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Gravity is a crucial environmental factor regulating plant growth and development. Plants
have the ability to sense a change in the direction of gravity, which leads to the re-orientation
of their growth direction, so-called gravitropism. In general, plant stems grow upward
(negative gravitropism), whereas roots grow downward (positive gravitropism). Models
describing the gravitropic response following the tilting of plants are presented and highlight
that gravitropic curvature involves both gravisensing and mechanosensing, thus allowing to
revisit experimental data. We also discuss the challenge to set up experimental designs for
discriminating between gravisensing and mechanosensing. We then present the cellular
events and the molecular actors known to be specifically involved in gravity sensing.
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INTRODUCTION
Among the factors that influence the growth orientation in plants
(e.g., light, gravity, water availability, and touch), gravity rep-
resents one of the most important environmental signals. This
biological process known as gravitropism, starts from seed ger-
mination through the upright growth of shoots, ensuring the
photosynthesis and the reproduction as well as the dispersion
of seeds, and the downright growth of roots, supplying the
plant in water and nutrients. When a plant organ is tilted, it
adjusts its growth orientation relative to gravity direction, which
is achieved by a curvature of the organ. Growth reorientation
is the result of a differential cell elongation rate between the
two sides of organs undergoing primary growth (Barlow and
Rathfelder, 1985; Tomos et al., 1989). In trees and perennial
plants, the active cambium initiated in organs undergoing sec-
ondary growth contributes to the reorientation of the shoot
through the differentiation and shrinkage of reaction wood (RW –
i.e., tension wood or compression wood in eudicotyledonous
and conifers respectively; IAWA, 1964; Archer, 1986). Gravit-
ropism is therefore essential in the control of the posture and
the form of land plants (Coutand et al., 2007; Moulia et al.,
2011).

MODELS DESCRIBE THE GRAVITROPIC MOVEMENTS IN
PLANTS
Mathematic and kinematic tools have been extensively used
for describing and quantifying the gravitropic movements in
plants, and have been recently supplemented by integrative
models. Even if gravity sensing events are not yet completely
deciphered, these tools provide essential information to address

the complex molecular and cellular mechanisms involved in
gravitropism.

The time course of gravitropic curvature investigated in
hypocotyl, stem, as well as in the trunk and branches illustrate
the following steps in several species: the upward curving of the
organs is observed after a latency phase and progressively followed
by a “decurving” which starts at the tip and propagates downward.
This latest has been described as autotropic (Firn and Digby, 1979)
and may occur before the tip reaches the vertical (Firn and Digby,
1979; Stankovic et al., 1998).

Curvature time course in growing organs was initially calcu-
lated using the inclination angle of the organ’s tip relative to the
vertical, and revealed that the gravitropic curvature obeys the
so-called sine law (Sachs, 1882; review, Moulia and Fournier,
2009). The sine law represents the size of the gravitropic stim-
ulus (Sgravi) as equal to g sin γ, where g is the gravitational
acceleration and γ the inclination angle. In other words this
law predicts that the amplitude of gravitropism depends of the
sinus of inclination angle. Even if this sine law has been con-
firmed in several species both in stems and roots, it is valid only
in a limited range of inclination angles, ranging from 0 to 90◦
(see introduction in Göttig and Galland, 2014) and therefore, it
does not characterize gravitropic movements of the whole organ
over-time (reviewed in Moulia and Fournier, 2009). Later on, a
curvature angle which is the change in tip inclination angle over
time was proposed (Galland, 2002; Perbal et al., 2002; Hoshino
et al., 2007). This parameter again is not satisfactory especially
because it was not measured using the same reference from one
experiment to another (horizontal, vertical, initial position of the
tilted stem). Starting from the observation that the gravitropic
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responses of aerial organs showed general curving followed by
basipetal straightening (Pickard, 1985), Bastien et al. (2013) pro-
posed a model that takes into account the sensing of the local
inclination angle but also of the local curvature, which progres-
sively takes place. The sensing of the local inclination reflects the
gravisensing mechanisms while the sensing of the local curvature
could be referred as mechanosensing which has been described
as graviproprioceptive. The authors defined a measurable ratio B
that is a ratio between graviceptive and proprioceptive sensitivi-
ties. B was shown to control crucial aspects of the dynamics of
the gravitropic response. The curving and decurving phases ini-
tially described as sequential, are in fact concomitant and linked
to the initial degrees of inclination and curvature (Bastien et al.,
2013). Recently, Bastien et al. (2014) extended this model by tak-
ing into account the growth effects, considered as the motor of
movement, i.e., expansion of the curved zone and immobiliza-
tion of the curvature state at elongation zone boundary (Selker
and Sievers, 1987; Ishikawa and Evans, 1993). This model high-
lights that stems in primary growth rapidly straightened as to
escape the growth destabilizing effects. To our mind, these findings
precised the notion of autotropism as a reorientation of the axis
controlled by internal cues such as the organ curvature. The con-
sequence of the autotropic decurving is that RW and/or increased
cell elongation occur alternatively from one side of the stem to the
other.

Despite the fact that proprioceptive sensitivity has not been
integrated in models of root gravitropism, it seems that the
autotropic decurving has been observed during the last step of the
gravitropic response in stems and as well in roots. Curiously, the
analysis of the position of the lentil root tip and the root curvature
as a function of time in microgravity revealed that the embryonic
root curved strongly away from the cotyledons and then straight-
ened out slowly following hydration (Perbal and Driss-Ecole, 2003;
Driss-Ecole et al., 2008), suggesting an autotropic decurving in the
absence of gravity signal. It is not clear if this decurving could
occur in soil which structure can sometimes greatly restrict root
growth and where the root system is mediated by a wide variety
of processes including nutrient and water uptake, anchoring and
mechanical support.

Another parameter that has been explored for elucidating
the gravisensing mechanisms is the measurement of thresholds.
Detailed kinetics of gravitropic curvature in horizontally stim-
ulated roots have been reported in several studies and revealed
for example that maize roots oriented at <40◦ from the ver-
tical, overshot the vertical and then oscillated around this axis
(Barlow et al., 1993). The angle of 10◦ seemed to be the minimum
angle to induce a gravitropic response. On the contrary, when
roots were tilted at more than 60◦, verticality was hardly achieved.
It is interesting to note that comparable thresholds occurred in
root and stem. When coleoptiles were tilted at an angle of <10◦
from the vertical, the gravitropic response did not happen (Iiono
et al., 1996). The first models of differential root growth leading
to curvature took into account the presentation time (minimal
duration of stimulation in the gravitational field; Larsen, 1957), in
which the response was the function of the logarithm of the stim-
ulus. Later, Perbal et al. (2002) observed that the hyperbolic model
(H), related to a ligand-receptor system response, fitted better the

experimental data. Other models took into account the differen-
tial growth among opposite cell lineages (Zieschang et al., 1997).
Another interesting parameter used for approaching gravisensing
mechanisms is the estimation of threshold acceleration perceived
by organs. Lentil seedlings were grown in microgravity and sub-
jected to low accelerations for several hours (Driss-Ecole et al.,
2008). In these conditions, threshold acceleration perceived was
inferior to 2.0 × 10−3 g.

MOST EXPERIMENTAL DESIGNS DO NOT ALLOW TO
DISCRIMINATE BETWEEN GRAVISENSING AND
MECHANOSENSING
As demonstrated above through mathematical models of stem
gravitropic movements (Bastien et al., 2013, 2014), both gravisens-
ing and mechanosensing lead to the reorientation of the plant.
It is not clear whether gravisensing and mechanosensing act
through the same mechanisms, and to what extent one can dif-
ferentiate these stimuli. Trewavas and Knight (1994) considered
that gravisensing is derived from an ancestral touch perception
apparatus.

Mechanosensing occurs when plants are touched. Jaffe (1973)
used the term of thigmomorphogenesis when describing the
growth response of plants over time following repeated touching.
In the literature numerous studies referring to mechanical stimula-
tion concerned the response induced by external loading (Chehab
et al., 2008) demonstrating that mechanical cues from the environ-
ment are sensed by the plant. Mechanical stresses are also intrinsic
to plants and an increasing number of studies illustrate the occur-
rence of mechanosensing in cells and organs and its importance for
the shape determination (Mirabet et al., 2011; Hamant, 2013). For
example, it has been demonstrated that cells in Arabidopsis shoot
apical meristem respond to local mechanical stresses by reorient-
ing their growth, thereby guiding morphogenesis (Uyttewaal et al.,
2012).

A gravistimulation as such should induce neither organ defor-
mation nor touch. In several gravitropism studies, the plant or
the organ have been tilted without being staked before (Azri et al.,
2009; Tocquard et al., 2014b). Although such conditions allowed
gravitropic movements, they also allowed organ bending under its
own weight. This deformation of the organ can be considered as a
thigmomorphogenetic stimulus (Coutand, 2010). In this context,
both mechanosensing and gravisensing occur. Alternatively, stak-
ing of plants just before tilting might induce touch gene expression
that could also interfere with graviresponse pathways. It remains
a challenge to find an experimental design, which could allow
discriminating between gravi and mechanosensing mechanisms.

IDENTIFICATION OF CELLULAR AND MOLECULAR ACTORS IN
GRAVISENSING MECHANISMS
THE GRAVI-SENSING SITES
The most challenging research question is the identification of the
tissues and/or cells able to sense and then perceive changes in the
gravity vector.

Much insight on plant response to gravity is obtained by the
study of organs exhibiting primary growth. The root columella
located inside the root cap, which comprises polarized cells, is
considered to be the key site of gravity sensing and perception.
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Columella cells contain starch-filled amyloplasts able to move
under a change of gravity direction. The singularity of these organs
is the spatial separation of the perception site from the respon-
sive zone. Conversely, gravity sensing and response occur in the
same region of young stems. The endoderm, located between the
epiderm and the phloem, is considered as the gravi-sensing site.
This tissue contains amyloplasts in young stems of herbaceous and
ligneous species such as poplar (Figures 1A,C; Azri et al., 2013).

What happens in organs showing secondary growth? It is not
possible to identify the endoderm in tree shoots since most bark
cells are filled with starch (Figures 1B,D). Hence, the gravisensing
cells are not identified yet neither are the gravisensing mecha-
nisms (Tocquard et al., 2014b) leading to RW formation. RW can
be induced by inclining a staked tree (Coutand et al., 2014) which
suggests the modulation of cambial activity by gravistimulation
per se, that occurs without the influence of mechanical deforma-
tion of the stem. Even if the gravisensing site for root undergoing a
secondary growth in root is not yet identified, one could question
if the cambium could be considered as an additional gravi-sensing
site in roots.

PROPOSED CONCEPTS AND MOLECULAR ACTORS
Despite, or maybe because of, the lack of indisputable proto-
col for the study of gravisensing in plants, various (opposite or
complementary?) concepts are proposed related to the perception-
transduction of the gravitropic stimulus. The starch-statolith
hypothesis (Sack, 1997) explains that the direction of gravity is
perceived by the plant through the sedimentation of starch-filled
amyloplasts, named statolith, within specialized cells. The gravita-
tional pressure hypothesis (Staves, 1997) suggests that mechanical
deformation of the protoplast, cytoskeleton and cell wall compo-
nents is the starting event of gravitropism. Another concept called
“the tensegrity concept” (Ingber, 1997) assumes that the mem-
brane is outstretched on the cytoskeleton backbone and that this
system is in a state of equilibrium, between tensile and compressive
forces. This concept is very suitable for explaining the perception
of mechanical stress at the cell surface and the transmission to
the intracellular compartment. The common idea that gravity-
induced effects are initiated within the cells (Trewavas and Knight,
1994), is compatible with the tensegrity model which proposes that
gravistimulation may unbalance the tensegrity forces and trigger

FIGURE 1 |Transversal (A,B) and longitudinal (C,D) stem sections of

poplar tree, Populus tremula × alba, stained with Periodic Acid-Schiff

(PAS). This stain reveals the presence of starch and polysaccharides in
dark purple. (A,C) Arrows indicate the presence of starch rich-amyloplasts

in the endoderm of the primary growth-stem, at 3 cm from the stem
apex. (B,D) Arrows and rectangles indicate wood rays and bark of
secondary growth stem, respectively. Both tissues contain starch
rich-granules.
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cellular responses via membrane kinase proteins (Volkmann and
Baluška, 2006). A complementary concept proposes that plant cells
could sense gravity using the cytoskeleton-plasma membrane-cell
wall continuum (CPMCW; Pickard and Ding, 1993; Baluška et al.,
2003). Baluška and Volkmann (2011) discussed these different
theories. Whichever theory is applied, the role of the amylo-
plasts and of the CPMCW with possible protein linkers seems
realistic.

In the literature, some arguments corroborate parts of these
hypothetic mechanisms. In roots, it has been suggested that
the gravity-induced movements of amyloplasts could activate
mechanosensing ion channels either in the amyloplast envelope or
in reticulum endoplasmic and/or plasma membrane (Boonsirichai
et al., 2002; Perbal and Driss-Ecole, 2003). These mechanosensing
channels could be considered as gravi-receptors in inducing cal-
cium dependent-signaling pathways. More recently it has been
shown that plastids participate to root gravitropism not only
through their sedimentation but also they likely play a role in the
signal transduction pathway through the Translocon of the Outer
envelope of the Chloroplast (TOC; Strohm et al., 2014). These
findings implicate the functional interaction between plastids and
actin cytoskeleton possibly via functions of TOC. In the same way,
the investigation of plastid behavior in stem clearly demonstrates
their role in gravi-perception (Morita and Nakamura, 2012). The
plastid movements in stem are affected by the large and cen-
tral vacuole of the endodermal cells. Moreover, genetic screening
for Arabidopsis mutants with modified shoot gravitropism indi-
cated that the vacuole is important for gravity perception (Morita,
2010).

More generally, within a putative perceptive cell, several molec-
ular candidates could play a role in gravisensing. Two types of
receptors could be involved including mechanosensitive ion chan-
nels and receptor like kinases (RLK). RLK are transmembrane
proteins, composed of one or more extracellular domains, a sin-
gle transmembrane domain and an intracellular kinase domain
(Lehti-Shiu et al., 2009; Gish and Clark, 2011). RLK could act
as sensors of the cell wall and restore its status to the cell wall
by phosphorylation of the kinase domain. Among RLK, wall
associated kinase (WAK) and Catharanthus roseus RLK1-like sub-
families are proposed to be cell wall status sensors (Gish and Clark,
2011; Engelsdorf and Hamann, 2014; Tocquard et al., 2014a).
They could be involved in gravisensing by perceiving the defor-
mation between the cell wall and the plasma membrane. Gens
et al. (2000) hypothesized the existence of an architectural orga-
nization involving WAK, arabinogalactan proteins (AGP) at the
interface between cytoplasm and cell wall. Several studies also
showed the upregulation of AGP in response to gravistimulation
(Lafarguette et al., 2004; Azri et al., 2014). This “plasmalemmal
reticulum” could play a critical role in mechanosensing and pos-
sibly gravisensing (Gens et al., 2000). More recently, it has been
shown that mechanosensitive channels including MCA2 could be
also involved in gravisensing (Monshausen and Haswell, 2013; Iida
et al., 2014).

The plant cytoskeleton is considered as a major receiver as
well as transducer of mechanical signals. Nick (2011) presented
the cytoskeleton as a tensegrity sensor. In this model, microfila-
ments (MF) are considered as the contractile and tensile elements

while the microtubules (MT) are more rigid and resistant to
compression. Bancaflor (2013) highlighted the apparent incon-
sistencies about the effects of actin inhibitory compounds on
root gravitropism, and proposed models for how MF might reg-
ulate negatively gravitropism. The full understanding of the MF
involvement in gravitropism has also to take into account the dif-
ferences in actin organization between the root columella and the
shoot endodermis cells, the former having first fine and short
MF while the latter contain distinct F-actin bundles (Morita,
2010; Bancaflor, 2013). Several authors have suggested that grav-
itropic bending can trigger altered MT organization (Ikushima
and Shimmen, 2005; Jacques et al., 2013; Toyota and Gilroy,
2013). In addition, gravitropism can be inhibited by antimicro-
tubular drugs or mutations affecting the dynamics of MT (Nick,
2012). On the contrary, tropic bending occurred in roots pre-
treated with microtubule depolymerizing agents (Bisgrove, 2008).
These observations and others (Bisgrove, 2008) do not allow
to discriminate the involvement of MT in gravisensing versus
graviresponse, i.e., gravitropic bending. The difficulty to univo-
cally show that the cytoskeleton is a tensegrity sensor may come
from the fact that most studies examined either the involvement
of MF or MT (Nick, 2013; Tatsumi et al., 2014) in gravitropism,
although the cytoskeleton is far more complex. Indeed, evidence
was brought that functional and structural interactions occurred
between MT and actin, and that numerous proteins interacted
with the cytoskeleton (Collings et al., 1998; Kotzer and Wasteneys,
2006).

HOW TO GO FURTHER TO GRASP GRAVISENSING?
As just highlighted above, it is crucial to reliably discriminate
gravisensing from mechanosensing, and the same goes for sens-
ing from the signal transduction and early responsive elements.
According to Nick (2011) clear concepts of the sensing mech-
anisms have to be elaborated in order to design unequivocal
experimental approaches. Incidentally, the effect of the direc-
tion of light as well as the light quality have also to be taken
into account in designing an experiment that wish to focus
on gravisensing and graviresponse as multiple light signaling
pathways interact with gravitropism (Mullen and Kiss, 2008).
Importantly, to our mind the gravistimulation should not cause
bending that could lead to organ and tissue deformation. Conse-
quently, the study of gravisensing has to be done before any curving
response occurred. Another way is the utilization of micrograv-
ity conditions through space experiments (Ruyters and Braun,
2014).

Furthermore, there is a general consensus on the identity of
the gravisensing cells in primary shoot and root while these cells
remained to be localized in organs driven by secondary growth.
Further insights on this subject are impaired by the compulsory
use of ligneous species models. For instance, in the ligneous
model Populus trichocarpa, very few mutants are available com-
pared to Arabidopsis thaliana, which was used in most studies.
One can even ask if the tissues in secondary growth are able to
perceive gravity or if they respond to a signal coming from the
apexes.

Another challenge is to identify the gravity receptors in roots
and in stems. Approaches such as transcriptomics and proteomics
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combined with the study of mutants could lead to the infer-
ence of a network of genes involved in gravisensing. In addition,
it will be interesting to investigate the functional interaction
between the cytoskeleton and gravi-sensors. In parallel, mod-
elization of the mechanical deformation of the cytoskeleton could
help to understand the function of the cytoskeleton network in
gravitropism.
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