
EDITORIAL
published: 04 November 2014
doi: 10.3389/fpls.2014.00604

Plant Glycobiology—a diverse world of lectins,
glycoproteins, glycolipids and glycans
Nausicaä Lannoo1, Els J. M. Van Damme1*, Cécile Albenne2 and Elisabeth Jamet2

1 Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
2 Laboratoire de Recherche en Sciences Végétales, UMR 5546, Université Paul Sabatier-Toulouse 3/CNRS, Castanet-Tolosan, France
*Correspondence: elsjm.vandamme@ugent.be

Edited and Reviewed by:

Andreas P. M. Weber, Heinrich-Heine-Universität, Germany

Keywords: arabinogalactan proteins, cell wall, hydroxyproline-rich glycoproteins, glycans and glycoconjugates, glycoengineering, lectins, protein-

carbohydrate interactions, sugar signaling

Glycosylation is essential for the growth, development or sur-
vival of every organism (Varki and Lowe, 2009). Defects in glycan
signaling often lead to abnormal development and severe dis-
eases. Glycosylation is ubiquitous and the tremendous structural
complexity of glycans makes it quite impossible to predict the
biological importance of individual structures. Nowadays, gly-
cans are no longer regarded solely as an energy reservoir, but
are associated with storage and transfer of biological informa-
tion as part of a highly complicated multidimensional coding
system (Rüdiger and Gabius, 2009; Gabius et al., 2011; Solís
et al., 2014). Plants synthesize a wide variety of unique gly-
can structures and glycan-binding proteins which play pivotal
roles during their life cycle. The increasing number of excellent
publications, both in primary and applied plant glycobiology
research, demonstrates the great promise and importance of
this area for current and future plant science. With 13 orig-
inal contributions, this Research Topic is a nice compilation
of Mini Reviews and Reviews, an Original research paper, and
an Opinion Article, highlighting important aspects of plant
glycobiology.

In plant glycobiology, N-glycans constitute core structures
which are grafted on polypeptide backbones. Complex N-glycans
are ubiquitously present in plants (Wilson et al., 2001), yet their
biological function is virtually unknown. Nguema-Ona et al.
(2014) provide an overview of the biosynthesis of N-glycans.
Maeda and Kimura nicely review the group of free N-glycans
that are released from misfolded proteins or originate from
fully processed and secreted proteins by the action of the
N-glycan releasing enzymes ENGase and PNGase. They dis-
cuss the impact of these plant complex N-glycans in terms
of plant development and fruit ripening (Maeda and Kimura,
2014). The paper from Strasser continues this discussion and
focuses on recent developments with respect to N-glycan sig-
naling in transgenic A. thaliana and rice plants with dis-
abled N-glycan processing, which ultimately could lead to the
development of some new glyco-engineering tools (Strasser,
2014). Next to N-glycans, photosynthesis-derived small sug-
ars such as sucrose, fructose, glucose, trehalose, and derived
oligosaccharides, which are generally accepted to be involved
in plant energy metabolism and plant growth, have very
recently been suggested to act as signal molecules in impor-
tant plant developmental programs (Ruan, 2014; Smeekens and

Hellmann, 2014). In his Opinion Article, Van den Ende (2014)
focuses on this intimate communication between plant hor-
mones and small sugars, better-known as the sugar sensing
mechanism, and the putative role of small sugars in apical
dominance.

Plant cell walls are formed of complex interlaced networks
of polysaccharides (cellulose, hemicelluose and pectins) and
hydroxyproline-rich O-glycoproteins (HRGPs) which are consid-
ered as structural proteins (Carpita and Gibeaut, 1993). However,
the way these macromolecules are arranged in supramolecu-
lar scaffolds is still poorly understood. Knoch et al. (2014)
focus on the recent discoveries of carbohydrate active enzymes
(CAZy) (Lombard et al., 2014) that are involved in the syn-
thesis as well as in the degradation of arabinogalactan proteins
(AGPs), i.e., a highly diverse class of cell surface HRGPs found
in most plant species. They discuss the role of these enzymes
in plant development. Nguema-Ona et al. (2014) and Hijazi
et al. (2014) broaden this discussion and present an overview
of the enzymes not only involved in the synthesis of AGPs,
but also of extensins, another type of HRGPs, and discuss the
importance of both AGPs and extensins for proper cell wall
development and morphology as well as their role in biotic
stress responses. Hijazi et al. (2014) propose a new model to
explain how all types of HRGPs could contribute to a continuous
glyco-network with their respective partners including polysac-
charides to form a complex architecture in plant cell walls. In
the case of secondary cell walls, lignin, and different types of
hemicelluloses are found. Hao et al. (2014) present an Original
Research paper in which they identified a galacturonosyltrans-
ferase (GAUT12) from A. thaliana as a new glycosyltransferase
possibly contributing to the synthesis of a polysaccharidic struc-
ture including pectins allowing the deposition of xylan and
lignin.

Plant cell walls not only have a structural function, but also
play a critical role in the perception of invading pathogens and
the activation of specific plant defense responses, as discussed
by Lannoo and Van Damme (2014). This review elaborates
how plants can recognize plant pathogens or predators upon
perception of characteristic epitopes or damage-associated pat-
terns, using protein-protein interactions as well as protein-glycan
interactions mediated by lectins. In addition, they highlight
that protein-glycan interactions mediated by different types of

www.frontiersin.org November 2014 | Volume 5 | Article 604 | 1

http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/journal/10.3389/fpls.2014.00604/full
http://community.frontiersin.org/people/u/115923
http://community.frontiersin.org/people/u/115932
http://community.frontiersin.org/people/u/43529
http://community.frontiersin.org/people/u/42554
mailto:elsjm.vandamme@ugent.be
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


LANNOO et al. Plant Glycobiology: glycans - glycoproteins - lectins

nucleocytoplasmic lectins are part of signaling pathways impli-
cated in plant defense responses. Plant lectins not only attracted
a lot of attention due to their phytoprotective properties, they
are also of interest for medical applications and use in biomed-
ical diagnosis. They can be purified from natural resources, but
with the increasing demand for biopharmaceuticals, different
expression platforms are being exploited for their recombinant
production. Oliveira et al. (2014) describe how they can produce
recombinant frutalin, a lectin from Artocarpus incisa (breadfruit)
which possesses immuno-modulatory, anti-tumor, and tumor
biomarker properties, in distinct microbial systems. Since the
presence and quality of glycosylation plays a crucial role for
the pharmacological properties of the therapeutic protein, also
plants have received growing attention for molecular farming.
In this Research Topic, several papers review the humaniza-
tion of the plant glycosylation pathway allowing the produc-
tion of human proteins with optimized glycosylation profiles in
eukaryotic microalgae (Mathieu-Rivet et al., 2014), lower plants
(mosses) (Decker et al., 2014) and in higher plants (De Meyer
and Depicker, 2014; Loos and Steinkellner, 2014).

The major aim of this Research Topic was to provide the reader
an overview of the latest progress in plant glycobiology research.
All contributions demonstrate recent and exciting breakthroughs
and present the intrinsic capacity of this particular scientific
research area for further improvement of plant biotechnology. We
hope that this e-book can provide useful information to readers
and stimulate future research in the dynamic plant glycobiology
community.
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