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Soybean is sensitive to flooding stress and exhibits reduced growth under flooding
conditions. To better understand the flooding-responsive mechanisms of soybean, the
effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic
technique. An increase in exogenous calcium levels enhanced soybean root elongation
and suppressed the cell death of root tip under flooding stress. Proteins were extracted
from the roots of 4-day-old soybean seedlings exposed to flooding stress without or
with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins
involved in protein degradation/synthesis/posttranslational modification, hormone/cell
wall metabolisms, and DNA synthesis were decreased by flooding stress; however,
their reductions were recovered by calcium treatment. Development, lipid metabolism,
and signaling-related proteins were increased in soybean roots when calcium was
supplied under flooding stress. Fermentation and glycolysis-related proteins were
increased in response to flooding; however, these proteins were not affected by calcium
supplementation. Furthermore, urease and copper chaperone proteins exhibited similar
profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2
days in the presence of calcium. These results suggest that calcium might affect the cell
wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean
roots under flooding stress.
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INTRODUCTION
Flooding events caused by heavy rainfall have increased glob-
ally over the past six decades as a consequence of climate change
(Bailey-Serres et al., 2012). Flooding severely affects the produc-
tivity of farmland, because most agriculturally important crops
are intolerant to flooding stress (Setter and Waters, 2003). One
of the main effects of flooding is a marked reduction in oxygen
availability due to the slower diffusion of gas in water as com-
pared to air (Dat et al., 2004). Thus, when plants are exposed to
flooding conditions, the roots initially suffer from oxygen defi-
ciency (Sauter, 2013), leading to the inhibition of root respiration
and a marked decrease in the energy status of root cells (Ashraf,
2012). In response to flooding, plants activate an alternative fer-
mentation metabolic pathway to produce ATP and regenerate
NAD+ (Gibbs and Greenway, 2003), as evidenced by the dras-
tic increase in alcohol dehydrogenase activity in soybean under
flooding stress (Komatsu et al., 2011). Although the flooding-
induced changes in energy metabolism are important processes
in adaptation to flooding conditions, metabolism induced by
flooding and adaption to flooding in soybean remain unclear.

Calcium is an essential plant nutrient that determines the
structure of cell wall and membranes, and plays a role in

Abbreviations: LC, liquid chromatography; MS, mass spectrometry; qRT-PCR,
quantitative reverse transcription-polymerase chain reaction; XTH, xyloglucan
endotransglucosylase/hydrolase.

regulation of growth and development (Hepler, 2005). Calcium
also has functions in protecting the integrity of cell membranes,
reducing membrane permeability, and preventing ion leakage
caused by biotic and abiotic stresses (Lin et al., 2008). Exogenous
calcium alleviated the suppression of plant growth and kept plant
to maintain and modulate cellular function by relieving gene
repression under salt (Henriksson and Nordin Henriksson, 2005),
anoxic (Aurisano et al., 1995), and chilling stresses (Gao et al.,
2004). Calcium served the regulated optimal amounts of antiox-
idative enzymes and antioxidants to the antioxidative systems
in leaves of sweet potato under waterlogging stress (Lin et al.,
2008). Furthermore, improved tolerance to short-term hypoxia
by calcium-mediated reduction of polyamine degradation, ele-
vation of nitrate uptake, and accelerated synthesis of heat-stable
proteins and polyamines was reported in muskmelon roots (Gao
et al., 2011). Calcium was also shown to be effective in soybean
for reducing Phytophthora stem rot disease, which is caused by
Phytophthora soja, in flooded soil (Sugimoto et al., 2005). These
observations indicate that study of the roles of calcium in pro-
tecting plants against environmental stresses, including flooding,
will aids in the understanding of stress tolerance mechanisms in
soybean.

Soybean is an important crop worldwide as it serves an abun-
dant source of both protein and oil for animal and human
consumption (Hartman et al., 2011). However, soybean is
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particularly sensitive to flooding (Sullivan et al., 2001), which
markedly reduces the growth and productivity of plants (Githiri
et al., 2006). Studies on the flooding-responsive mechanisms in
soybean using proteomics-based approaches have revealed that
the levels of several proteins involved in signal transduction,
glucose degradation/sucrose accumulation, alcohol fermentation,
and cell wall loosening were changed under flooding conditions
(Komatsu et al., 2012a). Specifically, proteins involved in energy
production were increased, whereas proteins involved in pro-
tein folding and cell structure maintenance were decreased in
response to flooding stress in soybean (Nanjo et al., 2012). In
addition, these proteomic studies identified a number of calcium-
related proteins that may play important roles in flooding
stress-responsive mechanisms in soybean.

To further understand calcium-related signaling pathway
under flooding condition, Komatsu et al. (2013a) investigated
calcium-related proteins in soybean cotyledon under flooding
conditions using a proteomic technique and suggested that cal-
cium might play a role in flooding-induced signal transduction
through heat shock protein 70. Annexin, a calcium-dependent
membrane-binding protein, was identified in soybean under
flooding stress with abscisic acid supplementation (Komatsu
et al., 2013b). The levels of calreticulin, a calcium-binding pro-
tein with chaperone functions (Menegazzi et al., 1993), were also
lower in soybean under flooding stress (Komatsu et al., 2009), and
a number of annexin proteins, calcium-transporting ATPase 4,
calnexin, luminal-binding protein, and calcium ion-binding pro-
tein have been identified in flooded soybean root using gel-based
and gel-free proteomic techniques (Komatsu et al., 2012b). These
changes have effect on the calcium signaling under flooding stress
and appear to be contributed flooding-responsive mechanism.
Various calcium-related proteins, including annexin, calreticulin,
calcium-binding EF-hand family protein, and calcium-dependent
lipid-binding family protein, are changed in soybean under flood-
ing stress (Oh et al., 2014a). Taken together, these results indicate
that calcium has functions as a key signaling regulator in response
to flooding by controlling calcium-related proteins in soybean.
However, calcium-induced flooding response metabolism and
response in soybean remain to be determined.

Because of the importance of calcium-regulatory mechanisms
in plants to adjust to adverse abiotic stresses, including flood-
ing, several studies have examined the involvement of calcium in
stress-response mechanisms. Although calcium has been shown
to ameliorate stress-induced damage in other crop species (He
et al., 2012), calcium-mediated flooding-responsive mechanisms
are poorly understood in soybean. In the present study, a gel-free
proteomic technique was used to investigate the effect of calcium
on soybean under flooding stress.

MATERIALS AND METHODS
PLANT MATERIAL AND TREATMENT
Soybean (Glycine max L. cultivar Enrei) seeds were sterilized
with 1% sodium hypochlorite solution, rinsed in water, and
sown in a plastic case (180 × 140 × 45 mm) containing 500 mL
quartz sand wetted with 125 mL water. Soybeans were grown
in a growth chamber under white fluorescent light (160 µmol
m−2s−1, 16 h light period/day) at 25◦C and 70% relative

humidity. Two-day-old soybeans were transferred to a glass tube
(38 × 130 mm) containing 120 mL tap water supplemented with-
out or with 1, 5, 10, and 50 mM CaCl2 for flooding stress
treatment, and further grown at 25◦C under dark conditions. For
physiological experiments, 4, 6, and 8-day-old soybeans treated
with flooding for 2, 4, and 6 days, respectively, were collected
and the length and weight of roots, including the hypocotyl, were
measured. At the time of collection, soybeans were also stained
with Evans blue dye, and the amount of dye extracted from
stained root tips was measured spectroscopically as described
below. For proteomic analysis, roots were collected from 4-day-
old soybeans flooded without or with 50 mM CaCl2 for 2 days.
For quantitative reverse transcription polymerase chain reaction
(qRT-PCR) analysis, roots, hypocotyls, and cotyledons were col-
lected from 2-, 3-, and 4-day-old soybean flooded without or with
50 mM CaCl2 for 0, 1, and 2 days, respectively. For all exper-
iments, non-treated equivalent soybeans were collected as con-
trols, and three independent biological replicates were performed
for each experiment (Supplemental Figure 1).

EVANS BLUE STAINING FOR ASSAY OF CELL DEATH
Root tip cell death was evaluated by Evans blue staining, as
described by Baker and Mock (1994) and Delisle et al. (2001).
Briefly, soybeans were stained in a 0.25% aqueous solution of
Evans blue for 15 min at room temperature. The stained sam-
ples were washed with water and immediately photographed.
For quantitative assessment of staining, the terminal 5 mm of
stained root tips was excised and immersed in 200 µL N,N-
dimethylformamide for 24 h at 4◦C. After the incubation, the
absorbance of Evans blue released from the root tips was
measured spectroscopically at 600 nm.

PROTEIN EXTRACTION
A portion (0.5 g) of fresh roots was ground to a powder in liquid
nitrogen with a mortar and pestle. The powder was added to an
acetone solution containing 10% trichloroacetic acid and 0.07%
2-mercaptoethanol, and the resulting mixture was vortexed and
then sonicated for 10 min. The suspension was incubated for
1 h at −20◦C with vortexing every 15 min, and was then cen-
trifuged at 9000× g for 20 min at 4◦C. The resulting supernatant
was discarded and the obtained pellet was washed twice with
0.07% 2-mercaptoethanol in acetone. The pellet was dried using
a Speed-Vac concentrator (Savant Instruments, Hicksville, NY,
USA) and resuspended in lysis buffer containing 7 M urea, 2 M
thiourea, 5% CHAPS, and 2 mM tributylphosphine by vortex-
ing for 1 h at 25◦C. The suspension was centrifuged at 20,000× g
for 20 min at 25◦C, and the supernatant was collected as pro-
tein extract. Protein concentrations were determined using the
Bradford method (Bradford, 1976) with bovine serum albumin
as the standard.

PROTEIN PURIFICATION AND DIGESTION FOR MASS SPECTROMETRY
ANALYSIS
Extracted proteins (100 µg) were purified with methanol and
chloroform to remove any detergent from the sample solutions,
as previously described (Nanjo et al., 2012). Briefly, 400 µL
methanol was added to 100 µL samples and then mixed. A total
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of 100 µL chloroform and 300 µL water were added to result-
ing mixture, mixed, and centrifuged at 20,000× g for 10 min to
achieve phase separation. The upper phase was discarded, 300 µL
methanol was added to lower phase, and the samples were fur-
ther centrifuged at 20,000× g for 10 min. The supernatants were
discarded, and the obtained pellets were dried. Dried samples
were reduced with 50 mM dithiothreitol for 30 min at 56◦C and
the alkylated with 50 mM idoacetoamide for 30 min at 37◦C in
the dark. Alkylated proteins were digested with trypsin and lysyl
endopeptidase at 1:100 enzyme/protein concentrations at 37◦C
for 16 h. The resulting tryptic peptides were acidified with formic
acid, desalted with a C18-pipette tip (SPE C-TIP, Nikkyo Technos,
Tokyo, Japan), and then analyzed by nano-liquid chromatography
(LC)-tandem mass spectrometry (MS).

NANOLIQUID CHROMATOGRAPHY-MASS SPECTROMETRY ANALYSIS
Using an Ultimate 3000 Nano LC system (Dionex, Germering,
Germany), peptides in 0.1% formic acid were loaded onto a
C18 PepMap trap column (300 µm ID × 5 mm, Dionex). The
peptides were eluted from the trap column with a linear acetoni-
trile gradient (8–30% in 120 min) in 0.1% formic acid at a flow
rate of 200 nL/min, and then loaded onto a C18 NANO HPLC
NTTC-360/75-3 capillary tip column (75 µm ID × 120 mm,
Nikkyo Technos) using a spray voltage of 1.5 kV. A nanospray
LTQ Orbitrap mass spectrometer (Thermo Fisher Scientific, San
Jose, CA, USA) was operated in data-dependent acquisition mode
with the installed Xcalibur software (version 2.0.7, Thermo Fisher
Scientific). Full-scan mass spectra were acquired in the Orbitrap
MS over 400–1500 m/z with a resolution of 30,000. A lock mass
function was used for high mass accuracy (Olsen et al., 2005).
The 10 most intense precursor ions were selected for collision-
induced fragmentation in the linear ion trap at a normalized
collision energy of 35%. Dynamic exclusion was employed within
90 s to prevent the repetitive selection of peptides (Zhang et al.,
2009).

PROTEIN IDENTIFICATION
Proteins were identified by Mascot searches (version 2.4.1, Matrix
Science, London, UK) of a soybean peptide database (55,787
sequences) constructed from the soybean genome database
(Phytozome version 9.1, http://www.phytozome.net/soybean)
(Schmutz et al., 2010). The acquired raw data files were pro-
cessed using Proteome Discover software (version 1.4, Thermo
Fisher Scientific). The parameters used in the Mascot searches
were as follows: carbamidomethylation of cysteine was set as a
fixed modification and oxidation of methionine was set as a vari-
able modification. Trypsin was specified as the proteolytic enzyme
and one missed cleavage was allowed. Peptide mass tolerance was
set at 5 ppm, fragment mass tolerance was set at 0.5 Da, and
peptide charge was set at +2, +3, and +4. An automatic decoy
database search was performed as part of the analysis. Mascot
results were filtered with the Percolator function to improve the
accuracy and sensitivity of peptide identification. False discovery
rates for peptide identification in all searches were less than 1.0%.
The Mascot results were imported for SIEVE analysis (version 2.1,
Thermo Fisher Scientific), which was performed as described in
the following section.

DATA ANALYSIS OF DIFFERENTIAL ABUNDANT PROTEINS ACQUIRED
USING MASS SPECTROMETRY
For differential analysis of the relative abundance of peptides and
proteins between the control and treatment groups, the commer-
cial label-free quantification package SIEVE was used. All SIEVE
data analysis was acquired from 3 biological replicates of MS
results. The chromatographic peaks detected by MS were aligned,
and the peptide peaks were detected as a frame for all parent ions
scanned by MS/MS using a frame time width of 5 min and frame
m/z width of 10 ppm. Chromatographic peak areas within frames
of each sample were compared, and the ratios between two sample
groups for each frame were determined. The frames detected in
the MS/MS scans were matched with the imported Mascot results.
The ratios of peptides between samples were determined from the
variance-weighted average of the ratios in frames that matched
to the peptides with MS/MS spectrum. The ratios of peptides
were further integrated with Ingenuity Pathways Analysis which
is a widely-adopted application for 3 biological replications of
MS into a ratio of protein to determine the ratio of the corre-
sponding protein. In the differential analysis, total ion current
was used for normalization. For the identification of differentially
changed proteins, the minimum requirements for the identifi-
cation of a protein were two matched peptides, and the protein
quantities required a greater than two-fold difference with t-test
significance (P < 0.05) between the flooding-treated and control
samples.

FUNCTIONAL CATEGORIZATION ANALYSIS
Proteins were categorized based on function using MapMan bin
codes (Usadel et al., 2005).

RNA EXTRACTION AND QUANTITATIVE REVERSE
TRANSCRIPTION-POLYMERASE CHAIN REACTION ANALYSIS
A portion (100 mg) of soybean roots, hypocotyls, and cotyle-
dons was ground into powder with a sterilized pestle and mortar
in liquid nitrogen. Total RNA was extracted from the powdered
tissue using an RNeasy Plant Mini kit (Qiagen, Valencia, CA,
USA) and was then reverse-transcribed to cDNA using iScript
Reverse Transcription Supermix (Bio-Rad, Hercules, CA, USA)
according to the manufacturer’s instructions. qRT-PCR was per-
formed using the cDNA as template and SsoAdvanced SYBR
Green Supermix (Bio-Rad) on a MyiQ Single-Color Real-Time
PCR Detection system (Bio-Rad). The qRT-PCR was performed
under the following conditions: 95◦C for 30 s, followed by 45
cycles of 95◦C for 10 s and 60◦C for 30 s. Relative mRNA
levels were calculated through normalization using 18S rRNA
(X02623.1) abundance. Primer sequences were designed using
Primer3 software (http://frodo.wi.mit.edu/primer3/input.htm)
(Rozen and Skaletsky, 2000) and are listed in Supplemental
Table 1.

STATISTICAL ANALYSIS
The statistical significance of the results was evaluated with one-
way ANOVA followed by Duncan’s multiple comparisons test,
unless otherwise stated. All calculations were performed using
SPSS software (version 22.0). A p-value of <0.05 was considered
to be statistically significant.
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RESULTS AND DISCUSSION
EFFECTS OF CALCIUM ON GROWTH OF SOYBEAN UNDER FLOODING
STRESS
To investigate the effects of calcium on morphological changes
induced by flooding in soybean and evaluate the corresponding
degree of root tip damage, 2-day-old soybeans were flooded for
2, 4, and 6 days without or with 1, 5, 10, and 50 mM CaCl2. The
total length of root including hypocotyl under flooding with var-
ious concentrations of CaCl2 was clearly longer than that under
flooding without CaCl2 (Figure 1A). Although no marked differ-
ences in root length were detected between flooded soybean in
the presence or absence of 1 mM CaCl2, the length after treat-
ment with 10 and 50 mM CaCl2 was significantly longer than that
under flooding without CaCl2 (Figure 1B). Consistent with this

finding, the root weight of flooding-treated soybeans was also
higher for plants exposed to CaCl2 during the treatment period
(Figure 1B). The length and weight of root including hypocotyl
were measured after each treatment in biological triplicates to
assess reproducibility (Supplemental Figures 2A–C). The length
and weight of root were gradually increased in 2-, 4-, and 6-day
flooded soybean with 10 and 50 mM CaCl2. In particularly, 2-
day-flooded soybean was most affected by CaCl2 (Figure 1). The
flooding-treated soybeans were also stained with Evans blue dye
to evaluate cell death (Figure 2). The degree of staining in root
tips was dependent on the CaCl2 concentration and treatment
period (Figure 2A). Cell death in the root tip was severely induced
by flooding without CaCl2 compared to that in the presence
of 50 mM CaCl2 (Figure 2B). The Evans blue staining was also

FIGURE 1 | Effect of calcium on growth of soybean under flooding

stress. Two-day-old soybeans were flooded without (dark blue) or with 1
(red), 5 (light green), 10 (purple), and 50 mM CaCl2 (light blue) for 2, 4, and 6
days. (A) Photographs show soybean seedlings after 2, 4, and 6 days of

flooding. Bars indicate 10 mm. (B) Length and weight of roots, including the
hypocotyl, were measured at the indicated time points. Data are means ± SE
from three independent biological replications. Means with the same letter
are not significantly different according to ANOVA (P < 0.05).
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FIGURE 2 | Evaluation of cell death in flooding-stressed soybean root

tips treated with calcium. Two-day-old soybeans were flooded without (dark
blue) or with 1 (red), 5 (light green), 10 (purple), and 50 mM CaCl2 (light blue)
for 2, 4, and 6 days. The roots were stained with 0.25% Evans blue dye,
which was then extracted and measured spectroscopically at 600 nm. (A)

Photographs show soybeans after 2, 4, and 6 days of flooding. Bars indicate
10 mm. (B) Absorbance of Evans blue in root tips at the indicated time points.
Data are means ± SE from three independent biological replications. Means
with the same letter are not significantly different according to ANOVA
(P < 0.05).

performed in biological triplicate experiments to assess repro-
ducibility (Supplemental Figures 3A–C). Even though cell death
in the root tip was significantly suppressed by flooding with CaCl2
in 4 and 6 days, the degree of staining in root tips was most
affected by CaCl2 in 2-day-flooded soybean (Figure 2).

Nanjo et al. (2013) reported that the amount of Evans blue
uptake in the root tip region under 3 days flooding, which is evi-
dence of cell death (Delisle et al., 2001), affected by the volume of
floodwater and suggested that the loss of root tips in flooded soy-
bean seedlings is due to flood-induced cell death. Consistent with
this speculation, Evans blue uptake was markedly induced in soy-
bean seedlings by 4 days flooding (Komatsu et al., 2013c). In the
present study, the application of 50 mM CaCl2 clearly promoted

root elongation and suppressed root tip cell death in soybeans
during 6 days flooding stress, in particularly, in 2 days flood-
ing treatment with CaCl2. Taken together, these findings indicate
that flooding-induced root tip damage might be suppressed by
exogenous calcium treatment. Based on the present results, for
subsequent proteomic and qRT-PCR analyses, 50 mM CaCl2 was
selected for the treatment in soybean under flooding.

PROTEIN PROFILES IN FLOODING-STRESSED SOYBEAN ROOT
TREATED WITH CALCIUM
To investigate the effect of calcium on protein profiles in soy-
bean roots under flooding stress, a gel-free proteomic technique
was used. Because 2-day-old soybean was considered as starting
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point of each treatment, 2-day-old soybean was used for com-
parison. Proteins were extracted from the roots of 4-day-old
soybeans treated with flooded in absence or presence of 50 mM
CaCl2 for 2 days and analyzed by nanoLC-MS/MS. Based on
3 biological replicated SIEVE analysis (Supplemental Figure 4),
a total of 126 differentially changed proteins were identified
in 4-day-old untreated soybeans (Figure 3, Supplemental Table
2), 588 such proteins were identified in 2-day-flooded soy-
beans (Figure 3, Supplemental Table 3), and 329 such proteins
were identified in 2-day-flooded soybeans treated with cal-
cium (Figure 3, Supplemental Table 4) compared to 2-day-old
soybeans.

To determine whether the altered proteins were different in the
absence or presence of exogenous calcium, the root proteins iden-
tified under each condition were compared (Figure 3). A total of
99, 375, and 122 differentially changed proteins were unique to
4-day-old soybeans, 2-day-flooded soybeans, and 2-day-flooded
soybeans treated with calcium, respectively. In addition, 9 pro-
teins were commonly changed among the three conditions;
12 proteins were common between 4-day-old soybeans and

FIGURE 3 | Venn diagram of differentially changed proteins between

control and flooded soybeans treated without or with calcium.

Two-day-old soybeans were flooded in the presence and absence of 50 mM
CaCl2 for 2 days, and proteins extracted from roots were then analyzed by
gel-free proteomics. The Venn diagram shows the number of differentially
changed proteins in roots of 4-day-old soybeans without treatment
[4(0)/2(0)] or with 2-day-flooding with [4(2)F+Ca/2(0)] and without CaCl2
[4(2)F/2(0)]. The overlapping regions denote common proteins among
untreated and 2-day-flooded soybeans in the absence or presence of
calcium. The numbers represent the number of identified proteins. The
identified proteins are listed in Supplementary Tables 2–4.

2-day-flooded soybeans; 192 proteins were common between
2-day-flooded soybeans treated without and with calcium; and
only 6 proteins were common between 4-day-old soybeans
and 2-day-flooded soybeans treated with calcium. Among the
122 proteins that were specifically changed in response to cal-
cium treatment (Table 1), the predominant functional categories
were cell wall (15%), protein degradation/synthesis (13%), DNA
(11%), and stress (10%)-related proteins. Notably, the identi-
fied proteins included xyloglucan endotransglucosylase/hydrolase
(XTH) (11/18), which was categorized within cell-wall proteins,
and several ribosomal proteins (9/16), which were grouped within
the protein degradation/synthesis functional category.

In salt-stressed soybean, exogenous calcium treatment restored
root growth by maintaining pectin levels and increasing the
calcium concentration in the cell wall, suggesting that calcium
plays a role in maintaining cell wall composition to protect
from salt toxicity (An et al., 2014). XTH, which acts as a cell
wall-loosening enzyme (van Sandt et al., 2007), functions in
cell-wall elongation and reconstruction through rearranging the
bonds between xyloglucan chains (Fry et al., 1992; Nishitani
and Tominaga, 1992) and also involves in cell-wall metabolism
during flooding-induced aerenchyma development. In Capsicum
annuum, increased tolerance to drought stress by overexpression
of CaXTH3 resulted from the change of cell-wall extensibility
of guard cells mediated by the cell-wall remodeling activity of
CaXTH3 (Choi et al., 2011), corresponding with increased abun-
dance of XTH in present study. In mungbean, expression of
VrXTH1, which is an auxin-inducible gene isolated from mung-
bean, was closely related to plant growth and modulated by the
cytosolic calcium concentration (Yun et al., 2007). Furthermore,
changes in calcium ion levels influenced the molecular size of
xyloglucans by modifying the expression of VaXTHS4 in azuki
bean (Soga et al., 2007). Taken together, these results suggest
that the regulation of cell wall-related proteins, such as XTH,
by exogenous calcium might promote the elongation of soy-
bean roots under flooding stress. In this study, except for XTH,
other cell wall-related proteins such as glycosyl hydrolase, which
was decreased in flood-stressed soybean, was exhibited a similar
tendency in previous study (Oh et al., 2014a).

A number of ribosomal proteins play roles in cell
metabolism/division, and plant growth and fitness (Whittle
and Krochko, 2009). Ribosomal proteins are generally decreased
in plants in response to abiotic stresses (Rogalski et al., 2008;
Falcone Ferreyra et al., 2010), leading to retarded growth and
productivity (Kawaguchi et al., 2004). Ribosomal L19 protein,
which has 60S ribosomal subunit, is a calcium-calmodulin inter-
acting protein implicated in translational processes (Sonnemann
et al., 1991). Mutation of the RPS6A gene, which encodes a
component of the small ribosomal 40S subunit (Zhao et al.,
2003), led to higher intracellular calcium concentrations in
response to exogenous calcium (Zhao et al., 2013). Flooding
stress also caused a decrease in the abundance of ribosomal
proteins in soybean, indicating that ribosomal proteins resulted
in alterations of protein synthesis (Oh et al., 2014b). In present
study, ribosomal proteins were increased in soybean roots
exposed to exogenous calcium under flooding stress, suggesting
that ribosomal proteins in association with calcium-dependent
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Table 1 | Differentially changed proteins in soybean in response to calcium supplementation under flooding.

Protein ID Description M.P. Ratio P-value Function

DECREASED

1 Glyma09g15620.2 Cellulose synthase family protein 4 0.13 0.0165 Cell wall

2 Glyma15g43040.1 Cellulose synthase family protein 4 0.13 0.0165 Cell wall

3 Glyma02g46450.3 Microtubule associated proteins 651 2 0.17 0.0009 Cell

4 Glyma14g02180.1 Microtubule associated proteins 651 2 0.17 0.0009 Cell

5 Glyma14g02200.2 Microtubule associated proteins 651 2 0.17 0.0009 Cell

6 Glyma19g27036.1 Heat shock protein 81-2 3 0.19 0.0079 Stress

7 Glyma03g25621.1 RNA binding (RRM/RBD/RNP motifs) family protein 2 0.22 0.0223 RNA

8 Glyma07g13211.1 RNA binding (RRM/RBD/RNP motifs) family protein 2 0.22 0.0223 RNA

9 Glyma12g31620.1 DNAJ homolog 2 5 0.25 0.0392 Stress

10 Glyma03g37240.4 RNA binding (RRM/RBD/RNP motifs) family protein 2 0.27 0.0185 RNA

11 Glyma03g37280.1 NAD(P) binding Rossmann fold superfamily protein 2 0.29 0.0163 Cell wall

12 Glyma16g04950.1 Xyloglucan endotransglucosylase/hydrolase 5 10 0.30 0.0000 Cell wall

13 Glyma19g28220.1 Xyloglucan endotransglucosylase/hydrolase 5 9 0.32 0.0000 Cell wall

14 Glyma04g01244.1 Thymidylate synthase 1 2 0.33 0.0086 C1

15 Glyma10g33350.2 ARABIDOPSIS THALIANA PEROXYGENASE 2 2 0.33 0.0302 Development

16 Glyma02g02170.1 NAD(P) binding Rossmann fold superfamily protein 3 0.33 0.0291 Cell wall

17 Glyma19g39870.1 NAD(P) binding Rossmann fold superfamily protein 3 0.33 0.0291 Cell wall

18 Glyma17g03030.1 NAD(P) binding Rossmann fold superfamily protein 2 0.34 0.0297 Cell wall

19 Glyma14g11760.1 Early nodulin like protein 15 2 0.34 0.0012 Misc

20 Glyma17g34040.1 Early nodulin like protein 15 2 0.34 0.0012 Misc

21 Glyma19g36580.1 Pyridoxal-dependent decarboxylase family protein 5 0.34 0.0009 Amino acid metabolism

22 Glyma18g52860.1 O Glycosyl hydrolases family 17 protein 4 0.34 0.0065 Misc

23 Glyma19g39850.1 RNA binding (RRM/RBD/RNP motifs) family protein 3 0.35 0.0047 RNA

24 Glyma03g02240.1 SIN3 associated polypeptide P18 2 0.36 0.0171 RNA

25 Glyma12g03570.1 Subtilisin like serine protease 2 6 0.38 0.0143 Protein

26 Glyma02g06400.1 Succinate dehydrogenase 11 3 0.39 0.0034 TCA/org transformation

27 Glyma15g03761.1 Leucine rich repeat (LRR) family protein 2 0.39 0.0326 Not assigned

28 Glyma02g07610.1 Xyloglucan endotransglucosylase/hydrolase 5 5 0.39 0.0000 Cell wall

29 Glyma06g10180.1 P450 reductase 1 2 0.39 0.0483 Misc

30 Glyma06g01280.2 Thymidylate synthase 2 2 0.39 0.0075 Nucleotide metabolism

31 Glyma18g53470.1 Rad23 UV excision repair protein family 3 0.40 0.0296 DNA

32 Glyma02g14450.1 Chalcone and stilbene synthase family protein 5 0.41 0.0004 Secondary metabolism

33 Glyma11g07250.1 Succinate dehydrogenase 11 6 0.43 0.0004 TCA/org transformation

34 Glyma01g38200.1 Succinate dehydrogenase 11 5 0.43 0.0008 TCA/org transformation

35 Glyma06g04100.2 RNA binding protein 47C 2 0.43 0.0190 RNA

36 Glyma07g12190.1 Hexokinase 1 4 0.44 0.0313 Major CHO metabolism

37 Glyma17g37270.2 Beta galactosidase 5 4 0.46 0.0023 Misc

38 Glyma14g07700.1 Beta galactosidase 5 2 0.47 0.0090 Misc

39 Glyma08g03730.1 Hexokinase 1 8 0.48 0.0181 Major CHO metabolism

40 Glyma11g33880.1 DegP protease 7 5 0.48 0.0027 Protein

41 Glyma18g04400.1 DegP protease 7 5 0.48 0.0027 Protein

42 Glyma01g22880.1 Chalcone and stilbene synthase family protein 6 0.49 0.0011 Secondary metabolism

43 Glyma05g28610.1 Chalcone and stilbene synthase family protein 6 0.49 0.0011 Secondary metabolism

44 Glyma08g11530.1 Chalcone and stilbene synthase family protein 6 0.49 0.0011 Secondary metabolism

45 Glyma08g11620.1 Chalcone and stilbene synthase family protein 6 0.49 0.0011 Secondary metabolism

46 Glyma09g08780.1 Chalcone and stilbene synthase family protein 6 0.49 0.0011 Secondary metabolism

47 Glyma11g01350.1 Chalcone and stilbene synthase family protein 6 0.49 0.0011 Secondary metabolism

48 Glyma08g11610.1 Chalcone and stilbene synthase family protein 5 0.49 0.0016 Secondary metabolism

49 Glyma02g35640.1 CTC interacting domain 11 2 0.49 0.0052 RNA

INCREASED

50 Glyma19g31590.1 Beta-1,3-glucanase 1 4 2.05 0.0403 Misc

51 Glyma09g00711.1 Glycine cleavage T protein family 3 2.06 0.0390 Photosynthesis

(Continued)
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Table 1 | Continued

Protein ID Description M.P. Ratio P-value Function

52 Glyma11g14950.1 Heat shock protein 70 25 2.22 0.0017 Stress

53 Glyma08g36700.1 ARF-GAP domain 8 6 2.26 0.0012 Protein

54 Glyma17g14950.1 Lactate/malate dehydrogenase family protein 4 2.28 0.0009 Fermentation

55 Glyma03g02760.1 N.D.* 6 2.29 0.0000 Not assigned

56 Glyma15g07850.3 Aluminum induced protein with YGL and LRDR
motifs

2 2.30 0.0347 Hormone metabolism

57 Glyma18g52650.2 Heat shock cognate protein 70-1 22 2.31 0.0000 Stress

58 Glyma18g52610.1 Heat shock cognate protein 70-1 25 2.31 0.0046 Stress

59 Glyma13g19331.1 Heat shock cognate protein 70-1 26 2.32 0.0002 Stress

60 Glyma02g41890.3 Type one serine/threonine protein phosphatase 4 3 2.33 0.0039 Protein

61 Glyma14g07080.3 Type one serine/threonine protein phosphatase 4 3 2.33 0.0039 Protein

62 Glyma01g41920.2 Lactate/malate dehydrogenase family protein 3 2.33 0.0019 Fermentation

63 Glyma13g40890.1 Histone H2A 12 2 2.33 0.0002 DNA

64 Glyma13g40900.1 Histone H2A 12 2 2.33 0.0002 DNA

65 Glyma13g40940.1 Histone H2A 12 2 2.33 0.0002 DNA

66 Glyma15g04530.1 Histone H2A 12 2 2.33 0.0002 DNA

67 Glyma15g04540.1 Histone H2A 12 2 2.33 0.0002 DNA

68 Glyma03g34830.1 Enolase 19 2.46 0.0016 Glycolysis

69 Glyma02g04800.1 Calcium dependent phosphotriesterase
superfamily protein

2 2.58 0.0371 Secondary metabolism

70 Glyma16g22650.1 Calcium dependent phosphotriesterase
superfamily protein

2 2.58 0.0371 Secondary metabolism

71 Glyma17g29320.1 Peroxidase family protein 2 2.63 0.0199 Misc

72 Glyma09g06350.1 Peroxidase superfamily protein 5 2.65 0.0034 Misc

73 Glyma19g42760.1 Gamma histone variant H2AX 3 2.72 0.0000 DNA

74 Glyma20g28460.1 Cupin family protein 2 2.72 0.0006 Development

75 Glyma20g28640.1 Cupin family protein 2 2.72 0.0006 Development

76 Glyma04g38590.1 Beta galactosidase 10 6 2.77 0.0011 Misc

77 Glyma06g16420.2 Beta galactosidase 10 5 2.78 0.0020 Misc

78 Glyma02g00850.3 Type one serine/threonine protein phosphatase 4 2 2.79 0.0012 Protein

79 Glyma05g33410.2 Aldolase-type TIM barrel family protein 2 2.84 0.0077 OPP

80 Glyma19g34780.1 RmlC like cupins superfamily protein 3 2.91 0.0287 Developmen

81 Glyma19g32690.1 Ribosomal protein S10p/S20e family protein 4 2.95 0.0335 Protein

82 Glyma03g30440.1 Histone superfamily protein 2 2.99 0.0000 DNA

83 Glyma12g34360.1 Histone H2A 10 2 2.99 0.0000 DNA

84 Glyma12g34370.2 Histone H2A 2 2 2.99 0.0000 DNA

85 Glyma13g36180.1 Histone H2A 10 2 2.99 0.0000 DNA

86 Glyma13g36190.1 Histone H2A 10 2 2.99 0.0000 DNA

87 Glyma19g33360.1 Gamma histone variant H2AX 2 2.99 0.0000 DNA

88 Glyma17g03360.1 N.D.* 7 3.03 0.0000 Not assigned

89 Glyma02g47210.1 HEAT SHOCK PROTEIN 81.4 16 3.11 0.0008 Stress

90 Glyma03g32380.2 Ribosomal protein L14p/L23e family protein 6 3.14 0.0025 Protein

91 Glyma13g18830.1 Ribosomal protein L14p/L23e family protein 6 3.14 0.0025 Protein

92 Glyma14g01530.1 HEAT SHOCK PROTEIN 81.4 17 3.25 0.0010 Stress

93 Glyma14g04840.1 Ribosomal protein S10p/S20e family protein 3 3.34 0.0309 Protein

94 Glyma19g32680.1 Ribosomal protein S10p/S20e family protein 3 3.34 0.0309 Protein

95 Glyma08g44590.1 HEAT SHOCK PROTEIN 81.4 16 3.71 0.0014 Stress

96 Glyma03g28870.1 Beta-1,3-glucanase 1 3 3.87 0.0415 Misc

97 Glyma13g01140.1 Xyloglucan endotransglucosylase/hydrolase family
protein

6 3.94 0.0005 Cell wall

98 Glyma18g08220.1 HEAT SHOCK PROTEIN 81.4 16 4.02 0.0001 Stress

99 Glyma08g11300.2 Xyloglucan endotransglucosylase/hydrolase 16 3 4.05 0.0003 Cell wall

100 Glyma11g36730.2 Xyloglucan endotransglucosylase/hydrolase 16 3 4.05 0.0003 Cell wall

(Continued)
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Table 1 | Continued

Protein ID Description M.P. Ratio P-value Function

101 Glyma18g00630.2 Xyloglucan endotransglucosylase/hydrolase 16 3 4.05 0.0003 Cell wall

102 Glyma15g17620.1 Peroxidase superfamily protein 5 4.14 0.0012 Misc

103 Glyma13g01120.1 Xyloglucan endotransglycosylase 6 3 4.14 0.0027 Cell wall

104 Glyma17g07240.1 Xyloglucan endotransglycosylase 6 3 4.14 0.0027 Cell wall

105 Glyma13g01150.1 Xyloglucan endotransglucosylase/hydrolase family
protein

3 4.18 0.0045 Cell wall

106 Glyma17g07270.1 Xyloglucan endotransglycosylase 6 3 4.18 0.0045 Cell wall

107 Glyma19g31580.1 beta-1,3-glucanase 1 2 4.82 0.0205 Misc

108 Glyma13g34540.1 D mannose binding lectin protein with Apple like
carbohydrate binding domain

3 5.24 0.0291 Misc

109 Glyma03g32030.1 RmlC like cupins superfamily protein 5 5.35 0.0160 Development

110 Glyma07g02720.1 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family
protein

7 6.05 0.0034 Protein

111 Glyma08g23260.3 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family
protein

7 6.06 0.0033 Protein

112 Glyma13g44690.1 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family
protein

7 6.06 0.0033 Protein

113 Glyma15g00610.1 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family
protein

7 6.06 0.0033 Protein

114 Glyma13g32300.1 Quinone reductase family protein 6 6.14 0.0133 Lipid metabolism

115 Glyma15g07040.1 Quinone reductase family protein 6 6.14 0.0133 Lipid metabolism

116 Glyma08g45510.1 Kunitz family trypsin and protease inhibitor protein 3 6.65 0.0161 Stress

117 Glyma04g39930.1 Manganese superoxide dismutase 1 4 7.27 0.0490 Redox

118 Glyma09g30370.1 Glutamine synthase clone R1 8 7.86 0.0038 N-metabolism

119 Glyma03g22260.1 Auxin responsive family protein 2 11.51 0.0081 Hormone metabolism

120 Glyma08g06570.1 Flavodoxin like quinone reductase 1 2 14.54 0.0044 Lipid metabolism

121 Glyma04g37140.1 SNF1 related protein kinase regulatory subunit
gamma 1

2 14.59 0.0493 Cell wall

122 Glyma09g29300.1 Kunitz family trypsin and protease inhibitor protein 7 22.58 0.0124 Stress

Protein ID, according to the Phytozome database; M.P., number of matched peptide; Ratio, relative abundance of protein; Function, functional classification

by MapMan bin code; *N.D., No description in Phytozome database; protein, protein synthesis/targeting/degradation/post-translational modification; DNA, DNA

synthesis; RNA, RNA processing/binding; C1, one carbon; TCA, tricarboxylic acid; OPP, oxidative pentose phosphate; CHO, carbohydrates; misc, miscellaneous.

proteins and/or molecules might enhance protein synthesis in
response to flooding stress.

FUNCTIONAL CATEGORIZATION OF PROTEINS IN CALCIUM-TREATED
SOYBEAN ROOT UNDER FLOODING
To determine the biological processes of proteins that were
altered in flooding-stressed soybean roots by calcium treatment,
the identified proteins were functionally characterized using
MapMan bin codes (Figure 4). Under flooding stress, the number
of proteins related to hormone metabolism, DNA synthesis, cell
wall, and protein degradation/synthesis/posttranslational modifi-
cation was decreased; however, the exposure of plants to calcium
under flooding conditions increased the number of these pro-
teins. Similarly, the number of proteins related to development,
signaling, and lipid metabolism was increased when exogenous
calcium was added to the roots of flooding-stressed plants. In
addition, the number of proteins related to fermentation and
glycolysis was increased under flooding stress; however, calcium
supplementation had little effect on the number of differen-
tially changed proteins (Figure 4). Proteins within the hormone

category that were changed in response to flooding in absence or
presence of calcium included lipoxygenase and auxin-responsive
family protein.

Under flooding stress, most lipoxygenases were decreased in
soybean roots and were not induced by calcium supplementation.
Lipoxygenases, which are a group of non-heme iron-containing
dioxygenases (Brash, 1999), are involved in increasing stress resis-
tance and boosting defense reactions in both Arabidopsis and
soybean (Melan et al., 1994; Park et al., 1994). Komatsu et al.
(2010) reported that two lipoxygenases were decreased in soybean
in response to flooding stress and suggested that these enzymes
affected cell wall metabolism due to suppression of lignifica-
tion. The present findings indicate that lipoxygenase may regulate
hormone pathways for stress tolerance and involve in defense
reaction in soybean roots under flooding stress.

Auxin-responsive family protein was increased under flood-
ing conditions in soybean roots treated with calcium com-
pared to non-treated roots. In Arabidopsis, the gene encoding
auxin-responsive family protein was expressed during the early
stages of lateral root formation (Laskowski et al., 2006), and
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FIGURE 4 | Functional categorization of flooding-responsive proteins

in soybean roots treated with calcium. Two-day-old soybeans were
flooded without or with 50 mM CaCl2 for 2 days. Untreated
soybeans were used as control. Proteins extracted from roots were
analyzed using gel-free proteomics. The following comparisons were
made: 4(0)/2(0), 2-day-old soybeans and 4-day-old soybeans;
4(2)F/2(0), 2-day-old soybeans and 2-day-flooded soybeans without
calcium; and 4(2)F+Ca/2(0), 2-day-old soybeans and 2-day-flooded

soybeans treated with calcium. Identified proteins were categorized
using MapMan bin codes: protein, protein synthesis/targeting/
degradation/post-translational modification; DNA, DNA synthesis; RNA,
RNA processing/binding; C1, one carbon; TCA, tricarboxylic acid;
OPP, oxidative pentose phosphate; CHO, carbohydrates; misc,
miscellaneous. The number of differentially changed proteins is
indicated on the x-axis of the graph. Black and white bars indicate
decreased and increased proteins, respectively.

the corresponding protein interacted with other redox partners
within the plasma membrane to form a redox link between
the cytoplasm and the apoplast (Preger et al., 2009). Auxin-
responsive family protein was also shown to be glycosylated in
Arabidopsis and involved in the formation of a glycosylphos-
phatidylinositol anchor to the external side of the plasma mem-
brane (Borner et al., 2003). As calcium ions have an important
role in polar auxin transport and gravitropic responses (Toyota
et al., 2008), together, these results indicate that calcium sup-
plementation may control hormone metabolic pathways by reg-
ulating activation of these proteins in soybean under flooding
stress.

In the present study, DNA synthesis-related proteins, include
histone, were decreased by flooding stress, but were increased by
the treatment of soybean roots with calcium. Histones, which
are small and basic proteins associated with DNA to form chro-
matin (Thuleau et al., 2012), undergo posttranslational modifica-
tion, such as acetylation/deacetylation. Epigenetic mechanisms,
including histone modifications, play a decisive role in regulating

plant responses to abiotic stresses (Luo et al., 2012). Servet et al.
(2010) reported that histone acetyltransferase AtGCN5/HAG1 in
Arabidopsis was essential to regulate gene expression during devel-
opment processes and in response to environmental stresses. In
Nicotiana tabacum, type-2 histone deacetylases act as negative
regulators of programmed cell death induced by the defense elic-
itor cryptogein (Bourque et al., 2011). The results of an Evans
blue assay indicated that flooding-induced root tip cell death of
soybean was suppressed by exogenous calcium. It has also been
reported that histone modifications were activated by a transient
influx of calcium in response to heat (Mach, 2012). Based on
these results, calcium-induced stabilization of DNA synthesis via
histone modification may be a critical plant defense response to
flooding stress in soybean.

EFFECTS OF CALCIUM ON mRNA EXPRESSION LEVEL OF KEY PROTEINS
IN DIFFERENT ORGANS UNDER FLOODING STRESS
Six differentially changed proteins were common between 4-
day-old soybeans and 2-day-flooded soybeans treated with
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calcium (Figure 3). The abundance of these proteins was
calculated among 4-day-old soybeans, 2-day-flooded soy-
beans, and 2-day-flooded soybeans treated with 50 mM CaCl2
(Supplemental Figure 5). The analysis of protein abundance
indicated that urease (Glyma05g27840.1) and two copper chap-
erones (Glyma10g14110.1 and Glyma02g19380.1) exhibited the
same profiles in 4-day-old soybeans and 2-day-flooded soybeans
treated with 50 mM CaCl2. To determine whether the changes

in protein abundance were regulated at the transcriptional level,
the mRNA expression levels of these proteins were analyzed in
root, hypocotyl, and cotyledon under flooding for 0, 1, and 2
days (Figure 5). Total RNAs extracted from roots, hypocotyls,
and cotyledons of soybeans were analyzed using qRT-PCR. In
roots, the mRNA level of urease was down-regulated by 1 and
2 days flooding; however, the level was not changed by cal-
cium supplementation. In hypocotyls, the mRNA level of urease

FIGURE 5 | Effects of calcium on the mRNA expression levels of urease

and copper chaperone proteins in different organs of soybean under

flooding stress. Two-day-old soybeans were flooded without or with 50 mM
CaCl2 for 1 and 2 days. Untreated soybeans were used as a control. RNAs
extracted from roots, hypocotyls, and cotyledons of the soybeans were

analyzed by qRT-PCR with specific primers for urease and copper chaperone
(Supplemental Table 1). Relative mRNA abundance was normalized against
that of 18S rRNA. Data are shown as means ± SD from three independent
biological replicates. Means with the same letter are not significantly different
according to ANOVA (P < 0.05).
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was down-regulated by 1 day of flooding and significantly up-
regulated by 1 day flooding with calcium; however, there was no
significant between 2 days flooding without and with calcium.
The mRNA expression level of copper chaperone was similar to
their protein level in the root and hypocotyl under 2 days flood-
ing with calcium. In roots and hypocotyls, the level of copper
chaperone was down-regulated by 1 day flooding without and
with calcium; whereas the level was significantly up-regulated by
2 days flooding with calcium. In cotyledons, the mRNA levels
of urease and copper chaperone were significantly up-regulated
by 1 and 2 day flooding when calcium was exogenously added
(Figure 5).

Urease is a nickel-dependent metalloenzyme that catalyzes the
hydrolysis of urea to form ammonia and carbon dioxide (Sirko
and Brodzik, 2000). Plants typically have abundant urease (Yata
et al., 2014), particularly in seedlings, in which it plays a piv-
otal role in nitrogen metabolism (Sirko and Brodzik, 2000). It
has been reported that plant ureases are associated with plant
defense mechanisms against insect predation (Follmer et al.,
2004). In soybean, a urease was identified in developing embryos
and was designated embryo-specific urease, which was later found
to be encoded by the Eu1 gene (Meyer-Bothling and Polacco,
1987; Torisky et al., 1994; Polacco et al., 2011). The suppression
of embryo-specific urease in soybean led to increased suscep-
tibility to fungal infection, demonstrating that urease plays a
role in plant defense (Wiebke-strohm et al., 2012). Medeiros-
Silva et al. (2014) reported that a urease deficiency in soybean
altered the physiology of root nodules and adversely affected
nitrogen fixation. Consistent with our present findings, Jack
bean urease activity was affected by intra- and extracellular cal-
cium concentrations (Staniscuaski et al., 2009). These results,
together with the present findings, suggest that flooding stress
decreases the urease activity in soybean, and that exogenously
applied calcium appears to increase urease activity under flooding
stress.

Copper chaperone has a copper-binding motif and plays a
role in the homeostatic regulation of copper within plant cells
(Mira et al., 2001). In Arabidopsis, copper chaperone was up-
regulated during leaf senescence, suggesting that it facilitates the
transport of certain metal ions in leaves to other growing parts of
the plant (Himelblau et al., 1998; Mira et al., 2001). In tomato,
the copper chaperone gene, which encodes a copper chaper-
one for copper/zinc superoxide dismutase, is involved in defense
mechanisms against oxidative stress (Company and Carmen,
2003). In pea, the copper/zinc superoxide dismutase gene was
down-regulated when calcium deficiency was induced by heavy
metal stress with high-concentration of cadmium (Rodriquez-
Serrano et al., 2009). Copper chaperone plays a role in oxidant-
responsive posttranslational regulation of superoxide dismutase
activity in yeast (Brown et al., 2004). In poplar, copper chaper-
one specifically responds to certain metals and oxidative dam-
age caused by abiotic stresses (Lee et al., 2005). In the present
study, the copper chaperone gene was up-regulated in soybean
roots by exogenous calcium under flooding stress, suggesting that
this chaperone protein is one of the factors regulating flood-
ing stress responses in a calcium-dependent manner in soybean
root.

CONCLUDING REMARKS
In the present study, proteins affected by calcium in flooded
soybean were analyzed to better understand calcium-mediated
flooding stress mechanisms in this agriculturally important
crop. These main findings of this study are as follows: (i) cell
wall, protein degradation/synthesis, hormone metabolism, and
DNA synthesis-related proteins were decreased under flood-
ing stress, but were increased by the addition of calcium;
(ii) development, lipid metabolism, and signaling-related pro-
teins were increased by calcium addition; (iii) fermentation-
and glycolysis-related proteins were increased under flood-
ing stress and were not affected by calcium addition; and
(iv) urease and copper chaperone had similar abundances in
untreated soybeans and flooded soybeans treated with cal-
cium. Taken together, these results suggest that calcium might
affect the cell wall/hormone metabolisms, protein degrada-
tion/synthesis, and DNA synthesis in soybean roots under flood-
ing stress.
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Supplemental Figure 1 | Experimental design for this study. (A) For

physiological analysis, 2-day-old soybeans were flooded without or with 1,

5, 10, and 50 mM CaCl2 for 2, 4, and 6 days. (B) For proteomic analysis,

2-day-old soybeans were flooded without or with 50 mM CaCl2 for 2 days.

Two-day-old and 4-day-old soybeans without flooding were used as

controls. (C) For transcriptional analysis, 2-day-old soybeans were flooded

without or with 50 mM CaCl2 for 1 and 2 days. Two-day-old, 3-day-old, and

4-day-old soybeans without flooding were used as controls. Three

independent experiments were performed as biological replicates.

Supplemental Figure 2 | Effect of calcium on the growth of soybean under

flooding stress in three independent experiments (A–C). Two-day-old

soybeans were flooded without (dark blue) or with 1 (red), 5 (light green),

10 (purple), and 50 mM CaCl2 (light blue) for 2, 4, and 6 days. Photographs

show soybean seedlings after 2, 4, and 6 days of flooding. Bars indicate

10 mm. The length and weight of roots, including the hypocotyl, were

measured at the indicated time points. Data are means ± SE from three

independent biological replications (A–C). Means with the same letter are

not significantly different according to ANOVA (P < 0.05).

Supplemental Figure 3 | Evaluation of cell death in flooding-stressed

soybean roots treated with calcium in three independent experiments

(A–C). Two-day-old soybeans were flooded without (dark blue) or with 1

(red), 5 (light green), 10 (purple), and 50 mM CaCl2 (light blue) for 2, 4, and

6 days. The root tips were stained with 0.25% Evans blue dye, which was

then extracted and measured spectroscopically at 600 nm at the indicated

time points. Photographs show soybean seedlings after 2, 4, and 6 days

of flooding. Bars indicate 10 mm. Data are means ± SE from three

independent biological replications (A–C). Means with the same letter are

not significantly different according to ANOVA (P < 0.05).
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Supplemental Figure 4 | Principle component analysis of the peptide

profile for identified proteins. The data sets of soybean proteins from

2-day-old (blue circle), 4-day-old (red square), 4-day-old with 2-day-flood

(yellow triangle), and 4-day-old with 2-day-flood with calcium (purple

pentagon) were plotted using principle component analysis (PCA). PCA

was fully integrated into SIEVE software. PCA loading plot shows the

spectral regions responsible for separation of groups in the corresponding

score plot.

Supplemental Figure 5 | Abundance of six differentially changed proteins

that were common between untreated and flooding-stressed soybean

exposed to calcium. Two-day-old soybeans were flooded without or with

50 mM CaCl2 for 2 days. Proteins extracted from roots were purified,

digested, and analyzed using nanoLC MS/MS. The protein abundance was

determined by differential analysis using SIEVE software. Six differentially

changed proteins were commonly identified in 4-day-old soybeans and

2-day-flooded soybeans treated with calcium.

REFERENCES
An, P., Li, X., Zheng, Y., Eneji, E., and Inanaga, S. (2014). Calcium effects

on root cell wall composition and ion contents in two soybean culti-
vars under salinity stress. Can. J. Plant Sci. 94, 733–740. doi: 10.4141/
cjps2013-291

Ashraf, M. A. (2012). Waterlogging stress in plants: a review. Afr. J. Agric. Res. 7,
1976–1981. doi: 10.5897/AJARX11.084

Aurisano, N., Bertani, A., and Reggiani, R. (1995). Involvement of calcium and
calmodulin in protein and amino acid metabolism in rice roots under anoxia.
Plant Cell Physiol. 36, 1525–1529.

Bailey-Serres, J., Fukao, T., Gibbs, D. J., Holdsworth, M. J., Lee, S. C., Licausi, F.,
et al. (2012). Making sense of low oxygen sensing. Trends Plant Sci. 17, 129–138.
doi: 10.1016/j.tplants.2011.12.004

Baker, C. J., and Mock, N. M. (1994). An improved method for monitoring cell
death in cell suspension and leaf disc assays using evans blue. Plant Cell Tissue
Organ Cult. 39, 7–12. doi: 10.1007/BF00037585

Borner, G. H., Lilley, K. S., Stevens, T. J., and Dupree, P. (2003). Identification
of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic
and genomic analysis. Plant Physiol. 132, 568–577. doi: 10.1104/pp.103.021170

Bourque, S., Dutartre, A., Hammoudi, V., Blanc, S., Dahan, J., Jeandroz, S.,
et al. (2011). Type-2 histone deacetylases as new regulators of elicitor-
induced cell death in plants. New Phytol. 192, 127–139. doi: 10.1111/j.1469-
8137.2011.03788.x

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding.
Anal. Biochem. 72, 248–254. doi: 10.1016/0003-2697(76)90527-3

Brash, A. R. (1999). Lipoxygenases: occurrence, functions, catalysis, and acquisition
of substrate. J. Biol. Chem. 274, 23679–23682. doi: 10.1074/jbc.274.34.23679

Brown, N. M., Torrese, A. S., Doan, P. E., and O’Halloran, T. V. (2004). Oxygen
and the copper chaperone CCS regulate posttranslation activation of Cu,
Zn superoxide dismutase. Proc. Natl. Acad. Sci. U.S.A. 101, 5518–5523. doi:
10.1073/pnas.0401175101

Choi, J. Y., Seo, Y. S., Kim, S. J., Kim, W. T., and Shin, J. S. (2011).
Constitutive expression of CaXTH3, a hot pepper xyloglucan
endotransglucosylase/hydrolase, enhanced tolerance to salt and drought
stresses without phenotypic defects in tomato plants. Plant Cell Rep. 30,
867–877. doi: 10.1007/s00299-010-0989-3

Company, P., and Carmen, G. B. (2003). Identification of a copper chaperone
from tomato fruits infected with Botrytis cinerea by differential display. Biochem.
Biophys. Res. Commun. 304, 825–830. doi: 10.1016/S0006-291X(03)00680-6

Dat, J. F., Capelli, N., Folzer, H., Bourgeade, P., and Badot, P. M. (2004). Sensing
and signaling during plant flooding. Plant Physiol. Biochem. 42, 273–282. doi:
10.1016/j.plaphy.2004.02.003

Delisle, G., Champoux, M., and Houde, M. (2001). Characterization of oxalate oxi-
dase and cell death in Al-sensitive and tolerant wheat roots. Plant Cell Physiol.
42, 324–333. doi: 10.1093/pcp/pce041

Falcone Ferreyra, M. L., Pezza, A., Biarc, J., Burlingame, A. L., and Casati, P.
(2010). Plant L10 ribosomal proteins have different roles during development

and translation under ultraviolet-B stress. Plant Physiol. 153, 1878–1894. doi:
10.1104/pp.110.157057

Follmer, C., Real-Guerra, R., Wasserman, G. E., Olivera-Severo, D., and Carlini,
C. R. (2004). Jackbean, soybean and Bacillus pasteurii ureases: biological
effects unrelated to ureolytic activity. Eur. J. Biochem. 271, 1357–1363. doi:
10.1111/j.1432-1033.2004.04046.x

Fry, S. C., Smith, R. C., Renwick, K. F., Martin, D. J., Hodge, S. K., and Matthews,
K. J. (1992). Xyloglucan endotransglycosylase, a new wall-loosening enzyme
activity from plants. Biochem. J. 282, 821–828.

Gao, H., Chen, C., Han, L., and Lin, H. (2004). Calcium influence on chilling
resistance of grafting eggplant seedlings. J. Plant Nutr. 27, 1327–1339. doi:
10.1081/PLN-200025833

Gao, H., Jia, Y., Guo, S., Lv, G., Wang, T., and Juan, L. (2011). Exogenous calcium
affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots
and enhances short-term hypoxia tolerance. J. Plant Physiol. 168, 1217–1225.
doi: 10.1016/j.jplph.2011.01.022

Gibbs, J., and Greenway, H. (2003). Review: mechanisms of anoxia tolerance in
plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30, 1–47.
doi: 10.1071/PP98095

Githiri, S. M., Watanabe, S., Harada, K., and Takahashi, R. (2006). QTL analysis of
flooding tolerance in soybean at an early vegetative growth stage. Plant Breed.
125, 613–618. doi: 10.1111/j.1439-0523.2006.01291.x

Hartman, G. L., West, E. D., and Herman, T. K. (2011). Crops that feed the world 2.
Soybean-worldwide production, use, and constraints caused by pathogens and
pests. Food Sec. 3, 5–17. doi: 10.1007/s12571-010-0108-x

He, L., Lu, X., Tian, J., Yang, Y., Li, B., Li, J., et al. (2012). Proteomic analysis of
the effects of exogenous calcium on hypoxic-responsive proteins in cucumber
roots. Proteome Sci. 10:42. doi: 10.1186/1477-5956-10-42

Henriksson, E., and Nordin Henriksson, K. (2005). Salt-stress signalling
and the role of calcium in the regulation of the Arabidopsis ATHB7
gene. Plant Cell Environ. 28, 202–210. doi: 10.1111/j.1365-3040.2004.
01263.x

Hepler, P. K. (2005). Calcium: a central regulator of plant growth and development.
Plant Cell 17, 2142–2155. doi: 10.1105/tpc.105.032508

Himelblau, E., Mira, H., Lin, S. J., Culotta, V. C., Penarrubia, L., and Amasino,
R. M. (1998). Identification of a functional homolog of the yeast copper
homeostasis gene ATX1 from Arabidopsis. Plant Physiol. 117, 1227–1234. doi:
10.1104/pp.117.4.1227

Kawaguchi, R., Girke, T., Bray, E. A., and Bailey-Serres, J. (2004). Differential
mRNA translation contributes to gene regulation under non-stress and dehy-
dration stress conditions in Arabidopsis thaliana. Plant J. 38, 823–839. doi:
10.1111/j.1365-313X.2004.02090.x

Komatsu, S., Han, C., Nanjo, Y., Altaf-Un-Nahar, M., Wang, K., He, D., et al.
(2013b). Label-free quantitative proteomic analysis of abscisic acid effect in
early-stage soybean under flooding. J. Proteome Res. 12, 4769–4784. doi:
10.1021/pr4001898

Komatsu, S., Hiraga, S., and Yanagawa, Y. (2012a). Proteomics techniques for
the development of flood tolerant crops. J. Proteome Res. 11, 68–78. doi:
10.1021/pr2008863

Komatsu, S., Kobayashi, Y., Nishizawa, K., Nanjo, Y., and Furukawa, K. (2010).
Comparative proteomics analysis of differentially expressed proteins in soybean
cell wall during flooding stress. Amino Acids 9, 1435–1449. doi: 10.1007/s00726-
010-0608-1

Komatsu, S., Kuji, R., Nanjo, Y., Hiraga, S., and Furukawa, K. (2012b).
Comprehensive analysis of endoplasmic reticulum-enriched fraction in root
tips of soybean under flooding stress using proteomics techniques. J. Proteomics
77, 531–560. doi: 10.1016/j.jprot.2012.09.032

Komatsu, S., Makino, T., and Yasue, H. (2013a). Proteomic and biochemical anal-
yses of the cotyledon and root of flooding-stressed soybean plants. PLoS ONE
8:e65301. doi: 10.1371/journal.pone.0065301

Komatsu, S., Nanjo, Y., and Nishimura, M. (2013c). Proteomic analysis of the flood-
ing tolerance mechanism in mutant soybean. J. Proteomics 79, 231–250. doi:
10.1016/j.jprot.2012.12.023

Komatsu, S., Thibaut, D., Hiraga, S., Kato, M., Chiba, M., Hashiguchi, A., et al.
(2011). Characterization of a novel flooding stress-responsive alcohol dehy-
drogenase expressed in soybean roots. Plant Mol. Biol. 77, 309–322. doi:
10.1007/s11103-011-9812-y

Komatsu, S., Yamamoto, R., Nanjo, Y., Mikami, Y., Yunokawa, H., and Sakata, K.
(2009). A comprehensive analysis of the soybean genes and proteins expressed

www.frontiersin.org October 2014 | Volume 5 | Article 559 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Proteomics/archive


Oh et al. Soybean proteomics affected by calcium

under flooding stress using transcriptome and proteome techniques. J. Proteome
Res. 8, 4766–4778. doi: 10.1021/pr900460x

Laskowski, M., Biller, S., Stanley, K., Kajstura, T., and Prusty, R. (2006). Expression
profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of
lateral root emergence. Plant Cell Physiol. 47, 788–792. doi: 10.1093/pcp/
pcj043

Lee, H., Lee, J. S., Bae, E. K., Choi, Y. I., and Noh, E. W. (2005). Differential expres-
sion of a poplar copper chaperone gene in response to various abiotic stresses.
Tree Physiol. 25, 395–401. doi: 10.1093/treephys/25.4.395

Lin, K. H., Chiou, Y. K., Hwang, S. Y., Chen, L. F. O., and Lo, H. F. (2008). Calcium
chloride enhances the antioxidative system of sweet potato (Ipomoea batatas)
under flooding stress. Ann. Appl. Biol. 152, 157–168. doi: 10.1111/j.1744-
7348.2007.00211.x

Luo, M., Liu, X., Singh, P., Cui, Y., Zimmerli, L., and Wu, K. (2012). Chromatin
modifications and remodeling in plant abiotic stress responses. Biochim.
Biophys. Acta 1819, 129–136. doi: 10.1016/j.bbagrm.2011.06.008

Mach, J. (2012). Calcium channels and acquired thermotolerance: here comes the
sun and it’s all right. Plant Cell 24, 3167. doi: 10.1105/tpc.112.240810

Medeiros-Silva, M., Franck, W. L., Borba, M. P., Pizzato, S. B., Strodtman, K. N.,
Emerich, D. W., et al. (2014). Soybean ureases, but not that of Bradyrhizobium
japonicum, are involved in the process of soybean root nodulation. J. Agric. Food
Chem. 62, 3517–3524. doi: 10.1021/jf5000612

Melan, M. A., Enriquez, A. L. D., and Peterman, T. K. (1994). The LOX1 gene of
Arabidopsis is temporally and spatially regulated in germinating seedlings. Plant
Physiol. 105, 385–393.

Menegazzi, P., Guzzo, F., Baldan, B., Mariani, P., and Treves, S. (1993). Purification
of calreticulin-like protein(s) from spinach leaves. Biochem. Biophys. Res.
Commun. 190, 1130–1135. doi: 10.1006/bbrc.1993.1167

Meyer-Bothling, L. C., and Polacco, J. C. (1987). Mutational analysis of the
embryo-specific urease locus of soybean. Mol. Gen. Genet. 209, 439–444. doi:
10.1007/BF00331147

Mira, H., Martinez-Garcia, F., and Penarrubia, L. (2001). Evidence for the plant-
specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant
J. 25, 521–528. doi: 10.1046/j.1365-313x.2001.00985.x

Nanjo, Y., Nakamura, T., and Komatsu, S. (2013). Identification of indicator pro-
teins associated with flooding injury in soybean seedlings using label-free quan-
titative proteomics. J. Proteome Res. 12, 4758–4798. doi: 10.1021/pr4002349

Nanjo, Y., Skultety, L., Uvackova, L., Klubicova, K., Hajduch, M., and Komatsu,
S. (2012). Mass spectrometry-based analysis of proteomic changes in the
root tips of flooded soybean seedlings. J. Proteome Res. 11, 372–385. doi:
10.1021/pr200701y

Nishitani, K., and Tominaga, R. (1992). Endo-xyloglucan transferase, a novel
class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan
molecule to another xyloglucan molecule. J. Biol. Chem. 267, 21058–21064.

Oh, M. W., Nanjo, Y., and Komatsu, S. (2014a). Analysis of soybean root proteins
affected by gibberellic acid treatment under flooding stress. Protein Pept. Lett. 9,
911–947 doi: 10.2174/0929866521666140403122602

Oh, M. W., Nanjo, Y., and Komatsu, S. (2014b). Identification of nuclear proteins
in soybean under flooding stress using proteomic technique. Protein Pept. Lett.
21, 458–467. doi: 10.2174/09298665113206660120

Olsen, J. V., de Godoy, L. M. F., Li, G., Macek, B., Mortensen, P., Pesch, R., et al.
(2005). Parts per million mass accuracy on an orbitrap mass spectrometer
via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021. doi:
10.1074/mcp.T500030-MCP200

Park, T. K., Holland, M. A., Laskey, J. G., and Polacco, J. C. (1994). Germination-
associated lipoxygenase transcripts persist in maturing soybean plants and
are induced by jasmonate. Plant Sci. 96, 109–117. doi: 10.1016/0168-
9452(94)90227-5

Polacco, J. C., Hyten, D. L., Medeiros-Silva, M., Sleper, D. A., and Bilyeu, K. D.
(2011). Mutational analysis of the major soybean UreF paralogue involved in
urease activation. J. Exp. Bot. 62, 3599–3608. doi: 10.1093/jxb/err054

Preger, V., Tango, N., Marchand, C., Lemaire, S. D., Carbonera, D., di Valentin, M.,
et al. (2009). Auxin-responsive genes AIR12 code for a new family of plasma
membrane b-type cytochromes specific to flowering plants. Plant Physiol. 150,
606–620. doi: 10.1104/pp.109.139170

Rodriquez-Serrano, M., Romero-Puertas, M. C., Pazmino, D. M., Testillano, P. S.,
Risuerio, M. C., Del Rio, L. A., et al. (2009). Cellular response of pea plants to
cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and
calcium. Plant Physiol. 150, 229–243. doi: 10.1104/pp.108.131524

Rogalski, M., Schottler, M. A., Thiele, W., Schulze, W. X., and Bock, R.
(2008). Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco,
is required under cold stress conditions. Plant Cell 20, 2221–2237. doi:
10.1105/tpc.108.060392

Rozen, S., and Skaletsky, H. J. (2000). “Primer3 on the WWW for general users
and for biologist programmers,” in Bioinformatics Methods and Protocols, eds S.
Krawetz and S. Misener (New York, NY: Humana Press), 365–386.

Sauter, M. (2013). Root responses to flooding. Curr. Opin. Plant Biol. 16, 282–286.
doi: 10.1016/j.pbi.2013.03.013

Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., et al. (2010).
Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183. doi:
10.1038/nature08670

Servet, C., Conde de Silva, N., and Zhou, D. X. (2010). Histone acetyltrans-
ferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible
gene expression in Arabidopsis. Mol. Plant 3, 670–677. doi: 10.1093/mp/
ssq018

Setter, T. L., and Waters, I. (2003). Review of prospects for germplasm improvement
for waterlogging tolerance in wheat, barley and oats. Plant Soil 253, 1–34. doi:
10.1023/A:1024573305997

Sirko, A., and Brodzik, R. (2000). Plant ureases: roles and regulation. Acta Biochim.
Pol. 47, 1189–1195.

Soga, K., Wakabayashi, K., Kamisaka, S., and Hoson, T. (2007). Effects of hyper-
gravity on expression of XTH genes in azuki bean epicotyls. Physiol. Plant. 131,
332–340. doi: 10.1111/j.1399-3054.2007.00949.x

Sonnemann, J., Bauerle, A., Winckler, T., and Mutzel, R. (1991). A ribo-
somal calmodulin-binding protein from Dictyostelium. J. Biol. Chem. 266,
23091–23096.

Staniscuaski, F., Brugge, V. T., Carlini, C. R., and Orchard, I. (2009). In vitro
effect of Canavalia ensiformis urease and the derived peptide jaburetox-2Ec
on Rhodnius prolixus Malpighian tubules. J. Insect Physiol. 55, 255–263. doi:
10.1016/j.jinsphys.2008.12.002

Sugimoto, T., Aino, M., Sugimoto, M., and Watanabe, K. (2005). Reduction
of Phytophthora stem rot disease on soybeans by the application of
CaCl2 and Ca(NO3)2. J. Phytophathol. 153, 536–543. doi: 10.1111/j.1439-
0434.2005.01016.x

Sullivan, M., van Toai, T. T., Fausey, N., Beuerlein, J., Parkinson, R., and Soboyejo,
A. (2001). Evaluating on-farm flooding impacts on soybean. Crop Sci. 41,
93–100. doi: 10.2135/cropsci2001.41193x

Thuleau, P., Briere, C., and Mazar, C. (2012). Recent advances in plant cell nuclear
signaling. Mol. Plant 5, 968–970. doi: 10.1093/mp/sss083

Torisky, R. S., Griffin, J. D., Yenofsky, R. L., and Polacco, J. C. (1994). A single gene
(Eu4) encodes the tissue-ubiquitous urease of soybean. Mol. Gen. Genet. 242,
404–414. doi: 10.1007/BF00281790

Toyota, M., Furuichi, T., Tatsumi, H., and Sokabe, M. (2008). Critical consider-
ation on the relationshop between auxin transport and calcium transients in
gravity perception of Arabidopsis seedlings. Plant Signal. Behav. 3, 521–524. doi:
10.4161/psb.3.8.6339

Usadel, B., Nagel, A., Thimm, O., Redestig, H., Blaesing, O. E., Palacios-Rojas,
N., et al. (2005). Extension of the visualization tool MapMan to allow sta-
tistical analysis of arrays; display of corresponding genes; and comparison
with known responses. Plant Physiol. 138, 1195–1204. doi: 10.1104/pp.105.
060459

van Sandt, V. S. T., Suslov, D., Verbelen, J. P., and Vissenberg, K. (2007). Xyloglucan
endotransglucosylase activity loosens a plant cell wall. Ann. Bot. 100, 1467–1473.
doi: 10.1093/aob/mcm248

Whittle, C. A., and Krochko, J. E. (2009). Transcript profiling provides evi-
dence of functional divergence and expression networks among ribosomal
protein gene paralogs in Brassica napus. Plant Cell 21, 2203–2219. doi:
10.1105/tpc.109.068411

Wiebke-strohm, B., Pasquali, G., Margis-Pinheiro, M., Bencke, M., Bucker-Neto, L.,
Becker-Ritt, A. B., et al. (2012). Ubiquitous urease affects soybean susceptibility
to fungi. Plant Mol. Biol. 79, 75–87. doi: 10.1007/s11103-012-9894-1

Yata, V. K., Thapa, A., and Mattaparthi, V. S. (2014). Structural insight into
the binding interactions of modeled structure of Arabidopsis thaliana ure-
ase with urea: an in silico study. J. Biomol. Struct. Dyn. 15, 1–7. doi:
10.1080/07391102.2014.915765

Yun, H. S., Kwon, C., Kim, T. W., Joo, S. H., Cho, M. H., Kang, B. G., et al. (2007).
Regulation of VrXTH1 expression in mungbean. J. Plant Biol. 50, 65–69. doi:
10.1007/BF03030602

Frontiers in Plant Science | Plant Proteomics October 2014 | Volume 5 | Article 559 | 14

http://www.frontiersin.org/Plant_Proteomics
http://www.frontiersin.org/Plant_Proteomics
http://www.frontiersin.org/Plant_Proteomics/archive


Oh et al. Soybean proteomics affected by calcium

Zhang, Y., Wen, Z., Washburn, M. P., and Florens, L. (2009). Effect of dynamic
exclusion duration on spectral count based quantitative proteomics. Anal.
Chem. 81, 6317–6326. doi: 10.1021/ac9004887

Zhao, Y., Du, J., Zhao, G., and Jiang, L. (2013). Activation of calcineurin is
mainly responsible for the calcium sensitivity of gene deletion mutations in
the genome of budding yeast. Genomics 101, 49–56. doi: 10.1016/j.ygeno.2012.
09.005

Zhao, Y., Sohn, J. H., and Warner, J. R. (2003). Autoregulation in the biosynthe-
sis of ribosomes. Mol. Cell. Biol. 23, 699–707. doi: 10.1128/MCB.23.2.699-
707.2003

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 August 2014; accepted: 29 September 2014; published online: 20 October
2014.
Citation: Oh MW, Nanjo Y and Komatsu S (2014) Gel-free proteomic analysis of soy-
bean root proteins affected by calcium under flooding stress. Front. Plant Sci. 5:559.
doi: 10.3389/fpls.2014.00559
This article was submitted to Plant Proteomics, a section of the journal Frontiers in
Plant Science.
Copyright © 2014 Oh, Nanjo and Komatsu. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org October 2014 | Volume 5 | Article 559 | 15

http://dx.doi.org/10.3389/fpls.2014.00559
http://dx.doi.org/10.3389/fpls.2014.00559
http://dx.doi.org/10.3389/fpls.2014.00559
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Proteomics/archive

	Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress
	Introduction
	Materials and Methods
	Plant Material and Treatment
	Evans Blue Staining for Assay of Cell Death
	Protein Extraction
	Protein Purification and Digestion for Mass Spectrometry Analysis
	Nanoliquid Chromatography-Mass Spectrometry Analysis
	Protein Identification
	Data Analysis of Differential Abundant Proteins Acquired using Mass Spectrometry
	Functional Categorization Analysis
	RNA Extraction and Quantitative Reverse Transcription-Polymerase Chain Reaction Analysis
	Statistical Analysis

	Results and Discussion
	Effects of Calcium on Growth of Soybean under Flooding Stress
	Protein Profiles in Flooding-Stressed Soybean Root Treated with Calcium
	Functional Categorization of Proteins in Calcium-Treated Soybean Root under Flooding
	Effects of Calcium on mRNA Expression Level of Key Proteins in Different Organs under Flooding Stress

	Concluding Remarks
	Acknowledgments
	Supplementary Material
	References


