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Drought and salinity are two frequently combined abiotic stresses that affect plant growth,
development, and crop productivity. Sulfate, and molecules derived from this anion
such as glutathione, play important roles in the intrinsic responses of plants to such
abiotic stresses. Therefore, understanding how plants facing environmental constraints
re-equilibrate the flux of sulfate between and within different tissues might uncover
perspectives for improving tolerance against abiotic stresses. In this review, we took
advantage of genomics and post-genomics resources available in Arabidopsis thaliana and
in the model legume species Medicago truncatula to highlight and compare the regulation
of sulfate transporter genes under drought and salt stress. We also discuss their possible
function in the plant's response and adaptation to abiotic stresses and present prospects
about the potential benefits of mycorrhizal associations, which by facilitating sulfate uptake
may assist plants to cope with abiotic stresses. Several transporters are highlighted in this
review that appear promising targets for improving sulfate transport capacities of crops
under fluctuating environmental conditions.
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INTRODUCTION

Drought, the incidence of which is expected to increase with
climatic changes, is one of the major abiotic constraints on agri-
cultural productivity. Because drought is often associated with
salinity, one challenge for sustainable agriculture is to breed crops
for enhanced tolerance to both stresses. This requires an under-
standing of the adaptive mechanisms allowing plants to survive in
low-water and high-salt environments. Sulfur is a key component
in helping plants to cope with such abiotic stresses (for review,
see Chan etal., 2013). For example, sulfur is used for the synthe-
sis of glutathione, which acts in the maintenance of the cellular
redox balance and mitigates damage caused by reactive oxygen
species. Most of the sulfur taken up by plants is in the form of
sulfate, and several studies point to a role of this anion in the
plant response to drought and salinity in relation to the phyto-
hormone abscisic acid (ABA), a major regulator of leaf stomatal
conductance (Wilkinson and Davies, 2002). It was proposed that
sulfate acts as a primary signal to enhance the anti-transpirant
effect of ABA reaching the stomata in leaves (Ernst etal., 2010).
More recently, Cao etal. (2014) provided evidence for a signifi-
cant co-regulation of sulfur and ABA metabolisms in Arabidopsis
that may help to combat environmental stresses. Such metabolic
adjustments undoubtedly rely on the plant’s ability to absorb and
distribute sulfate to the different organs in amounts sufficient to
fulfill requirements.

Major advances have been made toward identifying and char-
acterizing the transporters involved in the uptake, distribution,
or efflux of sulfate from the vacuoles, especially in Arabidopsis
(Buchner etal., 2004 and references therein). The investigation of
the contribution of sulfate transporters (SULTR) to abiotic stress

tolerance has begun more recently. Cao etal. (2014) proposed a
role for SULTR3;1 in helping plants to cope with environmental
stresses by providing sulfate for the synthesis of cysteine that serves
as a sulfur donor during ABA biosynthesis. With the advances
made over the last decade in the integration of “omics” data, gene
expression atlases are now available for several species, giving
access to the regulation of any gene of interest in different con-
ditions. In this review, we took advantage of these resources to
highlight the regulation of SULTR genes in response to drought
and salinity. We focus on Arabidopsis and M. truncatula, the latter
being a wild legume species originating from the Mediterranean
basin that makes use of symbiotic associations to obtain nutrients
and that has evolved to develop a tolerance to extreme environ-
mental conditions including drought and salinity (Friesen etal.,
2010). After a search of the SULTR sequences in M. truncat-
ula and of their closest homologs in Arabidopsis, we discuss and
compare their regulation and possible contribution to protection
against unfavorable environmental conditions. We also highlight
the potential benefit of using arbuscular mycorrhizal (AM) fungi
to improve sulfate uptake.

COMPARATIVE ANALYSIS OF SULTR GENE FAMILIES
BETWEEN Arabidopsis AND M. truncatula

Medicago truncatula is an annual forage species adopted in 2001
as a model for legumes because of its small genome, compared
to crop legumes such as pea, and its ability to perform symbiotic
interactions with nitrogen-fixing rhizobia and AM fungi, like most
legume species (Frugoli and Harris, 2001). The close relationship
of the M. truncatula genome with that of pea (Pisum sativum L.)
facilitates the transfer of information to the crop, and molecular
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FIGURE 1 | Phylogenetic tree of Medicago truncatula and Arabidopsis
sulfate transporters. The Maximum likelihood phylogenetic tree was
generated using all SULTR amino acid sequences available in the
Arabidopsis and M. truncatula (Mt4.0v1) genomic resources. *, sequences
for which there was no corresponding probe in the Medicago Gene
Expression Atlas.

markers have been developed for translational genomics between
the two species (Bordat etal., 2011). M. truncatula is native to
the arid and semi-arid environments of the Mediterranean. It is
thus adapted to this climate, making it a good model to identify
adaptation processes to low-water or high-salt stresses. Genomic
resources were developed for this species that we used here to
retrieve SULTR genes (MtSULTR). Fourteen genes homologous
to the Arabidopsis SULTR genes (AtSULTR) were identified in the
last Medicago genome version 4.0v1'. Phylogenetic analysis using
SULTR full length amino-acid sequences allowed us to re-annotate
the MtSULTRs and to refine their phylogenetic relationship with
AtSULTRs (Figure 1). The corresponding neighbor-joining tree
divided into four clusters matching the four groups described
in Arabidopsis (Buchner etal., 2004), as previously observed by
Casieri etal. (2013). Three MtSULTRs clustered with the three
Arabidopsis transporters of high-affinity belonging to group 1,
involved in sulfate uptake (SULTRI;1 and 1;2, Yoshimoto etal.,
2007; Barberon etal., 2008) or in its distribution to sink organs
(SULTRI;3, Yoshimoto et al., 2003). Three others MtSULTRs clus-
tered with the two Arabidopsis members of group 2 that deliver
sulfate to aerial parts and developing tissues (Takahashi etal.,
2000; Awazuhara etal., 2005). Group 3 is the largest group, with
seven members in M. truncatula compared to five in Arabidop-
sis. They play multiple roles, such as facilitating sulfate transport
to aerial parts or controlling cysteine level in seeds and seedlings
in tight interaction with ABA metabolism (Kataoka etal., 2004a;
Zuber etal., 2010; Cao etal., 2014). One member of this group,

Uhttp://www.jcvi.org/medicago/

SULTR3;1, is responsible for sulfate transport into chloroplasts
(Cao etal., 2013). Within group 4, unlike Arabidopsis which con-
tains two SULTR4 genes, there was only one M. truncatula gene.
It encodes a protein with high homology to AtSULTR4;1 which
plays a major role in the efflux of sulfate from the vacuole lumen
to the cytosol (Kataoka et al., 2004b). This suggests a unique func-
tion for MtSULTR4;1 in remobilizing the stored sulfate. This
may apply to other species as there is only one transporter of
group 4 with high homology to AtSULTR4;1 in pea (RNAseq
data, Burstin J, personal communication) and rice (Kumar etal.,
2011).

The recent transcriptome analysis of M. truncatula subjected
to progressive drought (Zhang etal., 2014a) allowed us to inves-
tigate the transcriptional regulation of the MtSULTR gene family
in response to this abiotic stress and in comparison with a salt
stress response (Li etal., 2009). Data were downloaded from the
Gene Expression Atlas (MtGEA)?, and expression fold-change
between treated and non-treated samples was calculated (cutoff
of 2.0, Table 1). Expression of three of the 14 MtSULTR genes
(MtSULTR2;2b, MtSULTR3;3b, and MtSULTR3;4b, Figure 1)
could not be investigated as there was no corresponding probe
set in the Affymetrix chip used to build the MtGEA. To compare
SULTR gene regulation between M. truncatula and Arabidopsis,
we used transcriptomic data available in Arabidopsis for drought
and salt stress experiments (Kilian etal., 2007; Huang etal., 2008;
Perera et al., 2008; Nishiyama et al., 2012; Geng et al., 2013; Pandey
etal., 2013; Wang etal., 2013; Ha etal., 2014). The studies show-
ing the most substantial regulation of SULTR genes are included
in Table 1. Results are discussed in the light of functional data
available, mainly in Arabidopsis.

SULTR OF GROUP 3 ARE STRONGLY REGULATED BY ABIOTIC
STRESSES IN ROOTS

Of particular interest is the up-regulation of the SULTR3;1 gene
in roots of both species subjected to drought and salt stress.
Interestingly, the expression of AtSULTR3;1 is enhanced by ABA
and required for cysteine synthesis (Cao etal., 2014). Cysteine,
whose precursor is sulfate, plays a key role in ABA synthesis
as it serves as sulfur donor for the sulfuration of molybdenum,
a co-factor needed in its sulfurylated form for the last reac-
tion in the pathway (Xiong etal., 2001). The cysteine formed
may also serve for the synthesis of the stress-defense compound
glutathione. Cao etal. (2014) proposed that sulfur metabolism
and ABA biosynthesis interplay to ensure sufficient cysteine for
ABA production under abiotic stresses. From these data and the
reported plastid-localization of AtSULTR3;1 (Cao etal., 2013),
it is tempting to speculate on a role for this transporter in
directing the flux of sulfate toward cysteine biosynthesis in the
root plastids that may further be used for ABA production in
response to both abiotic stresses. In M. truncatula, SULTR3;1
has not been functionally characterized. However, the gene is
up-regulated in response to both abiotic stresses (Table 1) and
co-localizes with quantitative trait loci (QTL) regions for salt toler-
ance (Friesen etal., 2010; Arraouadi etal., 2012), as also observed
for AtSULTR3;1 (El-Soda etal., 2014; Zhang etal., 2014c). This

Zhttp://mtgea.noble.org/v3/
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Table 1| Regulation of SULTR gene expression in Medicago truncatula and Arabidopsis subjected to drought and salt stress.

DROUGHT? NN A
Group  Gene Probeset ID & ROOT SHOOT ROOT
Mild  Moderate Severe Mild  Moderate Severe Early Late
§ SULTR1;1  Mtr.12106.1S1at  -37 ns s ns ns
8 1 SULTR1;2 Mtr.28489.1.51_at ns ns ns ns 3,7 1,7
g SULTR1;3  Mtr.5111.1.51_at -3,9 ns -1,7 26 32 \ 1,9 1,7
S o SULTR2;1  Mtr.11734.1.51_at -2,5 [ ns ns
% SULTR2;2a Mtr.45143.1.51_at ns ns -1,5
S SULTR3;1  Mtr.18757.1.51_at 4,7 2,5 3,0
S SULTR3;2  Mtr.41982.151 _at s 74
S 3  SULTR3;3a Mtr.41524.1.51_at 2,1 1,6 2,0 ns 21 2,3 ns ns
SULTR3;4a Mtr.31749.1.51_at 3,8 55 5,8 2,5 2,5 1,5 -1,9 ns
SULTR3;5  Mtr.37708.1.51_at 2,0 2,1 3,3 -1,7 -1,6 -1,8
4 SULTR4;1  Mtr.45139.1.51_at ns ns ns 1,6 1,5 ns
DROUGHT ¢ SALINITY *f .
) . Gene expression
Group Gene Accession Nb . LEAVES R SHOOT/LEAVES in response to
ROOT ROOT .
¢ d e f drought or salinity:
o SULTR1;1 ATAG08620 ns ns ns ns ns 1,2 Up
= ;
SULTR1;2 AT1G78000 2,1 1,7
= 1 ns ns regulated
S SULTR1;3 AT1G22150 ns ns ns ns
e TP E TR ey [
"J; 2 SULTR2;1 AT5G10180 ns 1,9 ns ns
g SULTR2;2 AT1G77990 ns ns hs ns
S SULTR3;1  AT3G51895  [MB7 71 ns 24
.g SULTR3;2 AT4G02700 ns ns ns ns
E 3 SULTR3;3 AT1G23090 ns ns ns 1,4 ns ns
SULTR3;4 AT3G15990 4,9 ns ns 3,8 1,7 2,9 .
SULTR3;5 AT5G19600 ns ns 2, w Down-
4 SULTR4;1 AT5G13550 1,4 2,0 1,6 2,2 2,1 regulated
SULTR4;2  AT3G12520 s [ - e 2,3 18

SULTR gene regulation from: (a) Zhang etal. (2014a): mild, moderate or severe water stress (corresponding to 7 10, or 14 days of water withdrawal, respectively)
applied on 24 day-old M. truncatula plants. (b) Li etal. (2009): young seedlings (2 days) treated with 180 mM of NaCl for 6 h (early response) or 2 days (late reponse); (c)
Ha etal. (2014): aerial portions of 24 day-old plants detached and exposed to dehydration on paper towels for 4 h; (d) Pandey etal. (2013): 3 week-old plantlets grown

for 9 days on soil with a moisture level below 30%; (e) Kilian etal. (2007): 150 m.

M NaCl applied to Arabidopsis seedlings in vitro, (f) \Wang etal. (2013): 10 day-old

seedlings grown for 4 days on a medium supplemented with 100 mM NaCl. For each MItSULTR gene, data for the correponding probeset ID (g) were downloaded

from the Medicago Gene Expression Atlas at http.//mtgea.noble.org/v3/experimen

ts. (h) Genbank accession number of the Arabidopis SULTR genes. The values refer

to gene expression fold change between treated and non-treated samples. Changes in gene expression of at least twofold are highlighted using a color scale; ns,

non-significant change in gene expression in response to drought or salt stress.

makes MtSULTR3;1 a potential target for modulating the abiotic
stress response in legumes. In addition, MtSULTR3;1 expression
is higher at late stages of water stress, i.e., severe water stress in
Table 1, known to be associated with ABA biosynthesis in roots
(Goodger and Schachtman, 2010), suggesting that MtSULTR3;1
could be closely linked in its action with ABA production, as
is the case in Arabidopsis (Cao etal., 2014). Another gene of
group 3 (AtSULTR3;4, MtSULTR3;4a) is co-expressed in roots
with SULTR3;1 in response to drought in the two species and in
response to salt stress in Arabidopsis (Table 1). The reduced ABA
content in seedlings for the two mutants Atsultr3;1 and Atsultr3;4
suggests a role for both genes in relation to ABA production.

The subcellular localization of SULTR3;4 is unknown. Inves-
tigating spatial and subcellular localizations in roots for both
transporters might help to decipher whether they can have a
coordinated function or a functional redundancy in this tissue. It
should be noted that in contrast to Arabidopsis, MtSULTR3;1 and
MtSULTR3;4a are differentially regulated in response to salt stress
(only MtSULTR3;11s up-regulated) and that a second MtSULTR3;4
gene (MtSULTR3;4b, Figure 1) exists whose response to salt stress
is currently unknown.

In M. truncatula, the expression of another group 3 SULTR
(MtSULTR3;5) is strongly up-regulated in roots subjected to salt
stress (up to 78-fold; Table 1). Its closest Arabidopsis homolog,
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AtSULTR3;5, shows opposite trends of expression in roots with
a consistent down-regulation in response to salinity. This sug-
gests distinct roles or transcriptional regulation of SULTR3;5
between the two species. In the legume species Lotus japonicus,
the SULTR3;5 homolog SST1 (Symbiotic Sulfate Transporter 1)
is necessary for nodule formation and essential for the symbi-
otic supply of sulfur to the bacteria (Krusell etal., 2005). In this
connection, Varin etal. (2010) identified sulfur supply as neces-
sary for proper accumulation of nitrogenase and leghaemoglobin,
two proteins rich in sulfur amino acids and needed for nitrogen
fixation. This highlights the importance of maintaining efficient
sulfate transport systems in nodules to exploit the nitrogen-fixing
capacity of legume plants in agroecological systems. MtSULTR3;5
is strongly expressed in nodules (Roux etal., 2014) and stud-
ies are ongoing to understand the function of MtSULTR3;5 in
nodules and to deciphering its contribution to the salt stress
response.

RE-EQUILIBRATION OF SULFATE FLUX IN AERIAL PARTS IN
RESPONSE TO ABIOTIC STRESSES

In contrast to the functional SST1 (Krusell etal., 2005),
AtSULTR3;5 is a non-functional transporter by itself (Kataoka
etal., 2004a). This transporter forms a complex with AtSULTR2;1,
thus enhancing its sulfate import activity into cells of root vascu-
lar tissues for loading into the xylem and transfer to aerial parts,
especially when sulfur availability is limited (Takahashi et al., 20005
Kataoka etal., 2004a). The flux of sulfur from roots to shoots is
in part controlled by microRNA(Mir)395, which limits expres-
sion of SULTR2;1 to xylem parenchyma, thus enhancing sulfate
translocation to aerial parts (Kawashima etal., 2011). Interest-
ingly, Mir395 is up-regulated in response to drought stress in rice
(Zhou etal., 2010) and under high salinity conditions in maize
(Zea mays L.; Ding etal., 2009), suggesting it participates in abi-
otic stress responses, presumably by maintaining the flux of sulfur
toward aerial parts. In roots, the expression of AtSULTR2;1 is
not affected by salinity and drought, whereas that of AtSULTR3;5
decreased significantly in response to salt stress (Table 1). Owing
to the co-activator function of AtSULTR3;5, this may slow the
allocation of sulfate to aerial parts. It is therefore possible that
Arabidopsis adjusts the level of sulfate in roots under salt stress
by modulating AtSULTR3;5 expression. This could be part of
the adaptive mechanisms used by Arabidopsis to load sulfate into
xylem vessels while ensuring that sufficient sulfate remains in roots
when uptake is limited due to high salt concentrations in soils.
In M. truncatula, the SULTR2;1 gene is not significantly regu-
lated in roots in response to salt stress, but down-regulated in
this tissue at early stages of water stress. The function of this
transporter has not been reported yet, but if we assume a simi-
lar role to its Arabidopsis homolog, the down-regulation observed
is likely to reflect a need to maintain sulfate in roots at these
stages.

A continued loading of sulfate into xylem vessels is of
paramount importance for maintaining the synthesis of sulfur
molecules in aerial parts. Moreover, sulfate from the xylem actsasa
chemical signal for ABA-dependent stomatal closure in leaves dur-
ing early stages of water stress when ABA biosynthesis is restricted
to leaves (Ernst etal., 2010). Several SULTR genes in Table 1

that are regulated in shoots or leaves are good candidates for
re-equilibrating the flux of sulfate in aerial parts in response to
abiotic stresses. First, SULTR2;1 is significantly down-regulated
in leaves of Arabidopsis and M. truncatula subjected to drought.
AtSULTR2;1 has been shown to be not only expressed in the xylem
parenchyma cells but also in the phloem cells of mature leaves,
where it participates in the translocation of sulfate to young leaves
(Takahashi et al., 2000). Hence, the down-regulation of SULTR2;1
suggests a decreased flux of sulfate to young leaves, presumably
to save sulfate for protection mechanisms, such as those involving
ABA. Second, in M. truncatula subjected to drought, one SULTR3
gene, MtSULTR3;4, is significantly up-regulated in aerial parts
and more strongly at early stages of water stress (mild and mod-
erate in Table 1). It would be of particular interest to investigate
whether this transporter could play a role in leaves in control-
ling their early response to water stress in strong connection with
ABA biosynthesis. In Arabidopsis, AtSULTR3;1 and 3;4 are both
significantly up-regulated in leaves subjected to salt stress, rein-
forcing the hypothesis raised in the previous section that both
transporters could act in concert to mitigate the effect of salt
stress.

Interestingly, the expression of both vacuolar AtfSULTR4 genes
is significantly enhanced in leaves by drought and salinity. More-
over, AtSULTR4;1 and AtSULTR4;2 fall in QTL regions for
tolerance to both stresses (Juenger et al., 2005; McKay et al., 2008).
They are thus good candidates for multiple stress tolerance. The
only SULTR4 gene in M. truncatula is also up-regulated in shoots
in response to drought with a statistically significant but lower
fold-change compared to Arabidopsis. Because in Arabidopsis, the
SULTR4 transporters were shown to enable the mobilization of the
sulfate stored in the vacuoles, they may play a critical role in ensur-
ing sulfur metabolism in plant cells when sulfate uptake is limited
due to environmental constraints. Furthermore, efflux of sulfate
from the vacuole may contribute to osmotic adjustments that play
a fundamental role in water and salt stress responses. The role
of SULTR4 (Kataoka etal., 2004b) has been investigated in roots
but their involvement in shoots merits further investigations in
relation to abiotic stress tolerance.

REGULATION OF GENES INVOLVED IN SULFATE UPTAKE
UNDER ABIOTIC STRESS CONDITIONS

The capacity of roots to take up nutrients generally declines in
salt- and water-stressed plants, which may explain the changes
in expression of SULTR genes belonging to groups 2, 3, and 4
under these conditions to rebalance sulfate flux between affected
tissues. By examining the regulation of the two SULTRI genes
known to control sulfate uptake in Arabidopsis, we observed a
contrasted pattern for both genes (Table 1). MtSULTRI;1 appeared
down-regulated in roots subjected to both abiotic stresses, whereas
MtSULTRI;2 and AtSULTRI;2 were up-regulated in response to
salinity and drought, respectively. Barberon etal. (2008) demon-
strated that SULTRI;1 and SULTRI;2 display unequal functional
redundancy in Arabidopsis and left open the possibility for the
SULTRI;1 gene to display an additional function besides its
role in sulfate membrane transport. Recent findings also pro-
posed a supplementary role for AtSULTR1;2 in the regulatory or
sensing/signaling pathways related to sulfur metabolism (Zhang
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etal., 2014b). Further studies are needed to better understand
their additional function(s) and contribution to abiotic stress
responses.

AM FUNGI, A PROMISING PERSPECTIVE FOR IMPROVING
SULFATE UPTAKE IN FLUCTUATING ENVIRONMENTS?

The emerging role of sulfate in plant adaptation to abiotic stresses
reinforces the need to sustain proper sulfate uptake and use in
cultures that face environmental stresses. One specific feature
of legumes, compared to Arabidopsis, is their ability to perform
symbiotic interactions with AM fungi. This mutualistic associ-
ation is known to increase plant tolerance to drought (Augé,
2001), an abiotic stress limiting the absorption of ions, includ-
ing sulfate, by roots. Recent studies in M. truncatula revealed
that AM fungi improve sulfur nutrition in low-sulfate environ-
ments (Casieri etal., 2012; Sieh etal., 2013), probably through
their capacity to take up and translocate sulfate to the root (Gray
and Gerdemann, 1973; Rhodes and Gerdemann, 1978a,b; Allen
and Shachar-Hill, 2009). To date, there is no information avail-
able on the regulation of plant sulfate uptake or plant sulfate
transporter genes in the presence of AM fungi under drought
conditions. However, because drought is associated with reduced
sulfate availability, the SULTR genes up-regulated at low sul-
fate concentrations in roots colonized with AM fungi (Casieri
etal., 2012; Sieh etal., 2013) might help the plant partner to
survive in such environments. This is the case for MtSULTRI;1
and MtSULTRI;2, both up-regulated in roots of AM symbiotic
plants, especially at low sulfate concentrations (Casieriet al., 2012).
Recently, Giovannetti etal. (2014) demonstrated the induction
of the LiSULTRI;2 gene during the Lotus japonicus/Rhizophagus
irregularis mutualistic interaction, and the specific expression of
this transporter in arbuscule-containing cells, strongly suggest-
ing AM-specific sulfate transport. Investigating the regulation of
such genes during AM symbiosis in response to abiotic stresses
might help to decipher the roles played by these transporters in
fluctuating environments.

CONCLUSION

Several SULTR genes regulated by drought and/or salinity were
highlighted in this review that may contribute to adjust sulfur
distribution in plants subjected to abiotic stresses. We discussed
their possible roles using information available in Arabidopsis,
for which considerable advances have been made in the last two
decades toward understanding SULTR functions, more recently
in response to salinity (Cao etal.,, 2014). SULTR genes simi-
larly regulated in Arabidopsis and M. truncatula are promising
targets for improving sulfate transport capacities under fluc-
tuating environmental conditions. Among these are group 3
SULTR, also in the list of abiotic stress-responsive genes shared
between Arabidopsis and M. truncatula of Hyung etal. (2014).
Group 1 SULTR are other potential targets for enhancing sul-
fate uptake in fluctuating environmental conditions. Members
of this group were found to be up-regulated by drought stress
and by AM fungi associations that increased significantly the root
uptake of sulfate in low-sulfate environments, as it is the case
in drought conditions. Broad collections of ecotypes and TILL-
ING mutants are available in M. truncatula and in the pea crop

(Dalmais etal., 2008; Le Signor etal., 2009; Deulvot etal., 2010)
that can be used to study and confirm SULTR genes as rele-
vant candidates for discovering favorable alleles for abiotic stress
tolerance.

ACKNOWLEDGMENTS

Present work of the authors on sulfate transport is done in the
frame of the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under the grant agreement number
FP7-613551, LEGATO project. Pierre-Emmanuel Courty grate-
fully acknowledges his current support by the Swiss National
Science Foundation through an AMBIZIONE fellowship (grant
No. PZ00P3_136651).

REFERENCES

Allen, J. W,, and Shachar-Hill, Y. (2009). Sulfur transfer through an arbuscular
mycorrhiza. Plant Physiol. 149, 549-560. doi: 10.1104/pp.108.129866

Arraouadi, S., Badri, M., Abdelly, C., Huguet, T., and Aouani, M. E. (2012).
QTL mapping of physiological traits associated with salt tolerance in Med-
icago truncatula Recombinant Inbred Lines. Genomics 99, 118-125. doi:
10.1016/j.ygen0.2011.11.005

Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal
symbiosis. Mycorrhiza 11, 3-42. doi: 10.1007/s005720100097

Awazuhara, M., Fujiwara, T., Hayashi, H., Watanabe-Takahashi, A., Takahashi,
H., and Saito, K. (2005). The function of SULTR2;1 sulfate transporter dur-
ing seed development in Arabidopsis thaliana. Plant Physiol. 125, 95-105. doi:
10.1111/5.1399-3054.2005.00543.x

Barberon, M., Berthomieu, P, Clairotte, M., Shibagaki, N., Davidian,
J.-C., and Gosti, F. (2008). Unequal functional redundancy between the
two Arabidopsis thaliana high-affinity sulphate transporters SULTRI1;1 and
SULTR1;2. New Phytol. 180, 608-619. doi: 10.1111/j.1469-8137.2008.
02604.x

Bordat, A., Savois, V., Nicolas, M., Salse, J., Chauveau, A., Bourgeois, M., etal.
(2011). Translational genomics in legumes allowed placing in silico 5460 unigenes
on the pea functional map and identified candidate genes in Pisum sativum L. G3
(Bethesda) 1, 93-103. doi: 10.1534/g3.111.000349

Buchner, P., Takahashi, H., and Hawkesford, M. J. (2004). Plant sulphate trans-
porters: co-ordination of uptake, intracellular and long-distance transport. J. Exp.
Bot. 55, 1765-1773. doi: 10.1093/jxb/erh206

Cao, M. J., Wang, Z., Wirtz, M., Hell, R., Oliver, D. J., and Xiang, C. B. (2013).
SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana.
Plant J. 73, 607-616. doi: 10.1111/tpj.12059

Cao, M. J., Wang, Z., Zhao, Q., Mao, J. L., Speiser, A., Wirtz, M., etal
(2014). Sulfate availability affects ABA levels and germination response to ABA
and salt stress in Arabidopsis thaliana. Plant J. 77, 604-615. doi: 10.1111/tpj.
12407

Casieri, L., Ait Lahmidi, N., Doidy, J., Veneault-Fourrey, C., Migeon, A., Bonneau, L.,
etal. (2013). Biotrophic transportome in mutualistic plant-fungal interactions.
Mycorrhiza 23, 597-625. doi: 10.1007/s00572-013-0496-9

Casieri, L., Gallardo, K., and Wipf, D. (2012). Transcriptional response of Med-
icago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with
and without sulphur stress. Planta 235, 1431-1447. doi: 10.1007/s00425-012-
1645-7

Chan, K. X., Wirtz, M., Phua, S. Y., Estavillo, G. M., and Pogson, B. J. (2013).
Balancing metabolites in drought: the sulfur assimilation conundrum. Trends
Plant Sci. 18, 18-29. doi: 10.1016/j.tplants.2012.07.005

Dalmais, M., Schmidt, J., Le Signor, C., Moussy, E, Burstin, J., Savois, V., et al. (2008).
UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome
Biol. 9, R43. doi: 10.1186/gb-2008-9-2-r43

Deulvot, C., Charrel, H., Marty, A., Jacquin, E, Donnadieu, C., Lejeune-Hénaut,
1., etal. (2010). Highly-multiplexed SNP genotyping for genetic mapping and
germplasm diversity studies in pea. BMC Genomics 11:468. doi: 10.1186/1471-
2164-11-468

Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., and Zheng, Y. (2009). Differential
expression of miRNAs in response to salt stress in maize roots. Ann. Bot. 103,
29-38. doi: 10.1093/a0b/mcn205

www.frontiersin.org

October 2014 | Volume 5 | Article 580 | 5


http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive

Gallardo etal.

Sulfate transport and abiotic stress

El-Soda, M., Kruijer, W., Malosetti, M., Koornneef, M., and Aarts, M. G. (2014).
Quantitative trait loci and candidate genes underlying genotype by environment
interaction in the response of Arabidopsis thaliana to drought. Plant Cell Environ.
doi: 10.1111/pce.12418 [Epub ahead of print].

Ernst, L., Goodger, J. Q., Alvarez, S., Marsh, E. L., Berla, B., Lockhart, E.,
etal. (2010). Sulphate as a xylem-borne chemical signal precedes the expres-
sion of ABA biosynthetic genes in maize roots. J. Exp. Bot. 61, 3395-3405. doi:
10.1093/jxb/erq160

Friesen, M. L., Cordeiro, M. A., Penmetsa, R. V., Badri, M., Huguet, T., Aouani,
M. E., etal. (2010). Population genomic analysis of Tunisian Medicago truncatula
reveals candidates for local adaptation. Plant J. 63, 623—635. doi: 10.1111/j.1365-
313X.2010.04267.x

Frugoli, J., and Harris, J. (2001). Medicago truncatula on the move! Plant Cell. 13,
458-463. doi: 10.1105/tpc.13.3.458

Geng, Y., Wu, R., Wee, C. W, Xie, E, Wei, X., Chan, P. M., etal. (2013). A spatio-
temporal understanding of growth regulation during the salt stress response in
Arabidopsis. Plant Cell 25, 2132-2154. doi: 10.1105/tpc.113.112896

Giovannetti, M., Tolosano, M., Volpe, V., Kopriva, S., and Bonfante, P. (2014).
Identification and functional characterization of a sulfate transporter induced by
both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol.
204, 609-619. doi: 10.1111/nph.12949

Goodger, J. Q., and Schachtman, D. P. (2010). Re-examining the role of ABA as
the primary long-distance signal produced by water-stressed roots. Plant Signal.
Behav. 5,1298-1301. doi: 10.4161/psb.5.10.13101

Gray, L. E., and Gerdemann, J. W. (1973). Uptake of sulphur-35 by vesicular-
arbuscular mycorrhizae. Plant Soil 39, 687-689. doi: 10.1007/BF00264184

Ha, C. V., Leyva-Gonzdlez, M. A., Osakabe, Y., Tran, U. T., Nishiyama, R,
Watanabe, Y., etal. (2014). Positive regulatory role of strigolactone in plant
responses to drought and salt stress. Proc. Natl. Acad. Sci. U.S.A. 111, 851-856.
doi: 10.1073/pnas.1322135111

Huang, D., Wu, W., Abrams, S. R., and Cutler, A. J. (2008). The relation-
ship of drought-related gene expression in Arabidopsis thaliana to hormonal
and environmental factors. J. Exp. Bot. 59, 2991-3007. doi: 10.1093/jxb/
ernl55

Hyung, D., Lee, C., Kim, J. H,, Yoo, D., Seo, Y. S., Jeong, S. C., etal. (2014).
Cross-family translational genomics of abiotic stress-responsive genes between
Arabidopsis and Medicago truncatula. PLoS ONE 9:¢91721. doi: 10.1371/jour-
nal.pone.0091721

Juenger, T. E., McKay, J. K., Hausmann, N., Keurentjes, J. J. B., Sen, S., Stowe,
K. A, etal. (2005). Identification and characterization of QTL underlying whole-
plant physiology in Arabidopsis thaliana: Delta C-13, stomatal conductance and
transpiration efficiency. Plant Cell Environ. 28, 697-708. doi: 10.1111/j.1365-
3040.2004.01313.x

Kataoka, T., Hayashi, N., Yamaya, T., and Takahashi, H. (2004a). Root-to-shoot
transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a compo-
nent of low-affinity sulfate transport system in the root vasculature. Plant Physiol.
136, 4198-4204. doi: 10.1104/pp.104.045625

Kataoka, T., Watanabe-Takahashi, A., Hayashi, N., Ohnishi, M., Mimura, T,
Buchner, P, etal. (2004b). Vacuolar sulfate transporters are essential determi-
nants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16,
2693-2704. doi: 10.1105/tpc.104.023960

Kawashima, C. G., Matthewman, C. A., Huang, S., Lee, B. R., Yoshimoto, N.,
Koprivova, A., etal. (2011). Interplay of SLIM1 and miR395 in the regulation
of sulfate assimilation in Arabidopsis. Plant ]. 66, 863—-876. doi: 10.1111/j.1365-
313X.2011.04547.x

Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., etal. (2007).
The AtGenExpress global stress expression data set: protocols, evaluation and
model data analysis of UV-B light, drought and cold stress responses. Plant J. 50,
347-363. doi: 10.1111/j.1365-313X.2007.03052.x

Krusell, L., Krause, K., Ott, T., Desbrosses, G., Krimer, U, Sato, S., etal.
(2005). The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation
in Lotus japonicus root nodules. Plant Cell 17, 1625-1636. doi: 10.1105/tpc.104.
030106

Kumar, S., Asif, M. H., Chakrabarty, D., Tripathi, R. D., and Trivedi, P. K. (2011).
Differential expression and alternative splicing of rice sulphate transporter fam-
ily members regulate sulphur status during plant growth, development and
stress conditions. Funct Integr Genomics 11, 259-273. doi: 10.1007/s10142-010-
0207-y

Le Signor, C., Savois, V., Aubert, G., Verdier, J., Nicolas, M., Pagny, G., etal. (2009).
Optimizing TILLING populations for reverse genetics in Medicago truncatula.
Plant Biotechnol. J. 7,430—441. doi: 10.1111/j.1467-7652.2009.00410.x

Li, D,, Su, Z., Dong, J., and Wang, T. (2009). An expression database for roots of the
model legume Medicago truncatula under salt stress. BMC Genomics 10:517. doi:
10.1186/1471-2164-10-517

McKay, J. K., Richards, J. H., Nemali, K. S., Sen, S., Mitchell-Olds, T., Boles, S., etal.
(2008). Genetics of drought adaptation in Arabidopsis thaliana I1. QTL analysis
of a new mapping population, Kas-1 x Tsu-1. Evolution 62, 3014-3026. doi:
10.1111/j.1558-5646.2008.00474.x

Nishiyama, R., Le, D. T., Watanabe, Y., Matsui, A., Tanaka, M., Seki, M., etal. (2012).
Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal dif-
ferential regulation of salt stress response by cytokinin deficiency. PLoS ONE
7:¢32124. doi: 10.1371/journal.pone.0032124

Pandey, N., Ranjan, A., Pant, P.,, Tripathi, R. K., Ateek, E, Pandey, H. P., etal. (2013).
CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics
14:216. doi: 10.1186/1471-2164-14-216

Perera, I. Y., Hung, C. Y., Moore, C. D., Stevenson-Paulik, J., and Boss, W. E. (2008).
Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit
increased drought tolerance and altered abscisic acid signaling. Plant Cell 20,
2876-2893. doi: 10.1105/tpc.108.061374

Rhodes, L. H., and Gerdemann, J. W. (1978a). Hyphal translocation and uptake
of sulfur by vesicular-arbuscular mycorrhizae of onion. Soil Biol. Biochem. 10,
355-360. doi: 10.1016/0038-0717(78)90057-3

Rhodes, L. H., and Gerdemann, J. W. (1978b). Influence of phosphorus nutrition
on sulphur uptake by vesicular arbuscular. Soil Biol. Biochem. 10, 361-364. doi:
10.1016/0038-0717(78)90058-5

Roux, B., Rodde, N., Jardinaud, M. E, Timmers, T., Sauviac, L., Cottret, L., etal.
(2014). An integrated analysis of plant and bacterial gene expression in symbiotic
root nodules using laser-capture microdissection coupled to RNA sequencing.
Plant ]. 77, 817-837. doi: 10.1111/tpj.12442

Sieh, D., Watanabe, M., Devers, E. A., Brueckner, E, Hoefgen, R., and
Krajinski, F (2013). The arbuscular mycorrhizal symbiosis influences sulfur
starvation responses of Medicago truncatula. New Phytol. 197, 606-616. doi:
10.1111/nph.12034

Takahashi, H., Watanabe-Takahashi, A., Smith, F. W., Blake-Kalff, M., Hawkesford,
M. J., and Saito, K. (2000). The roles of three functional sulphate transporters
involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J.
23,171-182. doi: 10.1046/j.1365-313x.2000.00768.x

Varin, S., Cliquet, J. B., Personeni, E., Avice, J.-C., and Lemauviel-Lavenant, S. (2010).
How does sulphur availability modify N acquisition of white clover (Trifolium
repens L.)? J. Exp. Bot. 61, 225-234. doi: 10.1093/jxb/erp303

Wang, Y., Yang, L., Zheng, Z., Grumet, R., Loescher, W., Zhu, J. K., et al. (2013). Tran-
scriptomic and physiological variations of three Arabidopsis ecotypes in response
to salt stress. PLoS ONE 8:¢69036. doi: 10.1371/journal.pone.0069036

Wilkinson, S., and Davies, W. J. (2002). ABA-based chemical signaling: the co-
ordination of responses to stress in plants. Plant Cell Environ. 25, 195-210. doi:
10.1046/j.0016-8025.2001.00824.x

Xiong, L., Ishitani, M., Lee, H., and Zhu, J. K. (2001). The Arabidopsis LOS5/ABA3
locus encodes a molybdenum cofactor sulfurase and modulates cold stress-
and osmotic stress-responsive gene expression. Plant Cell 13, 2063-2083. doi:
10.1105/tpc.13.9.2063

Yoshimoto, N., Inoue, E., Saito, K., Yamaya, T., and Takahashi, H. (2003).
Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur
from source to sink organs in Arabidopsis. Plant Physiol. 131, 1511-1517. doi:
10.1104/pp.014712

Yoshimoto, N., Inoue, E., Watanabe-Takahashi, A., Saito, K., and Takahashi, H.
(2007). Posttranscriptional regulation of high-affinity sulfate transporters
in Arabidopsis by sulfur nutrition. Plant Physiol. 145, 378-388. doi:
10.1104/pp.107.105742

Zhang, ]. Y., Cruz, D. E., Carvalho, M. H., Torres-Jerez, 1., Kang, Y., Allen, S. N, et al.
(2014a). Global reprogramming of transcription and metabolism in Medicago
truncatula during progressive drought and after rewatering. Plant Cell Environ.
In press (free access online). doi: 10.1111/pce.12328 [Epub ahead of print].

Zhang, B., Pasini, R., Dan, H., Joshi, N., Zhao, Y., Leustek, T., etal. (2014b).
Aberrant gene expression in the Arabidopsis SULTR1;2 mutants suggests a possible
regulatory role for this sulfate transporter in response to sulfur nutrient status.
Plant J. 77, 185-197. doi: 10.1111/tpj.12376

Frontiers in Plant Science | Plant Physiology

October 2014 | Volume 5 | Article 580 | 6


http://www.frontiersin.org/Plant_Physiology/
http://www.frontiersin.org/Plant_Physiology/archive

Gallardo etal.

Sulfate transport and abiotic stress

Zhang, X., Lu, G., Long, W., Zou, X., Li, E, and Nishio, T. (2014c). Recent progress
in drought and salt tolerance studies in Brassica crops. Breed Sci. 64, 60-73. doi:
10.1270/jsbbs.64.60

Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., and Luo, L. (2010). Genome-wide
identification and analysis of drought-responsive microRNAs in Oryza sativa.
J. Exp. Bot. 61, 4157—4168. doi: 10.1093/jxb/erq237

Zuber, H., Davidian, J.-C., Aubert, G., Aimé, D., Belghazi, M., Lugan, R., etal.
(2010). The seed composition of Arabidopsis mutants for the group 3 sulfate
transporters indicates a role in sulfate translocation within developing seeds.
Plant Physiol. 154, 913-926. doi: 10.1104/pp.110.162123

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 27 August 2014; accepted: 08 October 2014; published online: 29 October
2014.

Citation: Gallardo K, Courty P-E, Le Signor C, Wipf D and Vernoud V (2014) Sulfate
transporters in the plant’s response to drought and salinity: regulation and possible
functions. Front. Plant Sci. 5:580. doi: 10.3389/fpls.2014.00580

This article was submitted to Plant Physiology, a section of the journal Frontiers in
Plant Science.

Copyright © 2014 Gallardo, Courty, Le Signor, Wipf and Vernoud. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org

October 2014 | Volume 5 | Article 580 | 7


http://dx.doi.org/10.3389/fpls.2014.00580
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive

	Sulfate transporters in the plant's response to drought and salinity: regulation and possible functions
	Introduction
	Comparative analysis of sultr gene families between arabidopsis and m. truncatula
	Sultr of group 3 are strongly regulated by abiotic stresses in roots
	Re-equilibration of sulfate flux in aerial parts in response to abiotic stresses
	Regulation of genes involved in sulfate uptake under abiotic stress conditions
	Am fungi, a promising perspective for improving sulfate uptake in fluctuating environments?
	Conclusion
	Acknowledgments
	References


