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Enhancing crop innate immunity: new promising trends
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Plants are constantly exposed to potentially pathogenic microbes present in their surround-
ing environment. Due to the activation of the pattern-triggered immunity (PTI) response that
largely relies on accurate detection of pathogen- or microbe-associated molecular patterns
by pattern-recognition receptors (PRRs), plants are resistant to the majority of potential
pathogens. However, adapted pathogens may avoid recognition or repress plant PTI and
resulting diseases significantly affect crop yield worldwide. PTI provides protection against
a wide range of pathogens. Reinforcement of PTI through genetic engineering may thus
generate crops with broad-spectrum field resistance. In this review, new approaches based
on fundamental discoveries in PTI to improve crop immunity are discussed. Notably, we
highlight recent studies describing the interfamily transfer of PRRs or key regulators of PTI
signaling.
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INTRODUCTION
Monocultures of highly fertilized crops that are typical of inten-
sive agriculture practices are very sensitive to disease by adapted
pathogens (Bruce, 2012). The development of resistant crops is
thus critical for better yields. Although prone to disease, plants
have evolved diverse defense mechanisms to cope with potential
pathogens. To sense invaders, plants are equipped with surveil-
lance machineries such as plasma membrane surface-localized
proteins called pattern recognition receptors (PRRs), which detect
foreign (non-self) pathogen- or microbe-associated molecular
patterns (PAMPs or MAMPs; Boller and Felix, 2009; Bohm et al.,
2014; Zipfel, 2014), as well as self-derived damage-associated
molecular patterns (DAMPs; Boller and Felix,2009; Newman et al.,
2013; Zipfel, 2014). MAMPs are evolutionarily conserved across
a certain class of microbes and are essential for the microbial
lifestyle. Some examples of bacterial MAMPs and their corre-
sponding PRRs include flagellin/FLAGELLIN SENSING2 (FLS2;
Gómez-Gómez and Boller,2000), EF-Tu/EF-Tu RECEPTOR (EFR;
Zipfel et al., 2006), Xanthomonas eMAX/RECEPTOR OF eMAX
(ReMAX; Jehle et al., 2013) and peptidoglycan (PGN)/LYSIN-
MOTIF1 (LYM1) and LYM3 (Willmann et al., 2011). Fungal
MAMPs/PRRs pairs are exemplified by chitin/CHITIN ELICI-
TOR RECEPTOR KINASE1 (CERK1; Miya et al., 2007; Wan et al.,
2008), xylanase/ETHYLENE INDUCING XYLANASE2 (Eix2;
Ron and Avni, 2004), and avirulence gene Ave1/VERTICILIUM1
(Ve1; de Jonge et al., 2012). DAMPs are endogenous molecules
released upon cell damage or pathogen recognition. The known
DAMPs/PRRs pairs include Pep peptides/PEP1 RECEPTOR 1
(PEPR1) and PEPR2 (Huffaker et al., 2006; Yamaguchi et al.,
2006; Krol et al., 2010; Yamaguchi et al., 2010), cell wall frag-
ment oligogalacturonides (OGs)/WALL-ASSOCIATED KINASE
1 (Brutus et al., 2010), and extracellular ATP (eATP)/DOES
NOT RESPOND TO NUCLEOTIDES 1 (DORN1; Choi et al.,
2014).

The recognition of MAMPs or DAMPs by PRRs activates the
pattern-triggered immunity (PTI) response (Tsuda and Kata-
giri, 2010). Increased cellular Ca2+ concentration, production
of reactive oxygen species (ROS), and activation of mitogen-
activated protein kinase (MAPK) cascades are considered as
early PTI responses, whereas callose deposition and marker gene
up-regulation are observed later during PTI (Boller and Felix,
2009; Zipfel and Robatzek, 2010; Tena et al., 2011). These first
layers of defense are believed to be sufficient to prevent the
invasion of a wide range of pathogens. Functional PRRs are
crucial for the success of PTI, as a defective recognition system
makes plants more vulnerable to their surrounding environment.
Notably, loss-of-function mutations in FLS2 impair Arabidop-
sis thaliana resistance against Pseudomonas syringae pv. tomato
(Pst) DC3000 bacteria (Zipfel et al., 2004) and Arabidopsis efr
mutants show increased susceptibility to Agrobacterium tumefa-
ciens (Zipfel et al., 2006). Similarly, Arabidopsis cerk1 mutants
display enhanced sensitivity to fungal pathogens (Miya et al.,
2007; Wan et al., 2008), and Arabidopsis pepr1 pepr2 plants are
more susceptible than wild-type plants to Pst DC3000, Botry-
tis cinerea, and Colletotrichum higginsianum (Ma et al., 2012;
Liu et al., 2013; Ross et al., 2014). In addition to PRRs, other
regulators are required for full activation of PTI (Macho and
Zipfel, 2014). For example, BRI1-ASSOCIATED RECEPTOR-
LIKE KINASE/SOMATIC EMBRYOGENESIS RECEPTOR-LIKE
KINASE3 (BAK1/SERK3) acts as a co-receptor for the conserved
22-amino acid epitope flg22 of the bacterial flagellin, and forms
a complex with FLS2 upon flg22 perception (Chinchilla et al.,
2007; Sun et al., 2013). BOTRYTIS-INDUCED KINASE1 (BIK1)
is also critical for flg22-mediated signal transduction from the
FLS2/BAK1 receptor complex (Lu et al., 2010; Zhang et al., 2010).
Accordingly, loss-of-function mutants of BAK1 or BIK1 display
impaired flg22-induced responses (Chinchilla et al., 2007; Heese
et al., 2007; Lu et al., 2010; Zhang et al., 2010). Recent studies
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showed that L-type lectin receptor kinases (LecRKs) modulate the
PTI response (Singh and Zimmerli, 2013). LecRK-I.9, also known
as DORN1, is necessary for eATP recognition, and is required
for MAMP-induced callose deposition (Bouwmeester et al., 2011a;
Choi et al., 2014). In addition, LecRK-V.5 negatively regulates
MAMP-induced ROS burst in guard cells (Desclos-Theveniau
et al., 2012), and LecRK-VI.2 associates with FLS2 and positively
modulates PTI upstream of MAPK signaling (Singh et al., 2012a;
Huang et al., 2014a).

Though PTI is sufficient to limit the proliferation of a wide
variety of microbes, successful pathogens often break plant resis-
tance via delivering virulence molecules called effectors into the
apoplast or host cells to suppress PTI (Dou and Zhou, 2012). As
a counter measure, plants deploy resistance (R) proteins that gen-
erally perceive directly or indirectly perturbations of effectors to
mount another layer of defense called effector-triggered immu-
nity (ETI; Jones and Dangl, 2006; Dodds and Rathjen, 2010). ETI
is characterized by the induction of a strong and transient immune
response often correlated with localized cell death to restrict
pathogen spread (Jones and Dangl, 2006). However, rapidly evolv-
ing pathogens are able to overcome ETI via frequent mutations in
effectors, escaping host R protein detection (Gassmann et al., 2000;
Jones and Dangl, 2006; Huang et al., 2014b).

It is a slow process to generate disease resistant crop varieties
via traditional breeding, which involves crossing between differ-
ent varieties and multiple backcrossing to select progenies with
the most positive and least negative traits. With the advances
in genetic engineering, novel basic knowledge on plant immu-
nity can be applied successfully toward the rapid development of
disease resistant crops. To combat crop diseases, relevant defense-
related genes can be transferred from one plant species to another.
Interspecies or interfamily gene transfer has been shown to be fea-
sible with heterologous genes remaining functional after transfer
(Wulff et al., 2011; Dangl et al., 2013). Detailed molecular mech-
anisms are however not yet well understood. The compatibility
of gene transfer across plant species/families suggests that com-
ponents of defense signaling pathways are conserved between
species. In agreement with this, MAPK cascades are crucial for
various defense responses in Arabidopsis, tomato, Nicotiana ben-
thamiana, and rice (Rodriguez et al., 2010; Meng and Zhang,
2013). Similarly, the plant ROS burst represents a general hall-
mark of pathogen recognition and defense activation (Torres,
2010).

With the increasing number of plant defense regulators iden-
tified, many examples have been established to test the efficacy
of heterologous gene transfer on enhancing disease resistance.
In this review, we discuss recent findings on improving plant
immunity via transfer of defense-related genes, with a special
focus on approaches exploiting PTI to confer broad-spectrum
resistance.

RATIONALES FOR PTI-BASED BIOENGINEERING
Strategies to improve crop immunity via transfer of R genes were
extensively used in the past decades (Wulff et al., 2011; Dangl
et al., 2013). However, the durability of R gene-mediated resis-
tance can be greatly hampered by the rapid evolution of pathogen
effectors, which are only partially critical for pathogen fitness and

virulence (Gassmann et al., 2000; Zhou et al., 2007; Ayliffe et al.,
2008; Huang et al., 2014b). Moreover, effectors are species, race,
or strain specific, making it difficult to combat diverse pathogens
with a single R gene transfer (Chisholm et al., 2006; Jones and
Dangl, 2006; Bent and Mackey, 2007; Thomma et al., 2011). By
contrast, MAMPs, which are conserved within a class of microbes,
are less likely to adopt mutations since they are crucial for the
fitness and survival of microbes. For example, the MAMP flag-
ellin from bacterial flagella is critical for bacterial motility, and
peptidoglycans are inherent of the cell wall of Gram-positive
bacteria (Felix et al., 1999; Nürnberger et al., 2004; Zipfel and
Felix, 2005; Gust et al., 2007; Erbs et al., 2008). Similarly, DAMPs,
which serve as common danger signals released from stressed-
cells, induce plant immune responses against a large variety of
pathogens (Huffaker et al., 2006; Yamaguchi et al., 2010; Liu et al.,
2013). Accordingly, approaches exploiting PTI may stand a better
chance in engineering crops with durable resistance against diverse
pathogens.

GAIN OF NEW MAMP PERCEPTION CAPABILITIES
Recognition of MAMPs by PRRs is the first step in PTI activa-
tion and consequently, plants defective in MAMP recognition are
more susceptible to pathogens. Conversely, the introduction of a
new PRR to a given plant species may boost PTI responses via
additional PTI activation signaling from the new MAMP/PRR
recognition system. This experimental hypothesis was demon-
strated to be feasible through the interfamily transfer of EFR, a
bacterial EF-Tu receptor (Lacombe et al., 2010). EF-Tu is one of
the most abundant, widely conserved, and slow-evolving protein
in bacteria (Lathe and Bork, 2001; Kunze et al., 2004; Lacombe
et al., 2010). Recognition of EF-Tu (or its eliciting epitope elf18)
is Brassicaceae specific (Kunze et al., 2004; Zipfel et al., 2006) and
Solanaceous plants such as N. benthamiana and tomato do not
possess EFR (Kunze et al., 2004). Remarkably, N. benthamiana
and tomato plants with stable expression of EFR gain respon-
siveness to elf18 as illustrated by the accumulation of ROS and
PTI-responsive mRNAs (Lacombe et al., 2010). Moreover, heterol-
ogous expression of EFR in N. benthamiana and tomato greatly
increases resistance toward a wide range of pathogens carrying
the eliciting EF-Tu (Lacombe et al., 2010). Transgenic expression
of EFR in N. benthamiana and tomato does not result in consti-
tutive defense responses or defects in growth and development
when assessed in laboratory conditions (Lacombe et al., 2010),
fulfilling basic agronomical requirements. Theoretically, host co-
evolved pathogens are unlikely to possess effectors that target the
new PRR signaling originally absent from the host (Lacombe et al.,
2010), making PRR genetic engineering a promising tool in agri-
cultural biotechnology. Similarly, N. benthamiana plants lacking
ReMAX, the PRR for perception of the MAMP eMAX respond
to eMAX treatment when a chimeric receptor engineered from
ReMAX and the tomato Eix2 is transiently expressed (Jehle et al.,
2013). It would be interesting to test whether stable transforma-
tion of N. benthamiana with ReMAX could confer resistance to
a wide range of Xanthomonas bacteria. Xanthomonas bacteria are
indeed known to cause serious diseases in major crops, and effec-
tive strategies are required to control such diseases (Ryan et al.,
2011). Bacterial blight of rice, caused by Xanthomonas oryzae
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pv. oryzae (Xoo) is one of the most devastating disease in rice
(Nino-Liu et al., 2006). Transfer of the potential PRR XA21 (Song
et al., 1995) from wild rice Oryza longistaminata to the suscep-
tible rice cultivar (Oryza sativa subsp. japonica var. Taipei 309)
confers resistance to multiple isolates of Xoo (Wang et al., 1996),
suggesting that XA21 can be used as a tool to control rice blight.
Similarly, Xanthomonas campestris pv. musacearum (Xcm) causes
banana Xanthomonas wilt (BXW) and has a huge impact on
banana yield (Tripathi et al., 2009). Comparative genomic anal-
ysis between Xoo and Xcm revealed a conserved set of bacterial
genes required for the activation of XA21-mediated immunity,
suggesting that XA21 can be used for engineering resistance against
Xcm (Tripathi et al., 2014). This hypothesis was confirmed by the
evaluation of transgenic banana plants expressing Xa21 for BXW
resistance (Tripathi et al., 2014). After inoculation of Xcm, non-
transgenic banana plants display typical BXW symptoms such
as yellow ooze in pseudostem, spreading of Xcm, and complete
wilting, whereas transgenic banana plants expressing Xa21 show
only few or no symptoms, indicating enhanced resistance (Tripathi
et al., 2014). Like in tomato plants expressing EFR, growth is not
altered in banana plants expressing Xa21 (Tripathi et al., 2014).
Interestingly, transfer of XA21 to dicot plants such as sweet
orange (Citrus sinensis) or tomato also confers resistance against
Xanthomonas axonopodis pv. citri and Ralstonia solanacearum,
respectively (Mendes et al., 2010; Afroz et al., 2011). XA21 thus
stands as a promising candidate for engineering resistance against
diverse pathogens in different plant species.

BOOSTING THE PTI RESPONSE
LecRKs belong to a class of receptor kinases characterized by an
extracellular lectin domain, and are involved in plant develop-
ment and stress responses (Bouwmeester and Govers, 2009; Vaid
et al., 2012; Singh and Zimmerli, 2013). Although the lectin motif
is suggested to bind to oligosaccharides or small hydrophobic
ligands (Barre et al., 2002; Andre et al., 2005; Bouwmeester and
Govers, 2009), a recent study showed that Arabidopsis LecRK-
I.9/DONR1 acts as a PRR for the DAMP eATP (Cao et al., 2014;
Choi et al., 2014). In mammalian cells, abnormal or uncontrolled
increase of eATP represents a danger signal from damaged or
stressed cells, and is involved in activating the innate immune
system (Hanley et al., 2004). Similarly, plant eATP is increased
upon various stresses and is proposed to play a central role in
regulating plant immunity (Tanaka et al., 2010; Cao et al., 2014;
Choi et al., 2014). Importantly, Arabidopsis lecrk-I.9/dorn1 dis-
plays impaired ATP-triggered PTI responses, such as Ca2+ influx,
activation of MAPK, and up-regulation of stress-induced genes
(Choi et al., 2014). LecRK-I.9/DONR1 was initially identified
as a target of the Phytophthora infestans RXLR-dEER effector
IPI-O (Gouget et al., 2006). LecRK-I.9/DONR1 also contributes
to Arabidopsis resistance against Phytophthora brassicae, and is
important for maintaining cell wall (CW)-plasma membrane
(PM) continuum (Bouwmeester et al., 2011a). Ectopic expression
of LecRK-I.9/DONR1 in Solanaceous potato and N. benthami-
ana plants results in enhanced resistance against Phytophthora
infestans (Bouwmeester et al., 2014). The CW-PM continuum
is hypothesized to be critical for guarding pathogen invasion,
and virulent pathogens destabilize through effector action the

CW-PM continuum to facilitate colonization (Bouwmeester et al.,
2011a,b). The enhanced resistance observed in transgenic potato
and N. benthamiana may thus be the result of a strengthening
of CW-PM adhesions by ectopic expression of LecRK-I.9/DONR1
(Bouwmeester et al., 2011a,b, 2014). Alternatively, heterologous
expression of LecRK-I.9/DONR1 may trigger an enhanced PTI
response via perception of eATP released from pathogen-stressed
cells (Choi et al., 2014). When grown in greenhouse condi-
tion, stable transgenic potato lines expressing LecRK-I.9/DONR1
display aberrant plant development including wrinkled leaves,
decreased leaflet separation, and malformed tuber (Bouwmeester
et al., 2014). The strengthening of CW-PM adhesion by heterolo-
gous expression of LecRK-I.9/DONR1 may disrupt normal plant
development (Bouwmeester et al., 2014).

Arabidopsis LecRK-VI.2 was first identified as being involved
in ABA inhibition of seed germination (Xin et al., 2009), and
was later shown to be a component of the FLS2 complex pos-
itively regulating PTI (Singh et al., 2012a; Huang et al., 2014a).
Arabidopsis plants over-expressing LecRK-VI.2 demonstrate a con-
stitutively activated PTI, and display significant resistance against
hemi-biotrophic Pst DC3000 and necrotrophic Pectobacterium
carotovorum ssp. carotovorum (Pcc) SCC1 bacteria (Singh et al.,
2012a). Arabidopsis plants over-expressing LecRK-VI.2 demon-
strate a dwarf phenotype (Singh et al., 2012a), as already observed
in plants with constituve defense responses (Bowling et al., 1994;
Li et al., 2001). LecRK-VI.2-mediated resistance in the Brassi-
caceae plant Arabidopsis can be extended to the Solanaceous family,
as heterologous expression of Arabidopsis LecRK-VI.2 in N. ben-
thamiana enhances wild tobacco resistance against two strains of
hemi-biotrophic Pseudomonas bacteria and to necrotrophic Pcc
SCC1 bacteria (Huang et al., 2014a). Remarkably, even 2 weeks
after inoculation with Pseudomonas syringae pv. tabaci 11528,
N. benthamiana plants expressing LecRK-VI.2 harbor only weak
disease symptoms and normal development of flowers, whereas
wild-type (WT) and empty Vector control plants are extremely
stunted, and display severe necrotic symptoms with no flow-
ering (Huang et al., 2014a). In line with what is observed in
Arabidopsis (Singh et al., 2012b), LecRK-VI.2 protective effect in
N. benthamiana is bacteria specific (Huang et al., 2014a). How-
ever, heterologous expression of LecRK-VI.2 in N. benthamiana
does not directly activate, but only potentiates flg22-induced PTI
responses. Priming of PTI may explain the observed enhanced
resistance in transgenic N. benthamiana plants (Conrath et al.,
2006; Conrath, 2011; Huang et al., 2014a). These emerging exam-
ples of heterologous expression of PRRs or of modulators of PRRs
that can confer broad-spectrum resistance through a potentiated
PTI response represent an interesting proof of concept approach
that suggest feasibility for future applications to engineer resis-
tant crops through primed PTI (Figure 1; Lacombe et al., 2010;
Huang et al., 2014a). Similarly to transgenic expression of EFR
(Lacombe et al., 2010), N. benthamiana plants expressing Ara-
bidopsis LecRK-VI.2 demonstrate a WT growth pattern under
laboratory conditions (Huang et al., 2014a). The WT-like growth
phenotype in N. benthamiana as opposed to the stunted pheno-
type observed in Arabidopsis may result from partial conservation
of downstream PTI signaling in N. benthamiana (Huang et al.,
2014a).

www.frontiersin.org November 2014 | Volume 5 | Article 624 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive


Huang and Zimmerli Genetic engineering of PTI

FIGURE 1 | Pattern-triggered immunity (PTI) mediated strategies to

deploy broad-spectrum pathogen resistance in crops: a conceptual

representation. (A) Perception of MAMPs and/or DAMPs by PRRs activates
the PTI response. Adapted, virulent pathogens deliver effectors to suppress
PTI, rendering wild-type plants susceptible to infection. (B) Interfamily or

interspecies transfer of foreign PRRs improves MAMPs recognition and
further enhances PTI. Host co-evolved pathogens are unlikely to possess
effectors targeting PRRs from other plant species. (C) Heterologous
expression of PTI enhancers/positive regulators boosts PTI signaling.
Effectors may thus not be sufficient anymore to efficiently repress PTI.

In Arabidopsis, LecRK-VI.2 is crucial for the up-regulation
of PTI marker genes responsive to numerous bacterial MAMPs
such as flg22, elf18, PGN, and lipopolysaccharide (Singh et al.,
2012a), that are recognized by different PRRs (Gómez-Gómez
and Boller, 2000; Zipfel et al., 2006; Willmann et al., 2011). In
addition to associate with the PRR FLS2 (Huang et al., 2014a),
LecRK-VI.2 may thus prime the PTI response through associa-
tion and positive action at additional, different PRR complexes.
Therefore, heterologous expression of LecRK-VI.2 is likely to con-
fer broad-spectrum resistance in other plant species via targeting
of multiple PRRs. Therefore, Arabidopsis LecRK-VI.2 or LecRK-
VI.2 orthologs and possibly other LecRKs stand as promising
candidates in the development of crops with durable, wide-range
resistance.

CONCLUSION AND PERSPECTIVES
Unlike R protein-mediated resistance that possesses narrow speci-
ficity, PTI is broad-spectrum and thus stands as a potential tool for
engineering crops with enhanced immunity. Notably, interfamily
transfer of genes encoding PRRs or key regulators of PTI enhances
resistance of the recipient plant species against a broad range of
virulent pathogens (Figure 1; Lacombe et al., 2010; Bouwmeester
et al., 2014; Huang et al., 2014a; Tripathi et al., 2014). However, in
some cases, such heterologous expression may lead to undesirable
changes in growth and development (Bouwmeester et al., 2014).

The emerging examples of interfamily transfer of PTI-related gene
to confer broad-spectrum resistance is encouraging for the future
development of resistant crops, but the durability and efficacy
of this approach in the field is yet to be determined. In natu-
ral conditions, pathogens are constantly evolving to cope with
host immunity (McDonald and Linde, 2002), and some pathogens
acquire modified MAMPs to avoid recognition (Felix et al., 1999;
Kunze et al., 2004; Lacombe et al., 2010). To achieve durable
disease resistance, genetic-engineering should be used wisely, per-
haps through stacking multiple PTI- and ETI-related genes, and
proper field management should be deployed. The use of novel
fundamental discoveries in PTI will definitively help the burgeon-
ing of novel practical approaches to increase crop resistance to
deleterious pathogens.
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