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While pattern formation is studied in various areas of biology, little is known about the noise
leading to variations between individual realizations of the pattern. One prominent example
for de novo pattern formation in plants is the patterning of trichomes on Arabidopsis
leaves, which involves genetic regulation and cell-to-cell communication. These processes
are potentially variable due to, e.g., the abundance of cell components or environmental
conditions. To elevate the understanding of regulatory processes underlying the pattern
formation it is crucial to quantitatively analyze the variability in naturally occurring patterns.
Here, we review recent approaches toward characterization of noise on trichome initiation.
We present methods for the quantification of spatial patterns, which are the basis for data-
driven mathematical modeling and enable the analysis of noise from different sources.
Besides the insight gained on trichome formation, the examination of observed trichome
patterns also shows that highly regulated biological processes can be substantially
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affected by variability.
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patterning

1. INTRODUCTION

Mathematical modeling has been used to study various biologi-
cal patterning processes, such as trichomes and root hairs (Savage
et al., 2008; Benitez et al., 2011), cell sizes in sepals (Roeder
et al., 2010), hair follicles (Sick et al., 2006), fruit fly develop-
ment (Reeves et al., 2006), and other systems (Othmer et al., 2009;
Peltier and Schaffer, 2010). It has only recently become more
popular to investigate the variance or variability within a sys-
tem and to discuss the consequences of noise (see Box 1) (Kaern
etal., 2005; Swain and Longtin, 2006; Maheshri and O’Shea, 2007;
Wilkinson, 2009; Sanchez et al., 2013). Moreover, an evaluation
of the robustness (see Box 1) of a patterning system requires a
quantification of the variations in its inputs and outputs (Reeves
et al., 2006). Some studies have been published that focus on
models with a stochastic (see Box 1) component, e.g., the stochas-
tic Boolean network (see Box 1) model for root hairs (Savage
et al., 2008) or floral morphogenesis (Alvarez-Buylla et al., 2008)
or noise in the initiation of new organs in phyllotaxis (Mirabet
et al., 2012). Others examine the effect of noise on patterning
using stochastic differential equations (see Box 1) (Sagués et al.,
2007). However, although a rich tradition exists in studying the
effect of noise on pattern formation using abstract sets of equa-
tions, only few studies from developmental biology can be found
where the effect of intracellular noise and/or cell-to-cell variabil-
ity on a developing pattern or structure was systematically taken
into account (Little et al., 2013). While advances in data acquisi-
tion and experimental manipulations increase the feasibility and
popularity of noise-related studies in single cell organisms (Paldi,
2003; Keern et al., 2005; Swain and Longtin, 2006; Sdnchez et al.,
2013), quantitative comparisons of spatial patterns and testable

predictions from mathematical models are needed in order to
assess the influence of various types of noise on a developing
organism (Lander, 2011). In particular, it is desirable not only to
qualitatively study simulation results that arise from various per-
turbations of the model, but also to quantitively compare these
with experimentally observed patterns. As far as we are aware,
the latter aspect has rarely been studied so far. It is important to
note that the existence of cell-to-cell variability is not necessar-
ily an outcome of stochasticity, but may be due to deterministic
(see Box 1) regulatory processes upstream of the observed pro-
cess (Snijder and Pelkmans, 2011). Whatever the source of the
variability is, the pattern will be affected by it. In many stud-
ies, reaction-diffusion systems (see Box 1) are used to describe
the pattern formation process (Gierer and Meinhardt, 1972;
Meinhardt and Gierer, 1974; Koch and Meinhardt, 1994). These
models require some stochasticity in the initial values to start the
patterning. It is thought that this initial variability among cells in
a tissue stems from a spontaneous fluctuation of the abundance
of the proteins involved in the process. However, apart from this,
variability is neglected and the equations themselves are deter-
ministic. To explicitly study noise in patterning, it is necessary to
not only consider stochastic initial conditions but also to include
some other type of stochasticity such as spatially or temporally
varying parameters (Page et al., 2005; Woolley et al., 2011).

In plants, the question whether the spatial distribution is ran-
dom or ordered was first investigated for developing stomata
(Sachs, 1974; Rasmussen, 1986; Croxdale, 2000). Stomata pat-
terns are well suited for investigation because the patterns are
two-dimensional and occur on the organ surface, which makes
them readily accessible. Stomata are an example of a biological
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Box 1| Glossary Box

Noise: In general, some kind of variability or variation in a given system can be described as noise, which can imply that it is unwanted
(as in repeated measurements, for example). However, recent studies in biology find also situations where variability is neutral or even
beneficial. Cellular noise originally refers to the variability in gene expression levels, but is also used for apparently random differences
between neighboring cells.

Robustness vs. sensitivity: A system or method that does not adapt to some (small) change is called robust while one that reacts to
change with some adaptation is called sensitive. In sensitivity analysis, the amount of adaptation of a model toward changes in parameter
values is studied.

Deterministic vs. stochastic system: A system is deterministic when its state is completely determined for all times from the starting
conditions. In contrast, a stochastic (or random) system, sometimes called stochastic process, contains some stochasticity and hence
evolves into different states even for the same starting conditions.

Boolean network model: A variable that can only have values 1 or 0, typically meaning “on” and “off,” is called Boolean. A Boolean
network is a system of equations where the time and the variable states are discrete (i.e., taking distinct, separate values, e.g., “points in
time").

Stochastic differential equations: In general, deterministic equations that contain a function of some continuous variables as well as the
derivatives of these variables are called differential equations. Typical examples in biology are equations that contain concentrations as
variables, molecular interactions as functions of these concentrations, and their rates of change over time and space as the derivatives.
Different biological processes (e.g., production, degradation, binding) contribute as several terms (i.e., parts) of the equations. If one or
more of the terms are stochastic processes, the system represents stochastic differential equations.

Reaction-diffusion system: A set of differential equations that describe reactions, e.g., molecular interactions, and diffusion, i.e., some
form of spatial spread, is often called a reaction-diffusion model/system.

Planar point pattern: The spatial arrangement of points or objects (e.g., trichomes) in space is called a point pattern. If the space is the
two-dimensional plane, i.e., a flat surface, it is called a planar point pattern.

Quadrat: In order to obtain spatially resolved counts of objects (e.g., trichomes) distributed on a surface (e.g., a leaf), this surface can
be divided into smaller units. These are called quadrats in ecology and geography, and they are often squares. For a complete survey of
the objects on the surface, quadrats are placed systematically in rows and columns and the objects are counted in each quadrat. These
quadrat counts can then be statistically analyzed.

Tessellation: A planar space (i.e., a flat, two-dimensional surface) can be divided into smaller polygons (i.e., planar figures with straight
sides) which cover the original plane without any overlap or gaps. This is called a tessellation or a tiling. Everyday examples for tessellations
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are brick walls or floor tiles.

realization of a planar point pattern (see Box 1) (Larkin et al,,
1997; Torii, 2012). Another prominent example for such a pattern
from the plant kingdom are epidermal hairs, called trichomes,
for which the regularity of the patterning process has been stud-
ied (Greese et al., 2012). The spatial distribution of trichomes
is regulated by a genetic network and involves cell-to-cell com-
munication. Trichome formation is promoted by three proteins
that form an activating protein complex which can be inhib-
ited by a fourth protein (Hiilskamp, 2004; Digiuni et al., 2008).
Because the inhibitor is mobile (i.e., non-cell autonomous), it
effectively coordinates the patterning process between cells. In
order to enable data-driven modeling for pattern formation, it is
necessary to derive and evaluate models based on experimental
data. To this end, statistical methods are needed which are suit-
able for the available type and amount of data and the studied
system.

2. QUANTITATIVE CHARACTERIZATION OF NOISY POINT
PATTERNS

The quantification of spatial variability is tightly related to the
determination of the degree of regularity in a specific pattern. In
other words, to be able to describe any kind of variability between
two patterns, a suitable method to describe each pattern by itself is
needed. Understanding the geometrical properties of a biological
pattern helps to explore its functional role and its development

(Galli-Resta et al., 1999). Moreover, appropriate statistical mea-
sures will be needed to analyze the effect of system perturbations
(e.g., mutations), which will help together with mathematical
models to elucidate the mechanistic role of the different compo-
nents in a regulatory network. In the following, we first outline
how planar point patterns arising in biology have been analyzed
and then focus on the methods applied to trichome patterns.
One statistical method frequently used to assess a point pat-
tern is the mean neighbor distance, which is compared to the
mean neighbor distance of a completely random distribution
(Clark and Evans, 1954). This was applied to stomata distribu-
tion where typically an ordered distribution was found (Miskin
and Rasmussen, 1970; Croxdale, 2000). Because the next neigh-
bor method is simple, it is easy to apply. However, all detailed
information or spatial aspects of the pattern are lost. Therefore,
more advanced methods were applied to analyze the stomata
pattern (Martins et al., 2011). Trichome patterns have been exam-
ined through tests for deviation from randomness using quadrat
counts (see Box 1) and their ratio of variance to mean (Smith
and Watt, 1986), through analogous tests using nearest neigh-
bor distances (Larkin et al., 1996), and through classification of
mutant patterns based on cluster frequency and distance between
trichomes (Schnittger et al., 1999). A variety of more advanced
methods have been discussed and compared for spatial point pat-
terns in general, e.g., Boots (1986); Legendre and Fortin (1989);
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Chiu (2003). Different indices of dispersion that are based on dis-
tances and counts in quadrats have been used to compare plant
patterns (Pielou, 1960; Goodall and West, 1979). Measures based
on various graphs such as the Voronoi diagram and the minimal
spanning tree have been used to analyze biological point patterns
(Dussert et al., 1987; Wallet and Dussert, 1997) and geograph-
ical settlement patterns (Boots, 1986), and different structure
indices as well as correlation functions have been applied to
quantify forest structures (Pommerening, 2002). An extensive dis-
cussion of methods to analyze the spatial structure of ecological
populations, illustrated on vegetation data, is given by Legendre
and Fortin (1989), which includes correlograms, spectral analy-
sis, periodograms, variograms, clustering, mapping, and testing
for autocorrelation. Alternative approaches that characterize the
geometry and topology of spatial patterns are Minkowski func-
tionals, which have been applied to chemical reaction-diffusion
systems (Mecke, 1996) and galaxy clusters (Kerscher et al., 1997).
A popular method to analyze stochastic patterns is the structure
function, which is the Fourier transform of the density correlation
function, the spatial pendant of the power spectrum (Torquato,
2002). Peaks in the structure function denote regularity of the
stochastic pattern. However, many of the well-known methods
used in physics and astronomy require large domains and/or large
sample sizes, which make them less suitable for the data typ-
ically available for biological systems. For instance, the sample
size needed to obtain smooth statistics for the structure function
grows exponentially with the noise in the pattern (Bastian, 2013).
An estimate reveals that for the noise present in trichome pattern-
ing a sample size of the order of 10* would be necessary (Bastian,
2013). Because one leaf with its trichome distribution represents
one realization of the noisy patterning process, this is beyond
the currently available amount of data. In general, the variety of
strategies applied to investigate spatial structure illustrates that
the choice of method is not straightforward and depends on the
data and the question to be examined.

A suitable characterization of spatial trichome patterns is built
on a tessellation (see Box 1) of the trichome positions, which
splits the domain of the leaf into polygons that do not overlap
or intersect, i.e., together they exactly cover the domain. A com-
monly used tessellation is the Voronoi diagram (Okabe et al,,
2000), in which each point is assigned a polygon that contains that
part of the domain that is closer to its defining point than to any
other point (Figure 1A, left). Hence, the Voronoi diagram can be
interpreted as an assignment of an influence area around each tri-
chome that results from the inhibitory signal. Notably, the inverse
of its area can be taken as a local density at its defining point
(Duyckaerts et al., 1994). When pairs of trichomes whose Voronoi
polygons share a common edge are connected by a straight line,
the result is a Delaunay triangulation of the leaf (Figure 1A, left).
The agglomerate of all triangles involving a selected trichome is
called the contiguous Voronoi polygon, and it can also be used
to calculate local density (Schaap and van de Weygaert, 2000).
Various modifications have been proposed to adapt Delaunay tri-
angulations to specific biological systems, resulting in different
neighborhood graphs (Jaromczyk and Toussaint, 1992; Raymond
et al.,, 1993). Pairs of neighbors can be defined by the edges
present in the modified triangulation, such that each trichome

is assigned a set of (mostly six) neighbors (Figure 1A, right)
(Greese et al., 2012). Similar definitions of neighbors on graphs
have been used elsewhere (Shapiro et al., 1985; Tanemura et al.,
1991; Raymond et al., 1993; Duyckaerts et al., 1994; Eglen and
Willshaw, 2002). For trichomes, the neighborhood concept has
been used to restrict commonly used tessellation-based methods
to the local scale that is important for developmental patterning
systems (Greese, 2011; Greese et al., 2012).

A good visual impression of the order and symmetry inherent
in a given point pattern can be obtained from a spatial auto-
correlogram (Galli-Resta et al., 1999; Raven and Reese, 2002).
This graphical representation of a given set of points is con-
structed by superimposing one copy of the pattern per point
whereby the point is placed in the origin of the coordinate system
(Figure 1B). For increasingly noisy patterns, the autocorrelogram
becomes less distinct because the correlation is lost (first long-
range, then short-range). If the region around the origin is devoid
of points, i.e., an exclusion zone exists (Galli-Resta et al., 1999;
Raven and Reese, 2002), the pattern exhibits a minimal dis-
tance between points, which can be seen as the simplest possible
type of order (Larkin et al., 1996). The autocorrelogram can be
used to extract the density recovery profile (Galli-Resta et al.,
1999; Raven and Reese, 2002), which is an approximation of the
autocorrelation function. In general, the central part of the auto-
correlogram is most important for its interpretation, which allows
a truncation of the plot to a chosen radius (compare Raven and
Reese, 2002). The spatial autocorrelogram can be further adapted
for the local analysis of trichome patterns and to avoid various
artifacts (Figures 1C-E) (Greese, 2011). This modified autocor-
relogram shows the distribution of neighbor distances and angles
and hence gives a first impression about the regularity in a given
point pattern. A more rigorous quantification that also allows
easy comparison of different patterns requires the derivation of
appropriate mathematical functions.

Measures suitable for the characterization of the regularity
of the trichome pattern are local measures based on the neigh-
borhood of each trichome. For each individual trichome, the
distance to its neighbors, the angle between pairs of adjacent
neighbors, and the anisotropy of the neighbors’ distribution can
be measured (Greese et al., 2012). The local anisotropy can be
described using the eigenvalues of the inertia tensor (Goldstein
et al., 2002). Their inverse values correspond to the length of the
principal axes of an ellipse (Figure 1A, right), such that their ratio
determines the deviation from isotropy (i.e., the case where the
ellipse is a circle). For all measures it is advantageous to use the
variation coefficient, i.e., the ratio of the standard deviation to
the mean, in order to obtain measures independent of scale or
density.

Other studies have used various related tessellation-based
measures to characterize spatial point patterns (Boots, 1986;
Marcelpoil and Usson, 1992; Duyckaerts et al., 1994; Croxdale,
2000; Schaap and van de Weygaert, 2000; Chiu, 2003), mostly
focusing on the area of the Voronoi polygons or Delaunay tri-
angles. Depending on whether one wants to detect differences
in point density or measure spatial arrangement independent of
point density, different measurements are appropriate. In order
to estimate the overall amount of noise present in the observed
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FIGURE 1 | Quantification of trichome patterns. (A) Neighborhood
measures for trichomes (black dots) on a single leaf. The left panel shows the
Voronoi diagram (light red lines) and the modified Delaunay triangulation (light
green lines) as well as the Voronoi polygon (dark red line) and the contiguous
Voronoi polygon (dark green line) for a selected trichome. The right panel
shows a magnification of one trichome (in the center) with its six neighbors
and the neighbor distances and angles (blue lines and arcs). The anisotropy is
related to the ratio of the principal axes of the ellipse (red lines). Reproduced

with permisson from Greese et al. (2012) ©The Institution of Engineering and
Technology. (B) Construction of an autocorrelogram for a simple pattern
containing three points. Three copies of the original pattern are
superimposed such that each time one point lies in the origin of the
coordinate system. (C) Truncated autocorrelogram for a data set with real
trichome data. (D) Additionally rotated autocorrelogram. (E) Further reduced
autocorrelogram where the mean and the standard deviation of the neighbor
distances and angles are highlighted.

trichome pattern, one can compare the values of the neighbor-
hood measures obtained from experiments with the correspond-
ing values for hexagonal point patterns with increasing noise level.
Figures 2A-C show hexagon patterns for an increasing amount of
irregularity (see text box for details). Aggregating the differences
between the experimentally obtained values and the values for a
noisy hexagonal point pattern into an objective function allows
for estimation of the noise level which best reflects the noise in
trichome patterning (Figure 2D, see Shapiro et al., 1985; Kinney
etal., 2001 for similar calibration methods). This approach shows
that trichomes show about 44% noise in relation to hexagonal
patterns (see text box Figure 2 or Greese et al., 2012 for details),
which is considerable for a tightly regulated patterning system.
What does this mean for the patterning process? As it appears
the patterning mechanism is important, as contrasted to a purely
random process, to achieve a more or less homogeneous tri-
chome density. The exact spatial distribution seems to be of less
importance.

3. SOURCES OF NOISE IN TRICHOME PATTERNING

The trichome pattern is noisy, somewhat midway between a reg-
ular and a random pattern (Greese et al., 2012). But what are the
sources of this observed irregularity? A clear distinction between
different sources of noise (e.g., molecular processes, environmen-
tal conditions) is a challenge in any experimental or modeling
study (Swain and Longtin, 2006). Because cells in a tissue will
slightly vary in their protein content at a given time point (Kim
and Price, 2010; Snijder and Pelkmans, 2011; Jeschke et al., 2013;
Little et al., 2013), one first step is to investigate the effect of
spatially varying initial states or reaction rates on the simulated
trichome pattern (Page et al., 2005; Greese et al., 2012).

The trichome initiation process resembles an activator-
inhibitor system with an immobile activator (Gierer and
Meinhardt, 1972; Meinhardt and Gierer, 1974; Koch and
Meinhardt, 1994). If both, the activator and the inhibitor, are
mobile, the resulting pattern depends only weakly on the ini-
tial conditions (Maini et al., 1997; Page et al., 2005). In a fast
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c To estimate the amount of noise in the experimentally observed trichome pattern
g . a possible route is the following. For each measure m; extracted either from
8 experimental data or a perturbed hexagon pattern the corresponding probability
< % distributions are estimated. The squared differences between the distributions
6 P; obtained from data and the distributions P; for the noisy hexagon pattern
g R are aggregated into the objective function:
0.02
g . . 2
; . A(e):Z/(Pi(mi)—Pi(mi,e)) dm.
g oot *, ‘
c ", R The parameter € controls the amount of noise in the hexagon pattern: each node
o ".u "“...m“' in the hexagonal grid is moved by adding a random vector ¥ with components
8 o iiaiscvtilaluiaeiet it il Vg ~ N (0;62) to its position (A" denotes the normal distribution with 0 mean
2 03 o4 98 95 e 08 and ed/2 variance). The minimum of A(e) provides an estimate of the amount
noise level in hexagonal pattern of noise in the trichome pattern.
FIGURE 2 | Estimation of the amount of noise in the experimentally neighbors, and the anisotropy of the neighbors distribution of the
observed trichome pattern. (A-C) A hexagon pattern with increasing observed trichome and a noisy hexagonal pattern. The minimum shows
amount of noise, controlled by the parameter ¢ (A: ¢ =0.1, B: ¢ =0.3, that trichomes resemble a hexagonal pattern with a noise level of 0.44.
C: ¢ =0.5). (D) Difference between the local irregularity as measured by Reproduced with permission from Greese et al. (2012) ©The Institution
the distance between neighbors, the angle between pairs of adjacent of Engineering and Technology.

initial phase the early activator peaks are formed. These are usu-
ally not very pronounced. On a longer time-scale the activator
peaks align and grow. Biologically, only the peaks at the later stage
lead to an observable result, unless it becomes feasible to track
the protein content in single cells in a tissue. The mobility of the
activator allows the activator peaks to move slightly for optimal
alignment (Holloway and Harrison, 1995; Ward and Wei, 2002).
However, in the singular limit of vanishing activator mobility the
optimal alignment of the peaks is impaired, and noise from the
initial conditions remains in the final pattern. This can be seen
in Figures 3A,B, where we show examples of simulation results
for increasing mobility of the activator (see Figure 3, text box
for further explanation). In Figure 3C the local irregularity of the
simulated trichome pattern is plotted against the mobility of the
activator (which is a complex consisting of GL1 and GL3 in case of
the simulated trichome system). The pattern becomes more irreg-
ular with decreasing activator mobility, which is a known effect
in reaction-diffusion systems (Holloway and Harrison, 1995). In
other words, the cell autonomy of the activator in trichome pat-
terning restricts the degree of regularity (see Greese et al., 2012
for details).

In general, if the parameters of a pattern formation network
vary slightly from cell-to-cell, the resulting pattern will have a
lower degree of regularity. How much the spatial variability of a
single parameter affects the pattern depends on the details of the
reaction network. Figure 3D shows as examples the dependence
of the local irregularity on the activation of GLABRA3 (one of the
patterning proteins) by the activator (solid lines), degradation of
the activator (dashed lines), synthesis rate of GLABRA3 (dashed-
dotted lines) (see Greese et al., 2012 for details). One interesting
aspect of the effect of cell-to-cell variability on patterning is that
protein binding rates strongly vary under conditions of macro-
molecular crowding (Minton, 2005, 2006; Grima, 2010). Because
the abundance of molecules will, in general, slightly differ from
cell to cell, the macromolecular crowding will vary and as a con-
sequence also the protein-binding rates and in turn the resulting
pattern will be less regular (Greese et al., 2012). The specific effects
of crowding on gene expression have also been addressed in pure
modeling and simulation studies, which were able to separate the
effects related to binding and diffusion rates (Morelli et al., 2011)
and to show the dependency on transcript levels on the volume
fraction (Matsuda et al., 2014).
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The molecular network underlying trichome patterning. GL1
and GL3 bind to form the activator AC, which induces GL2 and
therefore trichome formation. Alternatively, TRY and GL3 bind
to form the inactive complex IC, thereby inhibiting trichome
formation. AC regulates the expression of GL1, GL2, GL3, and
TRY, and TRY is transported to neighboring cells (wavy black
c D arrow). The corresponding differential equations read:
o8 ep— [J B4[gll]ey = k1 + k2lacey — [gl1]zy (K16 + K17(g13]zy)
@ os o L o o < angle ° OelglBlay = ka + ks[aclzy — [9l3]ay (ke + K17[gll]ay + Kr(trylay)
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K] 075 < < . = Oilacey = k17[gl1])ay[918]ay — k1alacley + krakis ([aclay) -
3 a L o
% 06/ i ° 0 S Neighboring cells are coupled by passive transport of TRY and
o N g AC, denoted by (---). The cell-to-cell variability of the network
2 05 T . 5 parameters k; can be modeled by stochastic parameter fields:
g i . § .
€ o4 . E B =k + hoy  with MNA/(U;%).
o #
% oo ot (003 004005 006 007 3% 002 0.04 006 008 04 0.12 0.14 016 0.18 02 N denotes the normal distribution with 0 mean and ed/2
activator mobility cell-to-cell variability variance; & determines the noise in the system.
FIGURE 3 | Spatial variability in trichome patterns and influence of normalized mean anisotropy (circles). All measures decrease for
different sources of noise. (A,B) Effect of the reduced activator mobility  increasing activator mobility, thereby illustrating less variability. (D) Effect
(k15). (A) Immobile activator (kj5 = 0). This situation resembles the of random spatially inhomogeneous parameters on the simulated
trichome patterning system as the activating complex of GL1 and GL3 is  trichome pattern with mobile activator. The plot shows the mean relative
cell autonomous. The disorder from the random initial conditions remain neighbor measures (distances lower group, angles middle group,
in the final pattern. (B) With increasing activator mobility (k15 = 0.075) anisotropy upper group) for three selected model parameters that are
the peaks widen and the pattern becomes more regular. (C) Effect of represented by line styles. (C,D) All measures are normalized to the
noisy initial conditions on simulated trichome patterns with mobile values of a random point pattern, i.e., zero denotes a perfectly regular
activator. The plot shows the normalized mean variation coefficient of the and one a completely random point pattern. Reproduced with permission
neighbor distances (squares) and angles (triangles) as well as the from Greese et al. (2012) ©The Institution of Engineering and Technology.

4. PERSPECTIVE

To analyze spatial patterns in case of small sample sizes and few
repetitions, it is useful to focus on methods that are sufficiently
local and sensitive to subtle differences. Local measures which
quantify the regularity of the local environment of each trichome
as defined by tessellations can successfully be applied to compare
experimental observation and results from computer simulations
(Greese et al., 2012).

Any data analysis task poses several challenges, such as obtain-
ing enough meaningful data, selecting appropriate methods, and
linking observations to causes. The comparison of spatial patterns
has often been done by simply looking at them and decid-
ing whether they agree or not (sometimes referred to as “eye-
balling”), which can be problematic as two realizations that look
alike do not necessarily have to arise from the same mechanism.
The use of simplistic measures may not be helpful as two very dif-
ferent patterns can lead to the same measured value, e.g., when
the nearest neighbor distance is compared. Hence, it is impor-
tant to carefully select the method(s) for analysis and make sure
that the system under study can be adequately described and dif-
ferent situations can be discriminated. Regarding the analysis of
noise, determining its overall magnitude is only the first step, the
next—more interesting and challenging—part is then to trace it
to various aspects of the system, in other words, find the sources
of noise.

Variability is generally present in any natural process and
hence introduces an additional level of complexity in the inves-
tigation of the process. A biological process may be strongly
influenced or almost unchanged by noise, depending on the
specific kind of variation and the properties of the particular
system. Hence, the variability should—whenever possible—be
treated as part of the process and not merely seen as a nui-
sance to be avoided. With the current trend of supplement-
ing qualitative descriptions by quantitative measurements, it
becomes not only feasible to estimate parameters for models but
also necessary to compare results in more detail. In addition
to a sound analysis of experimental data, it is very instruc-
tive to generate predictions with the help of a mathematical
model because this approach allows the evaluation of differ-
ent assumptions (including unrealistic situations like a noise-
free system) and the separation of tightly coupled effects (like
crowding on different reaction rates). All these efforts together
will advance the understanding of the biological process under
study.
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