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One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype
relationship in plant cellular systems. Integrated network analysis that combines omics
data with mathematical models has received particular attention. Here we focus
on the latest cutting-edge computational advances that facilitate their combination.
We highlight (1) network visualization tools, (2) pathway analyses, (3) genome-scale
metabolic reconstruction, and (4) the integration of high-throughput experimental data
and mathematical models. Multi-omics data that contain the genome, transcriptome,
proteome, and metabolome and mathematical models are expected to integrate and
expand our knowledge of complex plant metabolisms.
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INTRODUCTION
Plants are a paramount source of food, energy, and valuable
compounds. The developing field of plant systems biology has
provided outstanding insights into how these products are syn-
thesized; its ultimate goal is an understanding of the genotype-
phenotype relationship in cellular systems (Kell, 2002; Benfey
and Mitchell-Olds, 2008; Weckwerth, 2011). Recent technical
advances in high-throughput sequencing and various analytical
instruments have made it possible to comprehensively mea-
sure and analyze genes, transcripts, proteins, and metabolites
(Fukushima et al., 2009; Lei et al., 2011; Lucas et al., 2011; Stitt,
2013). These omics technologies are not only platforms that mon-
itor the cellular inventory, but they also provide the opportunity
to evaluate cellular behaviors from a multi-level perspective and
enhance our understanding of plant systems (Krouk et al., 2010;
Saito and Matsuda, 2010; Dhondt et al., 2013).

Major effective and efficient approaches to analyze omics
data are network- and pathway analysis (for example, see,
Ramanan et al., 2012; Carter et al., 2013). The former is
based on the network concept derived from mathematical graph
theory and typically represents a biological component (e.g.,
a gene) as a node and physical-, genetic-, and/or functional
interactions as a link in the network to visualize and inter-
pret the omics data (“data-driven approach”). On the other
hand, pathway analysis is a knowledge-based approach that
involves the associated biochemical pathway. Enrichment anal-
ysis approaches can be combined with pathway analysis to
evaluate whether a particular molecular group is significantly
over-represented. Examples are gene set enrichment analysis
(Hung et al., 2012), Metabolite Set Enrichment Analysis (MSEA)

(Xia and Wishart, 2010), and other functional enrichment
analyses using gene ontology (GO) and biochemical pathways
(for comprehensive reviews see Chagoyen and Pazos, 2013 or
Khatri et al., 2012).

For a holistic view of plant metabolisms, measuring the
metabolic flux by experimental flux analysis, e.g., metabolic
flux analysis (MFA) (Libourel and Shachar-Hill, 2008; Sweetlove
et al., 2014) or in silico flux modeling, e.g., flux balance anal-
ysis (FBA) (Kruger and Ratcliffe, 2012; Junker, 2014) is also
important. FBA is a constraint-based approach for predicting
flux through reactions in a quantitative manner (Orth et al.,
2010; Sweetlove and Ratcliffe, 2011); it complements experimen-
tal flux analysis. It does not use knowledge of kinetic parameters
from metabolic reactions but relies solely on the stoichiometric
balance assuming steady-state conditions. These models can be
extended to a level that almost fully includes the metabolism.
Indeed, the past few years have seen an increase in the use
of genome-scale metabolic models in plants (Collakova et al.,
2012; Seaver et al., 2012; De Oliveira Dal’molin and Nielsen,
2013). Integrated network analysis by combining omics data
with mathematical models has become popular. In this review
we focus on the latest cutting-edge computational advances
for analyzing omics networks and performing pathway anal-
ysis. We highlight (1) network visualization tools, (2) path-
way analyses, (3) genome-scale metabolic reconstruction, and
(4) the integration of high-throughput experimental data with
mathematical modeling. These topics correspond to interaction-
based and constraint-based approaches to the mathematical
modeling of cellular networks as classified by Stelling (2004),
Lewis et al. (2012).
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NETWORK VISUALIZATION AND PATHWAY ANALYSIS
TOOLS FOR INTERACTION-BASED APPROACHES
The relationship between the biological components of a bio-
logical network includes four types of interactions: physical
interactions (e.g., drug targets Yildirim et al., 2007 and protein-
protein interactions Brandao et al., 2009), genetic interactions
(Costanzo et al., 2010), and functional interactions (e.g., bio-
chemical/signaling pathways Caspi et al., 2012; Kanehisa et al.,
2014). Interaction-based approaches such as topological analy-
sis (e.g., shortest path search Yu et al., 2014, centrality analy-
sis Carrera et al., 2009, and network module detection Altaf-
Ul-Amin et al., 2006), correlation network analysis (Provart,
2012), or enrichment analysis (Hung et al., 2012) have been
used to construct and analyze biological networks from omics
data. For example, GeneMANIA (Montojo et al., 2010; Zuberi
et al., 2013) is a web-based interaction network for the visual-
ization of physical, genetic, and functional interactions. Network
visualization tools (e.g., igraph, http://igraph.org/) can not only
describe a biological network, but also calculate and per-
form computational analysis (for a comprehensive review see
Gehlenborg et al., 2010). Furthermore, network visualization
tools assist the database client and facilitate data integration
(Table 1).

NETWORK VISUALIZATION AND PATHWAY ANALYSIS TOOLS
Data analysis of biological networks by graph representations
includes topological analysis (for an example see, Toubiana et al.,
2013). For functional networks, correlation and enrichment anal-
yses can be used. Correlation analysis is based on associations
between biological components (e.g., genes and metabolites).
The Pearson correlation coefficient is a special case of associa-
tion that evaluates linear relationships among molecular abun-
dances (Kusano and Fukushima, 2013). Enrichment analysis
uses a given molecular group such as gene ontology and bio-
chemical pathways. Some network visualization tools implement
these approaches while others involve independent, plug-in soft-
ware modules (e.g., Cytoscape Smoot et al., 2011 and VANTED
Rohn et al., 2012b). Cytoscape apps/plug-ins include BiNGO
(Maere et al., 2005) for GO enrichment analysis and FluxMap
for FBA (Rohn et al., 2012a). Network analysis platforms such
as Enrichment map (Merico et al., 2010) feature system flexibil-
ity and expandability for omics data. Most network visualization
tools manage and visualize network data that correspond to
the type of interaction. For example, when performing a qual-
ity check of protein-protein interaction data generated from a
high-throughput yeast two-hybrid screening system, these tools
can visualize a giant network component from a large num-
ber of interactions (for example see Arabidopsis Interactome
Mapping Consortium, 2011). For functional interactions, when
mapping transcriptomics profiles onto metabolic pathways, a
pathway-level representation of the gene expressions involved can
be assessed (Usadel et al., 2005; Sakurai et al., 2011). The network
visualization tool requires a sophisticated function, structured
and controlled functional categories, and vocabularies, to inspect
the profile data on a pathway. Two typical functional categories
are the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2014) and GO, which can be used to evaluate

perturbed pathways in the omics data. For physical interaction
networks, concerted efforts are being made to share data formats
that visualize biological networks such as the PSI-MI format (Van
Roey et al., 2013) in IntAct (Kerrien et al., 2012).

NETWORK/PATHWAY DATA FORMATS
There are many data formats for functional interaction net-
works, especially biochemical pathway databases. As KEGG XML
(KGML) (Kanehisa et al., 2014), BioPAX (Demir et al., 2010),
and SBML (Hucka et al., 2003) are available for pathway data
exchanges, a network visualization tool that implements and
supports these data formats as import and export functions
is desirable. For example, AraCyc (Zhang et al., 2005) and
Arabidopsis Reactome (Tsesmetzis et al., 2008) are also repre-
sented in the BioPAX format (Table 1). BioPAX is defined in
Web Ontology Language (OWL); it contains the most compre-
hensive ontology for representing pathway knowledge. It can
also serve as a Resource Description Framework (RDF) for
describing information on the world-wide-web (Jupp et al.,
2014) and it is expected to utilize semantic data integration.
According to Strömbäck and Lambrix (2005), SBML (Hucka
et al., 2003) is the most widely used and finely tuned for-
mat for mathematical models (e.g., the FBA model). KEGG
pathways are manually drawn and the layout is created by
domain experts. Because KGML includes all KEGG pathway lay-
out information, it uses another SBML-based software/database
to reconstruct a pathway map. Although it is a de facto stan-
dard network visualization tool and supports most data formats,
Cytoscape (Smoot et al., 2011) cannot seamlessly integrate all
data resources irrespective of the data schema and controlled
ontology. There are considerable community-wide efforts in the
sustainable development and integration of various database
resources with RDF (for example see BioHackathon Katayama
et al., 2014, the Rhea database Alcantara et al., 2012, and
Path2Models Buchel et al., 2013). The number of Wiki-based
databases (Arita, 2009) is also increasing; this community cura-
tion process includes WikiPathways (Hanumappa et al., 2013)
with PathVisio (Van Iersel et al., 2008) and LipidBank (http://
jcbl.jp/wiki/Category:LB). Currently, several pathway resources
are often combined with SBML to use FBA (see Section Genome-
scale metabolic reconstruction in plants and constraint-based
approaches).

VISUALIZATION OF OMICS DATA FOR EXPLORING BIOLOGICAL
NETWORKS
Optimal network visualization tools must allow the seam-
less integration of multiple data resources and their compar-
ison, irrespective of differences in the data formats generated
by primary data providers. However, with currently available
network visualization tools, the integration of different data
resources remains difficult although the visualization of omics
data has been partially achieved with tools such as VANTED and
Pathview (Luo and Brouwer, 2013). As an example, to visual-
ize metabolomic data we used Cytoscape with its app/plug-in
KEGGscape (http://apps.cytoscape.org/apps/keggscape) (Nishida
et al., 2014) and VANTED. KEGGscape supports KEGG pathway
files in KGML format and reproduces KEGG pathway diagrams
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Table 1 | List of software discussed in this review: Network tools for metabolic system biology analysis and related data formats.

Software

name

Description Supported data

formats (built-in

annotation data)

Interface/

Language

Reference/Author

name

URL

NETWORK AND PATHWAY ANALYSIS TOOL

igraph Library for the analysis of networks. It
supports topological- and centrality analysis.

(in most cases)
adjacency list,
edge list, GraphML

R, Python,
C/C++

http://igraph.org/index.

html

Networkx A Python language software library for the
analysis of networks. This package supports
topological- and centrality analysis.

(in most cases)
adjacency list, edge
list, GraphML, json

Python http://networkx.github.io/

CentiScaPe Centralities analysis plug-in for Cytoscape. Java Scardoni et al. (2014) http://apps.cytoscape.

org/apps/centiscape

CentiLib Centralities analysis plug-in for VANTED. Java Gräßler et al. (2012) http://centilib.

ipk-gatersleben.de/

BiNGO Gene ontology enrichment analysis plug-in
for Cytoscape.

Java Maere et al. (2005) http://apps.cytoscape.

org/apps/bingo

FluxMap FBA plug-in for VANTED. Java Rohn et al. (2012a) http://vanted.

ipk-gatersleben.de/
addons/fluxmap/

Enrichment
Map

A Cytoscape app/plug-in to perform and
visualize pathway/gene set enrichment
analysis.

Java Merico et al. (2010) http://apps.cytoscape.

org/apps/enrichmentmap

Network visualization

Cytoscape A widely used biological network analysis
platform. This software supports many
biological network data formats and its visual
appearance is fully customizable. The
’NetworkAnalyzer’ default plug-in computes
basic properties of the whole network.
A huge number of plug-ins is available from
the Cytoscape App Store. In contrast to
VANTED, this software does not support
KGML by default.

SBML, BioPAX,
edge list, PSI-MI

Java Smoot et al. (2011) http://www.cytoscape.

org/

KEGGscape A Cytoscape plug-in for KGML import. KGML Java Nishida et al. (2014) http://apps.cytoscape.

org/apps/keggscape

VANTED Along with Cytoscape, a popular network
analysis software that also supports many
biological network data formats. Its visual
appearance is fully customizable.

SBML, BioPAX,
edge list, KGML,
DOT

Java Rohn et al. (2012b) http://VANTED.

ipk-gatersleben.de/

Kappa-View A web-based correlation network viewer on
metabolic pathway maps.

User’s own omics
data (AraCyc
version8)

Java Sakurai et al. (2011) http://kpv.kazusa.or.jp/

MapMan The view is not a network graph, but it is
useful for displaying omics data onto
diagrams of metabolic pathways or other
processes.

User’s own omics
data (MapMan
ontology)

Java Usadel et al. (2005) http://mapman.gabipd.

org/

Pathview An R/Bioconductor package for
pathway-based data integration and
visualization.

Bioconductor
compliant data

R Luo and Brouwer
(2013)

http://www.

bioconductor.org/
packages/release/bioc/
html/pathview.html

(Continued)
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Table 1 | Continued

Software

name

Description Supported data

formats (built-in

annotation data)

Interface/

Language

Reference/Author

name

URL

GeneMANIA A web-based interaction network (including
physical and genetic interactions, and
co-expression and prediction networks) viewer.
Also accessible via a Cytoscape plug-in.

Gene list Java Montojo et al. (2014) http://genemania.org/

CellDesigner A software for browsing and modifying existing
SBML models.

SBML Java Funahashi et al.
(2008)

http://www.

celldesigner.org/

PathVisio Pathway drawing and analysis tool for
WikiPathways (http://www.wikipathways.org).

GPML Java Van Iersel et al.
(2008)

http://www.pathvisio.

org/

Data format

KGML XML for the KEGG PATHWAY database (available
without the KEGG FTP academic subscription).
Commonly used to reconstruct a KEGG pathway
network layout. It can be used for the
visualization of pathway maps of a multitude of
different organisms.

Kanehisa et al. (2014) http://www.kegg.jp/
kegg/xml/

BioPAX General format for pathway data. It is defined in
OWL and represented in the RDF/XML format.
Its main focus is data exchange and integration.

Demir et al. (2010) http://www.biopax.

org/

SBML Tuned and commonly used format for
mathematical models of biological
networks/pathways. Almost all metabolic
reconstructions are written in this format.

Hucka et al. (2003) http://sbml.org/

PSI-MI Suitable format for representing details about
molecular-, especially protein-protein interaction
data. Arabidopsis Interactome Mapping
Consortium data are distributed in this format.

Van Roey et al. (2013) https://code.google.

com/p/psimi/

as a standard network object in Cytoscape. Users can eas-
ily integrate their own datasets with biologist-friendly KEGG
pathway diagrams. Figure 1 is a network representation of the
time-series metabolome (Espinoza et al., 2010) in Arabidopsis
thaliana using KEGGscape. We integrated the metabolite pro-
files and the tricarboxylic acid (TCA) cycle with the KEGG
compound IDs as the keys. Although Cytoscape and VANTED
are different in design, both tools can visualize the same fig-
ure (Supplemental Figure S1) and we posit that they will be
widely used to visualize omics-profiles on pathway maps. Such
network visualization allows users to consider pathway-related
profile variations that cannot be inferred immediately from
the profile.

GENOME-SCALE METABOLIC RECONSTRUCTION IN PLANTS
AND CONSTRAINT-BASED APPROACHES
Both MFA and FBA use stoichiometric simulation to estimate and
predict cellular metabolic flux. Although MFA with 13C labeling
is the most promising approach to characterize metabolic phe-
notypes in a cell, technological issues prevent its application to
complete metabolisms. In this section we focus on genome-scale
metabolic reconstruction and FBA.

A GENOME-SCALE METABOLIC RECONSTRUCTION
Due to the already extremely large and growing amount of
genomic sequences yielded by high-throughput techniques,
metabolism reconstruction from an organism’s genome sequence
has become possible (Thiele and Palsson, 2010). Although
the metabolism has been reconstructed for only a few of the
sequenced plant genomes, it has been modeled in some plants
and crops (Seaver et al., 2012; De Oliveira Dal’molin and Nielsen,
2013). The first step in metabolic reconstruction from genome
sequences involves the collection and integration of compounds,
enzymes, genes, and curated published pathway databases.
Subsequently, gene-protein-reaction (GPR) relationships in an
organism (Fell et al., 2010) are identified and a stoichiometric
matrix consisting of substances and reactions is generated. This
draft metabolism requires further curation including metabolic
gap filling and FBA. To explore flux states computationally, FBA
uses the optimization of an objective function and predicts the
growth rate of an organism or the production rate of industrially
and medicinally important metabolites (Feist and Palsson, 2010).
The collection of information on the biomass including proteins,
amino acids, and lipid(s) as an objective function is required.
Because these steps tend to be time-consuming, rapid algorithms
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FIGURE 1 | An example of the network representation of time-series

metabolome data in Arabidopsis using KEGGscape (http://apps.

cytoscape.org/apps/keggscape). The datasets were sampled with 4-h
resolution under a 16 h/8 h light/dark cycle at 20◦C (Espinoza et al., 2010).
We used the KEGG pathway map (ath00020), the tricarboxylic acid (TCA)
cycle, or the citrate cycle. We queried MetMask (Redestig et al., 2010) for

a list of KEGG compound IDs associated with a list of predefined
metabolite names and picked up the most pathway-mapped KEGG
compound ID for each metabolite. Metabolite names shown in red
represent detected compounds in the dataset. The diurnal changes were
visualized on bar charts ranging from −0.3 to 0.3 in log-mean values. ZT,
Zeitgeber time.

for reconstructing genome-scale metabolisms have been devel-
oped (Chen et al., 2012; Kim et al., 2012). On SEED (Henry et al.,
2010) and PlantSEED (Seaver et al., 2014) servers a significant
number of genome-scale metabolisms in different organisms has
already been reconstructed. In this review we do not present a
comprehensive review of software tools/algorithms involved in
reconstructing a genome-scale model and FBA.

RECONSTRUCTED PLANT METABOLISMS
The first genome-scale models in plants were designed and
published for barley seeds and heterotrophic Arabidopsis cells.
Grafahrend-Belau et al. (2009) constructed a compartmentalized
barley seed metabolism model and performed mathematical sim-
ulations to investigate storage patterns that included responses
to environmental and genetic perturbations (Grafahrend-Belau
et al., 2009). Their comparison of published data for grain yields
and growth rates with in silico data showed good reproducibil-
ity, indicating the usefulness of their model for predicting the
seed storage metabolism. Poolman et al. (2009) generated an
Arabidopsis genome-scale metabolic model using the AraCyc

database (Poolman et al., 2009). They demonstrated that only
15% of the reactions in the reconstructed network (“minimal net-
work”) were required to produce amino acids, nucleotides, and
other biomass components. For the Arabidopsis metabolism, two
other models are available, i.e., AraGEM (De Oliveira Dal’molin
et al., 2010) and the model of Radrich (Radrich et al., 2010). In
addition, 7 tissue-specific models for Arabidopsis have been pre-
sented (Mintz-Oron et al., 2012). The model of Poolman et al.
(2009) was extended and updated to include more information
on the subcellular localization of enzymes and transport reac-
tions (Cheung et al., 2013) and to model the leaf metabolism
over a day-night diel cycle (Cheung et al., 2014). The approach
with MFA demonstrated a marked improvement in the quan-
titative match between predicted- and experimentally-estimated
fluxes. To assess the central carbon partitioning and enzyme
costs precisely, Arnold and Nikoloski (2014) newly reconstructed
the Arabidopsis metabolism based on genomic and bibliomic
data that included biochemical, genomic, and genetic informa-
tion on compartmentalization and transport processes. Their
model produced all amino acids and was able to estimate various
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cell performances (Arnold and Nikoloski, 2014). De Oliveira
Dal’molin et al. (2010) constructed a genome-scale metabolic
model for C4 plants (C4GEM) (Dal’molin et al., 2010), Saha
et al. (2011) modeled the maize metabolism that contains maize-
specific GPR (Saha et al., 2011), and Grafahrend-Belau et al.
(2013) developed multi-scale metabolic modeling (MMM) for
predicting the plant metabolism at the whole plant level; their
barley model has provided significant insights into the metabolic
capacity for yield stability and crop improvement (Grafahrend-
Belau et al., 2013).

INTEGRATION OF HIGH-THROUGHPUT EXPERIMENTAL DATA
WITH MATHEMATICAL MODELING
The integration of omics data and mathematical models is a
promising approach to gain a better understanding of plant
metabolisms (Bordbar et al., 2014; Saha et al., 2014). Integrated
concepts involving FBA make it possible to predict genotype-
phenotype relationships and to gain important insights into the
metabolic network capacity of an organism (Blazier and Papin,
2012). For example, an integrated model in which gene expres-
sion was combined with a metabolic network (ME model) in
Escherichia coli increased the accuracy for predicting feasible and
computable phenotypes that respond to optimal growth condi-
tions (Lerman et al., 2012). Karr et al. (2012) showed that a whole-
cell model in Mycoplasma genitalium was useful for describing
protein-DNA binding and correlations between DNA replica-
tion and its initiation. Their findings indicate that the integrated
approach makes it possible to study previously unknown biolog-
ical processes in a cell. These earlier studies demonstrated that
high-throughput omics data are available as a constraint param-
eter for generating high-quality metabolic models. The model-
building algorithm (MBA) developed by Jerby et al. (2010) is
used to construct tissue-specific metabolisms from generic mod-
els and omics data (Jerby et al., 2010). Gene Inactivity Moderated
by Metabolism and Expression (GIMME) (Becker and Palsson,
2008) is based on the premise that gene expression data corre-
late with metabolic fluxes and the user’s pre-defined threshold
of expression levels; GIMME removes reactions with expression
levels lower than the threshold from the model and evaluates
metabolic capacities. iMAT (Folger et al., 2011) is similar to
GIMME; it is based on the discretization of input expression
data and returns predictive optimal flux with confidence values
over all network reactions. Metabolic Adjustment by Differential
Expression (MADE) (Jensen and Papin, 2011) uses significant
changes in transcript levels between two or more conditions clas-
sified into so-called “switch” approaches. This is then used to
identify on/off reaction fluxes based on threshold expression lev-
els in the constraint-based models (Hyduke et al., 2013; Saha et al.,
2014).

Two other approaches exist, they are known as “valve”
approaches and they allow the use of gene expression data to limit
the maximum activity of an enzyme. The first, E-FLUX (Colijn
et al., 2009), uses maximum flux constraints as a function of mea-
sured transcript levels without binalization of the expression data.
The other approach is GIM3E, it does not apply arbitrary cutoffs
for expression levels (Schmidt et al., 2013). Protein data can also
be included. PROM (Chandrasekaran and Price, 2010) invokes

a threshold to determine whether an enzyme is in its active
or inactive state and uses information about regulatory inter-
actions including transcription factor-target gene interactions.
Integrative Omics-Metabolic Analysis (IOMA) (Yizhak et al.,
2010) integrates proteomic and metabolomic data into a genome-
scale metabolic model by evaluating kinetic rate equations subject
to quantitative omics measurements. Machado and Herrgard
(2014) who systematically evaluated different methods for the
integration of transcriptome data into constraint-based models
reported that no robust approaches worked well under all exam-
inations (Machado and Herrgard, 2014). In plant science, Topfer
et al. (2013) performed E-FLUX on the Arabidopsis genome-
scale models created by Mintz-Oron et al. (2012) and used
high-resolution time-series transcriptome data (Caldana et al.,
2011) to investigate metabolic capacities in response to different
environmental changes (Topfer et al., 2013). Their optimization-
based approach was able to characterize many aspects of the
metabolic behaviors and functions in response to a changing
environment. In an attempt to integrate metabolome data with
constraint-based mathematical models, Nagele and Weckwerth
(2013) developed a complementary approach to obtain a compre-
hensive view of metabolic capacities in Arabidopsis leaves (Nagele
and Weckwerth, 2013). Using experimentally accessible metabo-
lites and the Mintz-Oron model (Mintz-Oron et al., 2012) they
derived a metabolic model that yielded an overview of metabolic
phenotypes perturbed by genetic and environmental differences.

FUTURE PERSPECTIVES
Metabolic network models have contributed to the study of
metabolic capacity in response to environmental and genetic per-
turbations and to the identification of feasible metabolic networks
in an organism. They provided important clues about genotype-
phenotype relationships. Reconstruction of the metabolism from
genome sequences is a non-trivial task that requires not only
effective computational tools but also integrated knowledge-
based systems. For comprehensive reconstructions, improved
technologies, including more sophisticated algorithms and tools,
better software frameworks for multiple omics data analyses,
improved visualization of biological networks, and more effective
integration of data with mathematical models are needed. Multi-
omics data that include the genome, transcriptome, proteome,
and metabolome plus mathematical modeling can be expected
to deepen our knowledge of complex plant metabolisms and to
illuminate unexplored biological processes.
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