

these transporters and to identify their location and roles in the
symbiosis.
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