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Stable transformation withT-DNA needs the coordinated activities of many proteins derived
from both host plant cells and Agrobacterium. In dicot plants, including Arabidopsis, it has
been suggested that non-homologous end-joining (NHEJ)—one of the main DNA double-
strand break repair pathways—is involved in the T-DNA integration step that is crucial to
stable transformation. However, how this pathway is involved remains unclear as results
with NHEJ mutants in Arabidopsis have given inconsistent results. Recently, a system
for visualization of stable expression of genes located on T-DNA has been established
in rice callus. Stable expression was shown to be reduced significantly in NHEJ knock-
down rice calli, suggesting strongly that NHEJ is involved in Agrobacterium-mediated stable
transformation in rice. Since rice transformation is now efficient and reproducible, rice is a
good model plant in which to elucidate the molecular mechanisms of T-DNA integration.
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INTRODUCTION
Agrobacterium tumefaciens enables genetic transformation of
many plant species via the movement of transferred-DNA (T-
DNA) of Ti plasmids into the plant nucleus. Despite its use
in both basic research and molecular breeding in several crops,
many species and varieties are still recalcitrant to Agrobacterium-
mediated transformation. To overcome this limitation requires not
only optimization of cell and tissue culture conditions but also elu-
cidation of the molecular mechanisms of all the events that occur
during Agrobacterium-mediated transformation.

In the conventional Agrobacterium-mediated transformation
system in rice, callus derived from the scutellum of mature seeds or
immature embryos is generally used for Agrobacterium inoculation
(Nishimura et al., 2006; Hiei and Komari, 2008). Since these tissues
have a stereo architecture consisting of many cells, Agrobacterium
can only infect cells on the surface, and, unlike protoplasts, it is
quite difficult to isolate single cells from these tissues without any
selection pressure. Indeed, there are far fewer transformed than
non-transformed cells when Agrobacterium-inoculated primary
calli derived from mature seeds are cultured without selection
pressure in a conventional transformation system (Saika and Toki,
2009; Saika et al., 2011b). Therefore, transformed cells in which
antibiotic- and herbicide-resistance genes located on T-DNA
are present, but not expressed to a sufficient level, cannot be
distinguished from non-transformed cells.

Agrobacterium-mediated transformation has many steps
(Gelvin, 2010; Pitzschke and Hirt, 2010; Magori and Citovsky,
2011; Shiboleth and Tzfira, 2012). The last step, i.e., stable
transgene expression that results from T-DNA integration into
the host genome (and the avoidance of the gene silencing sys-
tem) is crucial to the clonal propagation of transformed cells
of rice as referred to above. Meanwhile, transient expression of
transgenes is often observed at an earlier stage when transgenes

are expressed stably and constantly from T-DNA that has not
integrated into the rice genome. After import into the nucleus
of the T-complex, which consists of single stranded T-DNA
(ssT-DNA) and proteins such as virD2 and virE2, ssT-DNA is
replicated to double-strand T-DNA (dsT-DNA). Hypothetical
models of dsT-DNA formation have been proposed as shown
in Figure 1 (Liang and Tzfira, 2013). Subsequently, transgenes
located on the dsT-DNA are expressed. However, this expres-
sion is not continuous because naked T-DNA that has not
integrated into the host genome is susceptible to degradation
(Gelvin, 2010). The transient expression of a cytokinin biosyn-
thesis gene, which leaves no selection marker or vector backbone
in the host genome, has been exploited in a transformation sys-
tem for Solanaceous plants (Richael et al., 2008). However, it is
thought that transient transgene expression is not crucial to the
production of clonally propagated transformed cells in the case of
rice.

MOLECULAR MECHANISM OF STABLE TRANSFORMATION
VIA Agrobacterium IN Arabidopsis
The molecular mechanisms of T-DNA integration into the
plant genome in Agrobacterium-mediated transformation remain
unclear. The sequences of T-DNA integration sites were deter-
mined in Arabidopsis and tobacco plants over 20 years ago
(Gheysen et al., 1991; Mayerhofer et al., 1991). Based on these
pioneer reports, two major models—the strand-invasion model
and the double strand break (DSB) repair model—were pro-
posed (Gelvin, 2010; Pitzschke and Hirt, 2010; Magori and
Citovsky, 2011; Shiboleth and Tzfira, 2012). In the strand-
invasion model, T-DNA integration is thought to be caused
by microhomology-mediated repair between ssT-DNA and
the plant genome. On the other hand, in the DSB repair
model, dsT-DNA is thought to integrate via non-homologous
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FIGURE 1 | A model ofT-DNA integration into the host genome via the

non-homologous end-joining (NHEJ) pathway. A T-complex composed
of ssT-DNA and virulence proteins VirD2 and VirE2 is transported to the host
cell nucleus (A). In the nucleus, VirE2 proteins, which bind the ssT-DNA, are
removed by proteasomal degradation. Short DNA or RNA primers anneal
randomly to the ssT-DNA (B) and then serve as primers for polymerization
of the nascent T-DNA strand (C). The 3′ end of the T-DNA is thought to be
degraded by nucleases (D). dsT-DNA molecules integrate into plant
genomic double strand breaks (DSBs) via the NHEJ pathway. The Ku70/80
heterodimer binds and protects the DSB ends (E). Lig4 is a ligase that joins
the DSB ends. Xrcc4 interacts with Lig4 and enhances its activity (F).

end-joining (NHEJ)—one of the main DSB repair pathways—
into the DSB sites that occur randomly in the plant genome
(Figure 1).

Many proteins involved in the NHEJ pathway, such as Ku70,
Ku80, Ligase 4 (Lig4), and Xrcc4, have been characterized in model
plants such as Arabidopsis and rice (West et al., 2000; Riha et al.,
2002; Kimura and Sakaguchi, 2006; Hong et al., 2010; Nishizawa-
Yokoi et al., 2012). To summarize previous reports in Arabidopsis,
on the whole, the frequency of stable transformation tends to
decrease in NHEJ mutants except for xrcc4, although this point
remains controversial. It was reported initially that the frequency
of stable transformation increased twofold in in planta floral dip
transformation experiments in Arabidopsis ku80 mutants (Gallego
et al., 2003), while another report demonstrated a two to threefold
decrease (Friesner and Britt, 2003). However, a root tumorigen-
esis assay in Arabidopsis ku80 mutants confirmed that the stable
transformation frequency was decreased severely, although the
frequency of transient transformation remained comparable to
controls (Li et al., 2005b). In addition, overexpression of Ku80
enhanced stable but not transient transformation frequency (Li

et al., 2005b). Moreover, recent reports have shown that stable
transformation frequency was decreased two to fourfold in Ara-
bidopsis ku80 mutants in both root tumorigenesis assay and in in
planta floral dip assay (Jia et al., 2012; Mestiri et al., 2014), and
stable transformation frequency was also decreased fourfold in
Arabidopsis ku70 mutants in the in planta floral dip assay (Jia
et al., 2012). Thus, Arabidopsis Ku70/80 plays a positive role in
stable transformation. It was proposed that Ku80 proteins inter-
act with dsT-DNA molecules and direct them to DSB sites (Li
et al., 2005b). On the other hand, there are contrary reports in
Arabidopsis lig4 mutants: some authors found that stable trans-
formation frequency was decreased to 40–70% in in planta floral
dip assay (Friesner and Britt, 2003), but others found comparable
rates to wild-type in both root tumorigenesis assay and in planta
floral dip assay (van Attikum et al., 2003). These inconsistencies
are probably due to differences in cell type (somatic cells vs germ
cells) and/or experimental procedures (Gelvin, 2010; Nishizawa-
Yokoi et al., 2012; Lacroix and Citovsky, 2013). Interestingly, the
possibility that Xrcc4 plays a negative role in stable transforma-
tion via interaction with virE2 has been raised (Vaghchhipawala
et al., 2012). In this latter theory, active Xrcc4 proteins are inhib-
ited by virE2 proteins and T-DNA is integrated into DSB sites
that are either not repaired or that occur de novo by suppres-
sion of the NHEJ pathway at a higher frequency. Agrobacterium
might bring stable transformation to a successful conclusion by
the good use of host proteins involved in the NHEJ pathway,
among others Ku80 and Xrcc4. Just recently, Mestiri et al. (2014)
reported that DSB repair pathways including NHEJ are redun-
dantly involved in stable transformation. Stable transformation
frequencies were decreased in the single mutants, ku80, xrcc1,
xrcc2, and xpf (Mestiri et al., 2014), which are deficient in NHEJ,
Ku-independent NHEJ (known as alternative NHEJ to distinguish
it from classical Ku-dependent NHEJ), microhomology-mediated
end joining/single strand annealing and homologous recom-
bination, respectively. Interestingly, stable transformation was
markedly but not completely suppressed in a quadruple mutant
(Mestiri et al., 2014), possibly because the quadruple mutant
did not lose DSB repair activity completely (Charbonnel et al.,
2011).

MOLECULAR MECHANISM OF STABLE TRANSFORMATION
VIA Agrobacterium IN RICE
Unlike Arabidopsis, rice is not a natural host plant of Agrobac-
terium; however, the combination of a sophisticated tissue culture
system and activation of Agrobacterium using the phenolic com-
pound acetosyringon, allows transgenic rice plants to be produced
via this method (Hiei et al., 1994). Human cells and yeast—also not
natural hosts of Agrobacterium—are also susceptible to Agrobac-
terium-mediated transformation (Bundock et al., 1995; Kunik
et al., 2001). Moreover, the NHEJ pathway is involved in T-DNA
integration in yeast (van Attikum et al., 2001; van Attikum and
Hooykaas, 2003). These findings suggest that Agrobacterium uses
a fundamental DNA repair system that is common to both host
and non-host organisms, including rice, in the step leading to sta-
ble transformation. Since no conventional root transformation
system or in planta floral dip transformation system has been
established in rice, we are currently restricted to rice callus for
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analyzing stable transformation frequencies. Tumorigenesis assays
are not applicable to rice callus because this tissue has already ded-
ifferentiated. In Arabidopsis and Nicotiana, stable transformation
frequencies are estimated by visualization of transformed cells
(Mysore et al., 1998; Anand et al., 2007). In rice, transient and
stable transgene expression can also be observed using green flu-
orescent protein—a non-destructive and visible selection marker
(Toki et al., 2006; Saika et al., 2012). Visualization of transformed
cells can quantify stable transformation events rapidly and eas-
ily compared to clonal propagation of transformed cells using
antibiotics. We have established a sequential monitoring sys-
tem for stable transformation events in rice callus that uses the
enhancer trap of the click beetle luciferase gene, which is 30 times
more sensitive than firefly luciferase (Saika et al., 2012). Using this
system, we showed that the stable transformation frequency is
decreased in knock-down lines of OsKu70, OsKu80, and OsLig4
genes and the knock-out line of the OsKu70 gene (Nishizawa-
Yokoi et al., 2012; Saika et al., 2012), suggesting that the NHEJ
pathway is involved in the stable transformation process also in
rice.

PROSPECTS
According to the DSB repair model, DSBs could occur in cells suc-
cessfully transformed with T-DNA. In Arabidopsis, DSBs induce
cell death and endocycle, which halts cell division (Adachi et al.,
2011). Cells in which these events occur cannot propagate clon-
ally if stable transformation is successful. Thus, transformation
frequency in Arabidopsis might be underestimated in mutants in
which DSBs occurs at higher frequency, such as NHEJ deficient
mutants. However, in rice callus, endocycle does not occur even
under genotoxic conditions inducing DSBs (Endo et al., 2012).
Thus, transformation frequency may be estimated more accurately
in rice callus than in Arabidopsis.

Transformation frequency in Arabidopsis and rice depends on
the variety (Nam et al., 1997; Saika and Toki, 2010). Furthermore,
optimal conditions for cell and tissue culture differ among rice
varieties (Hiei and Komari, 2008). For example, Koshihikari—
an elite variety from Japan—shows lower regeneration frequency
due to lower activity of nitrite reductase (Nishimura et al., 2005;
Ozawa and Kawahigashi, 2006). This makes it difficult to compare
transformation frequency precisely among rice varieties since dif-
ferent callus culture conditions can affect Agrobacterium activity
and growth. Thus, in order to compare transformation frequency
precisely, experiments must be performed under reliable, repro-
ducible and identical conditions using mutants with the same
genetic background. Recent technological advances have made
it much easier to produce plants with knockouts of targeted
genes: successful gene knockouts using artificial nucleases such
as transcription activator-like effector nucleases (TALENs) and
CRISPR/Cas have already been reported in rice (Li et al., 2012;
Feng et al., 2013; Jiang et al., 2013; Miao et al., 2013; Shan et al.,
2013; Xu et al., 2014). A series of mutants in which genes involved
in the NHEJ pathway are disrupted can now be produced easily in
the same variety. Moreover, targeted mutagenesis using artificial
nucleases enables “null” and “truncated” mutants to be pro-
duced as necessary, unlike conventional mutagenesis approaches
and T-DNA tagging lines. These new technologies could help

resolve some of the conflicting results in this field. For exam-
ple, the involvement in stable transformation of the Arabidopsis
lig4 mutant described above remains controversial, and conflict-
ing results have also been reported in mutants in pathways other
than NHEJ. For example, the plant protein VirE2 binding pro-
tein 1 (VIP1) has long been considered important in transient
and/or stable transformation (Tzfira et al., 2001, 2002; Li et al.,
2005a), but results that dispute this view have been reported
recently (Shi et al., 2014). A study using knockout mutants of Lig4
and Vip1 in rice produced by artificial nucleases could lead to an
answer.

Gene targeting (GT) is a transformation technology that can
modify a targeted gene in a predicted manner. Successful exam-
ples of gene modification via GT have been reported in several
higher plants including rice and Arabidopsis. However, rice is
currently the only flowering plant in which target modification
via GT can be performed routinely (Endo et al., 2007; Saika
et al., 2011a; Nishizawa-Yokoi et al., 2014; Osakabe et al., 2014).
In particular, GT using positive-negative selection enables the
introduction of desirable mutations that cause amino acid sub-
stitutions in the targeted rice gene (Wakasa et al., 2012; Dang
et al., 2013; Nishizawa-Yokoi et al., 2014). Molecular analyses
and structure-based protein engineering can reveal the essential
amino acids involved in protein–protein interactions. For exam-
ple, as mentioned above, Agrobacterium virE2 protein interacts
with Xrcc4 proteins (Vaghchhipawala et al., 2012) It is easy to
produce mutant rice plants in which mutated Xrcc4 proteins are
expressed. The comparison of transient/stable transformation fre-
quencies in xrcc4 mutant rice lines deficient in the interaction with
virE2 protein or the enhancement of Lig4 activity will be able to
provide clues as to the exact roles of Xrcc4 protein in stable trans-
formation. Similarly, a set of rice mutants expressing mutated
proteins that have lost the ability to interact with proteins derived
from Agrobacterium will be useful in analyzing transformation
frequency. Such studies will offer new insights into the stable
transformation process. Moreover, further analysis will enable the
discovery of chemicals effective in strictly activating or suppress-
ing stable transformation, and these could be applied not only in
experimental procedures in plants that are recalcitrant to Agrobac-
terium-mediated transformation but also in cases where T-DNA
integration is not desired, such as site-directed mutagenesis using
artificial nucleases and GT.
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