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INTRODUCTION

Infectious diseases cause huge crop losses annually. In response to pathogen attacks,
plants activate defense systems that are mediated through various signaling pathways. The
salicylic acid (SA) signaling pathway is the most powerful of these pathways. Several
regulatory components of the SA signaling pathway have been identified, and are potential
targets for genetic manipulation of plants’ disease resistance. However, the resistance
associated with these regulatory components is often accompanied by fitness costs; that
is, negative effects on plant growth and crop yield. Chemical defense inducers, such as
benzothiadiazole and probenazole, act on the SA pathway and induce strong resistance to
various pathogens without major fitness costs, owing to their ‘priming effect’ Studies
on how benzothiadiazole induces disease resistance in rice have identified WRKY45,
a key transcription factor in the branched SA pathway, and OsNPR1/NH1. Rice plants
overexpressing WRKY45 were extremely resistant to rice blast disease caused by the
fungus Magnaporthe oryzae and bacterial leaf blight disease caused by Xanthomonas
oryzae pv. oryzae (Xoo), the two major rice diseases. Disease resistance is often
accompanied by fitness costs; however, WRKY45 overexpression imposed relatively small
fitness costs on rice because of its priming effect. This priming effect was similar to
that of chemical defense inducers, although the fitness costs were amplified by some
environmental factors. WRKY45 is degraded by the ubiquitin—proteasome system, and the
dual role of this degradation partly explains the priming effect. The synergistic interaction
between SA and cytokinin signaling that activates WRKY45 also likely contributes to the
priming effect. With a main focus on these studies, | review the current knowledge of SA-
pathway-dependent defense in rice by comparing it with that in Arabidopsis, and discuss
potential strategies to develop disease-resistant rice using signaling components.

Keywords: rice, Magnaporthe oryzae, Xanthomonas oryzae pv. Oryzae, chemical defense inducer, priming effect,
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Rice is the staple food for more than half of the world’s

In nature, plants are continuously threatened by a wide range of
pathogens. To prevent pathogen invasion, plants have evolved an
array of structural barriers and preformed antimicrobial metabo-
lites. They have also evolved a broad spectrum of inducible defense
strategies to translate the perception of attackers into effective
immune responses. The sensing of pathogen-associated molecular
patterns (PAMPs) by pattern recognition receptors (PRRs) initi-
ates PAMP-triggered immunity (PTI), which prevents pathogen
colonization (Nurnberger etal., 2004; Ausubel, 2005; Boller and
He, 2009; Zipfel, 2009; Schwessinger and Ronald, 2012). As a sec-
ond layer of induced defense in plants, resistance (R) proteins
recognize effector proteins secreted by microbial pathogens, and
trigger strong disease-resistance responses. Among these responses
is effector-triggered immunity (ETT), which is usually associated
with hypersensitive responses (HR) characterized by rapid pro-
grammed cell death at the sites of infection (Jones and Dang],
2006; Dodds and Rathjen, 2010; Spoel and Dong, 2012). Multi-
ple signaling pathways, including those mediated by salicylic acid
(SA), jasmonic acid (JA), and ethylene are involved in transducing
the signal of pathogen perception into an immune response.

population, as well as being a model monocot species for
plant research. It has been proposed that rice production must
increase by more than 40% by 2030 to meet the increas-
ing demand (Khush, 2005). To overcome this challenge, it
is particularly important to develop high-yielding rice lines
that are tolerant to biotic and abiotic stresses. Infectious dis-
eases are among the most serious threats to crop produc-
tion. A previous study estimated that infectious diseases cause
losses of up to 40% in rice production annually (Oerke and
Dehne, 2004). Blast disease, caused by the fungus Magna-
porthe oryzae, and leaf-blight disease, caused by the bacte-
ria Xanthomonas oryzae pv. oryzae (Xoo), are among the
most serious and widespread diseases of cultivated rice, and
continuously threaten rice production worldwide (Ou, 1987;
Gnanamanickam etal., 1999).

Agrochemicals have greatly increased rice production in some
regions, although their expense has prevented their wide-spread
use globally. Rice breeders have attempted to use genes encoding
R proteins (R genes) to introduce ETI against specific rice diseases
into rice cultivars (Zhang, 2007). However, race specificity and the
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potential risks of resistance breakdown have limited the versatil-
ity of R-gene-dependent disease resistance (Bonman etal., 1992).
More recently, breeders have introduced field resistance genes into
rice to improve resistance to diseases such as blast. This type of
resistance is durable and non-race-specific (Miah etal., 2013).

Recent advances in research on plant—pathogen interactions
have provided insights into the mechanisms of plants’ defenses
against potential pathogens. Such studies have identified a number
of signaling molecules, such as protein kinases and transcription
factors (TFs), that mediate the translation of pathogen perception
into defense responses (Delteil etal., 2010). Using the components
of such defense mechanisms, it is now possible to develop new
strategies to produce disease-resistant rice cultivars. One strategy
is to modify the defense signaling pathways by transgenic manip-
ulation of the genes encoding defense-related signaling molecules.
The regulatory components in the SA signaling pathway are par-
ticularly important, because this pathway leads to strong disease
resistance. However, simple overexpression or knockout (knock-
down) of the genes encoding positive and negative regulators of
the signaling pathway, respectively, have often resulted in negative
effects on plant growth and yield. These negative effects, the ‘fitness
costs, represent the price of strong disease resistance as resources
are reallocated from growth to defense. Such tradeoffs also exist
between biotic and abiotic stress responses in plants (Matyssek
etal., 2005; Sharma etal., 2013).

Crosstalks among different signaling pathways are thought to
be involved in the tradeoffs between resistance and growth and
between biotic and abiotic stress resistance. Thus, when selecting
genes for developing disease-resistant rice, it is important to con-
sider not only their defense-related functions, but also their roles
in plant growth and/or abiotic stress responses. It is also important
to drive expression of the selected genes in a manner consistent
with their function. In this article, I review recent progress in the
identification and characterization of the regulatory components
in the rice SA pathway. I also discuss their potential uses for devel-
oping disease-resistant rice lines using transgenic approaches, with
a focus on avoiding the problems associated with tradeoffs.

SALICYLIC ACID SIGNALING PATHWAY COMPONENTS AS
TARGETS FOR PLANT PROTECTION AGAINST DISEASES

The importance of the SA-dependent signaling pathway in plant
defense against pathogens was initially recognized in studies on
systemic acquired resistance (SAR) in dicots. Pathogen infection
often induces SA accumulation in infected leaves of various plant
species, and SA also accumulates in distal leaves that develop
SAR (Malamy etal., 1990; Métraux etal., 1990). Blocking SA
accumulation by expressing an SA-degrading enzyme abolished
SAR in transgenic tobacco and Arabidopsis (Gaftney etal., 1993;
Delaneyetal., 1995). Mutations in SA biosynthetic genes enhanced
plant susceptibility to pathogens, and application of SA to the
mutants restored their resistance (Mauch-Mani and Slusarenko,
1996; Nawrath and Metraux, 1999; Wildermuth et al.,2001). These
results and observations indicate that the SA signaling pathway
plays a crucial role in the defense mechanisms of plants. Both PTI
and ETT induce SAR (Tsuda etal., 2009). In dicots, SA-pathway-
dependent defense is effective against biotrophic pathogens, but
not necrotrophic pathogens (Glazebrook, 2005).

Application of functional SA analogs, such as 2,6-
dichloroisonicotinic acid (INA), benzothiadiazole S-methyl ester
(BTH), and probenazole activate the expression of PR genes, lead-
ing to resistance against viral, bacterial, oomycete, and fungal
pathogens. This chemical-induced resistance has been observed
in several dicots (Malamy etal., 1990; Métraux etal., 1991;
Lawton etal., 1996; Yoshioka etal., 2001) and monocots (Iwata
etal., 1980; Gorlach etal., 1996; Pasquer etal., 2005; Makandar
etal., 2006; Iwai etal., 2007). These chemicals act on the SA
pathway in plants, inducing defense responses, but they do not
directly affect the pathogens. Consequently, they are less likely
to lead to drug resistance in the pathogens, a problem that often
arises with fungicides and bactericides. Despite their abilities to
activate the SA pathway, these chemicals do not negatively affect
plant growth when applied at appropriate doses, because of their
‘priming effect’ (Conrath etal., 2002), which will be discussed
below. Because of their favorable activities, these chemicals are
produced commercially and broadly used in agriculture as chem-
ical defense inducers (also known as ‘plant activators’). Thus, the
SA signaling pathway is the major target for disease control in
agriculture.

REGULATORY COMPONENTS IN THE SA DEFENSE
SIGNALING PATHWAY

Many regulatory components involved in the SA pathway have
been identified in Arabidopsis. One of the most important ones
is NON-EXPRESSOR OF PR1 (NPRI1), a transcriptional co-
factor that acts downstream of SA in the SA signaling pathway
in Arabidopsis (Cao etal., 1997; Dong, 2004) and other plant
species (Chern etal., 2005b; Malnoy etal., 2007; Endah etal,,
2008; Le Henanff etal, 2009). A genome-wide gene expres-
sion analysis showed that more than 99% of BTH-responsive
gene expression was NPR1-dependent (Wang etal.,, 2006). In
the absence of SA or pathogen challenge, NPR1 is retained in
the cytoplasm as an oligomer via redox-sensitive intermolecu-
lar disulfide bonds (Mou etal., 2003). Upon activation of the
SA pathway, the NPR1 monomer is released and enters the
nucleus, where it activates defense gene transcription (Mou
etal., 2003). This process is regulated by the sensing of cellu-
lar redox changes by NPR1 after its S-nitrosylation (Tada etal.,
2008). Recently, it was reported that NPR1 also functions as
an SA receptor (Wu etal,, 2012). As a transcriptional cofac-
tor, NPR1 interacts with members of the TGA family of TFs,
thereby directly regulating the transcription of defense genes
such as PRI (Despres etal., 2003; Johnson etal., 2003; Durrant
and Dong, 2004). Members of the WRKY TF family also act
downstream of NPR1 (Wang etal.,, 2006). A negative regulator
of NPR1, NIMI-INTERACTINGI (NIMIN1), antagonizes the
NPR1-dependent SA pathway by binding to NPR1 (Weigel etal.,
2001, 2005). Arabidopsis also has an SA-dependent but NPR1-
independent signaling pathway(s), which operates during the early
phase of SA pathway activation (Li et al., 2004; Uquillas et al., 2004;
Blanco etal., 2005).

The NPR1 protein is degraded by the ubiquitin—proteasome
system (UPS) in the nucleus (Spoel etal., 2009). It has been
proposed that UPS degradation of NPR1 has a dual role: first,
constitutive degradation of NPR1 suppresses spurious activation
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of defense responses in the absence of pathogen attack; second, the
SA-induced degradation of NPR1 underpins the full-scale activa-
tion of the transcriptional activity of NPR1. To gain a deeper
understanding of the functions of NPR1 and its regulation, sev-
eral studies have characterized NPR1 in rice and its orthologs in
other plant species, and their signaling mechanisms.

FITNESS COSTS OF DISEASE RESISTANCE AND THE
PRIMING EFFECT

Defense responses usually have fitness costs, which reflect the
tradeoff between disease resistance and plant growth. The tradeoff
is believed to be a consequence of resource allocation to defensive
compounds and/or the toxicity of the defensive compounds them-
selves (Heil and Baldwin, 2002). Plants presumably have evolved
inducible defense mechanisms to circumvent such negative effects
of defense responses. Consistent with this idea, Arabidopsis
mutants with constitutively activated defense responses, such as
cpr (constitutive expressor of PR genes), in which the SA pathway
is constitutively activated (Clarke et al., 2000), show severe growth
defects (Figure 1A).

High doses of chemical defense inducers that act on the SA
pathway reduce growth and seed set in plants, because of the fit-
ness costs associated with strong defense induction (Heil etal,,
2000). Application of these chemicals at appropriate doses does

not directly induce defense responses, but pre-conditions plants
for faster and stronger defense responses upon pathogen infec-
tion (Figure 1A), consequently imposing lower fitness costs on
plants (Kauss etal., 1992; Katz etal., 1998; Thulke and Conrath,
1998; Conrath etal., 2002, 2006). This mode of action, known as
‘priming, is a characteristic feature of chemical defense inducers.
Various mechanisms have been proposed to explain this priming
effect, including metabolic changes, enhanced expression of MAP
kinases and TFs, epigenetic changes such as histone modifications
and DNA methylation, and modulation of defense-related hor-
mone crosstalks (see below; Conrath, 2011; Pastor etal., 2013).
The metabolic changes related to priming include the conversion
of pathogen-induced SA into SA 2-O-B-D-glucose (SAG) by SA
glucosyltransferase (Dean etal., 2005; Song, 2006). The pool of
SAG in the vacuole serves as a source for rapid generation of SA by
B-glucosidase upon pathogen challenge (Dean etal., 2005). Two
MAP kinases, MPK3 and MPKG®, are required for defense prim-
ing through the SA pathway in Arabidopsis (Beckers etal., 2009).
Priming of Arabidopsis by BTH was shown to cause the accu-
mulation of MAP kinase mRNA transcripts and inactive MAP
kinase proteins. Then, amount of active MAP kinases increased
only after infection by the incompatible Pseudomonas syringae
pv. tomato (Pst) strain DC3000, invoking systemic immunity
(Beckers et al., 2009).
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FIGURE 1 | Effects of priming on induced disease resistance. (A) In
untreated wild-type plants, activation of defense reactions is slow and/or
weak to counteract pathogens. By contrast, constitutive defense activation
imposes fitness costs on plants. Chemical defense inducers such as BTH
prime plants for rapid and/or strong defense reactions upon pathogen
infection, thereby conferring plants with disease resistance without major
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mimics priming by BTH. (C) UPS degradation of NPR1 (Arabidopsis) or
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Epigenetic regulation also plays an important role in the prim-
ing effect (Saijo and Reimer-Michalski, 2013). March-Diaz etal.
(2008) reported that Arabidopsis mutants with impaired incor-
poration of the histone variant H2A.Z showed up-regulated
expression of SA-pathway genes and increased resistance to a
virulent Pseudomonas syringae strain, indicating that H2A.Z has
an important regulatory role in plant defense. Jaskiewicz etal.
(2011) demonstrated that priming of SA-dependent defense was
associated with NPR1-dependent post-translational modifications
of histone H3 and H4 tails at the promoters of WRKY genes.
Also, DNA methylation of defense genes induces defense prim-
ing. Pst DC3000 infection induced dynamic changes in DNA
methylation of certain genes; for example, hypomethylation of SA-
responsive genes leading to up-regulation of these genes (Dowen
etal., 2012). Importantly, the changes in DNA methylation status
of SA-inducible genes after Pst DC3000 infection were transmitted
to the next generation together with SAR, a phenomenon known
as trans-generational SAR (Luna etal., 2012).

In many cases, overexpression of defense signaling compo-
nents negatively affects plant growth as the price of disease
resistance (Delteil et al., 2010). However, overexpression of NPRI
in Arabidopsis conferred resistance to Pseudomonas syringae and
Peronospora parasitica with no obvious detrimental effects on
plant growth (Cao etal.,, 1998). NPRI-overexpressing Arabidop-
sis plants were indistinguishable from wild-type Arabidopsis
plants when grown in field conditions or in a growth cham-
ber, whereas cpr mutants showed severe growth defects as a
result of constitutive defense expression (Heidel etal., 2004).
These observations indicate that like chemical defense induc-
ers, overexpression of NPRI primes defense responses, rather
than directly activating them (Figure 1B). The post-translational
regulation of NPRI, including its redox-responsive nucleus local-
ization described above, likely contributes to the priming effect
(Mou etal., 2003; Tada etal., 2008). In particular, the dual mode
of the ubiquitin-proteasome degradation of NPR1 (Spoel etal.,
2009) probably plays an important role in NPR1-dependent prim-
ing. The UPS degradation of NPR1 decreases basal NPR1 levels
in the absence of pathogens (Figure 1C), and it also enhances
defense levels upon pathogen attack or activation of the SA
pathway (Figure 1C). For example, Cao etal. (1998) reported
that the level of NPR1 protein was only threefold higher in
NPRI-ox Arabidopsis plants than in wild-type Arabidopsis in the
absence of pathogen infection, whereas the difference in NPRI
transcript levels was 28-fold. The small increase in basal lev-
els of NPR1 proteins by NPRI overexpression culminated in the
low induction level of the PRI gene in these plants (Cao etal.,
1998).

As well as the tradeoff between pathogen defense and plant
growth, there are tradeoffs between responses to biotic and abiotic
stresses in plants. These tradeoffs likely result from the reallo-
cation of resources from growth to defense against the most
life-threatening stress in each situation (Matyssek etal., 2005;
Fujita etal.,, 2006). Additionally, there are tradeoffs between
responses to different types of biotic stresses; e.g., pathogenic
microbes vs. herbivore insects and biotrophic pathogens vs.
necrotrophic pathogens. Besides the SA pathway, there are sev-
eral other signaling pathways that mediate responses to intrinsic

developmental and environmental cues. These pathways involve
abscisic acid (ABA), auxins, brassinosteroids, cytokinins, ethylene,
gibberellin, jasmonate (JA), reactive oxygen species (ROS), and
calcium ions. There is an increasing body of evidence that these
signaling pathways interconnect in a complex network (Robert-
Seilaniantz etal., 2011; Cui and Luan, 2012; Pieterse etal., 2012;
De Vleesschauwer etal., 2013). There can be synergistic or antag-
onistic crosstalks among different signaling pathways in response
to multiple environmental cues. The pathways and the crosstalks
among them balance environmental responses with the regulation
of plant growth and development (Fujita etal., 2006). Because
of the crosstalks among signaling pathways, modification of the
SA-signaling pathway to improve disease resistance can adversely
affect plant growth and/or abiotic-stress responses. Similarly, abi-
otic stresses can interfere with SA-pathway-dependent disease
resistance. These are among the important points to consider
when using signaling components to develop disease resistant
crops.

THE SA SIGNALING PATHWAY IN RICE

In tobacco and Arabidopsis, the basal levels of SA are low
(<100 ng/g fresh weight) but they markedly increase upon
pathogen infection (Malamy and Klessig, 1992). By contrast, the
basal SA levels in rice leaves are very high (8-37 jLg/g fresh weight),
and they do not change significantly, either locally or systemi-
cally, upon pathogen attack (Silverman etal., 1995). Because of
these observations, the importance of the SA pathway in pathogen
defense was controversial during early phases of research on
defense signaling in rice. Ithas been reported thatin rice, SA athigh
levels functions as an antioxidant that protects tissues from oxida-
tive damage caused by aging, pathogen attack, or abiotic stresses
(Yang etal., 2004). However, there is increasing evidence that
the SA signaling pathway is also important in mediating defense
signaling in rice.

Despite the high endogenous levels of SA in rice, exoge-
nous application of SA or BTH activates its defenses against
pathogens (Shimono etal., 2007). The SA levels further increase
in response to probenazole, a chemical defense inducer act-
ing upstream of SA, in adult rice plants, but not juvenile ones
(Iwai etal., 2007). Like the SA signaling pathway in Arabidopsis
and other dicots, the SA signaling pathway in rice also involves
an NPR1 protein (OsNPR1/NH1) that acts downstream of SA
(Chern etal., 2001; Fitzgerald etal., 2004; Yuan etal., 2007; Sug-
ano etal,, 2010). Resistance to M. oryzae induced by BTH was
compromised in OsNPRI/NHI-knockdown (-kd) rice (Sugano
etal.,, 2010). Similarly, Xoo resistance induced by BTH (Sugano
etal., 2010) or without it (Yuan etal., 2007) was compromised in
OsNPRI/NH]I-kd rice. Like NPR1 in Arabidopsis, OsNPR1/NH1
proteins are usually localized in the cytosol, but move into the
nucleus in response to redox changes. Mutations at two con-
served cysteines abolished this translocalization (Yuan et al., 2007).
OsNPR1/NHI interacts with b-ZIP-type TGA TFs to regulate
SA-responsive genes (Fitzgerald etal., 2005). OsNPR1/NH1 func-
tion was repressed by direct interaction with negative regulator
of disease resistance (NRR; Chern etal., 2005a), a homolog of
Arabidopsis NIMIN (Weigel etal., 2001, 2005). These results sug-
gest that post-translational regulation and action mode of NPR1
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proteins is conserved between Arabidopsis and rice, with an excep-
tion of their proteasome degradation (see below). Overexpression
of OsNPRI/NH1 was shown to confer strong resistance to both
Xoo and M. oryzae (Chern etal., 2005b; Sugano etal., 2010).

WRKY45 was identified in the japonica rice cultivar Nip-
ponbare as a TF that is essential for BTH-induced resistance
to M. oryzae. Expression of WRKY45 is inducible by SA and
BTH. The effect of BTH to induce M. oryzae resistance was
severely compromised in WRKY45-kd rice transformants (Shi-
mono etal.,, 2007). Resistance to M. oryzae induced by other
chemical defense inducers, probenazole and tiadinil, was shown
to be dependent on WRKY45, as was BTH-induced Xoo resis-
tance (Shimono et al., 2012). The effects of WRKY45-knockdown
on disease resistance were barely observed in the absence of
chemical treatments (Shimono etal., 2012). WRKY45 is usually
up-regulated after pathogen infection, even without chemical
treatments, but the timing of the induction is not early enough
to counteract pathogens. Thus, the induction of WRKY45 tran-
scription before pathogen infection underpins chemical-induced
resistance. WRKY45-overexpressing (WRKY45-0x) rice, as well as
plants treated with BTH at appropriate doses, showed increased
levels of WRKY45 transcripts but did not exhibit major defense
responses in the absence of pathogen infection under particu-
lar conditions (Shimono etal., 2007). WRKY45-o0x rice plants,
in which WRKY45 was driven by the strong constitutive maize
ubiquitin promoter, were strongly resistant to both M. oryzae
(Shimono etal., 2007) and Xoo (Shimono etal., 2012). How-
ever, these plants were susceptible to Rhizoctonia solani, the causal
agent of sheath blight disease (Shimono etal., 2007). Microscopy
studies have shown that M. oryzae resistance resulting from
WRKY45 overexpression mainly results from pre-invasive defense
responses, which restrict fungal entry into rice cells. However,
there are also post-invasive defense responses that target the
fungal cells penetrating through the pre-invasive defense layer
(Shimono etal., 2012).

Surprisingly, the alleles of WRKY45 in japonica and indica
rice subspecies play different roles in the defense responses to
Xoo (Tao etal., 2009). Overexpression of indica-derived WRKY45
(WRKY45-2) conferred Xoo resistance, but overexpression of
japonica-derived WRKY45 (WRKY45-1) rendered rice more sus-
ceptible to Xoo. Both of the alleles conferred resistance to M.
oryzae. Thus, WRKY45-1 has opposite effects against the two
(hemi)biotrophic pathogens, M. oryzae and Xoo. The results
for WRKY45-1 reported by (Tao etal., 2009) contradict those
obtained by Shimono etal. (2012), who reported that rice overex-
pressing japonica-derived WRKY45 (WRKY45-1) showed strong
resistance to Xoo. These two studies used different constructs
for WRKY45 overexpression, but both constructs were driven
by the same maize ubiquitin promoter. Shimono etal. (2012)
used the cDNA for WRKY45, while Tao etal. (2009) used the
genomic fragment of WRKY45, which included the sequences
upstream of the transcriptional start site and introns. It is possible
that the contradicting results are because of the different con-
structs used in the two studies, although there are other possible
explanations; for example, differences in the genetic backgrounds
of the rice varieties used as hosts for these transgenic studies.
Examination of WRKY45 proteins in the transformants using an

anti-WRKY45 antibody (Shimono etal., 2012) should address this
issue.

NPRI1 regulates nearly all of the BTH-responsive genes in Ara-
bidopsis (Wang et al., 2006), except during early phases of pathogen
infection (Li etal., 2004; Uquillas et al., 2004; Blanco et al., 2005).
By contrast, the SA pathway in rice appears to branch into
OsNPR1/NH1- and WRKY45-mediated sub-pathways (Figure 2),
as revealed by an epistasis analysis and global gene expression anal-
yses of BTH-responsive genes in OsNPRI/NH1-kd and WRKY45-
kd rice transformants (Shimono etal., 2007; Sugano etal., 2010;
Takatsuji etal., 2010; Nakayama etal., 2013). Overexpression
of OsNPR1/NH1 down-regulated some genes, but up-regulated
many other genes including numerous defense-related genes. The
genes down-regulated by OsNPR1/NH1 included several involved
in photosynthesis and protein synthesis. These results suggest that
one of the functions of OsNPR1/NHI1 is to divert resources from
housekeeping cellular activities such as photosynthesis to defense
responses (Figure 2; Sugano etal., 2010). A similar function was
also inferred for Arabidopsis NPR1, based on the genome-wide
transcriptome analysis of BTH-responsive genes in the Arabidopsis
nprl mutant (Wang et al., 2006; Sugano etal., 2010).

A recent study reported that most of the WRKY45-dependent
genes (85%, 220 genes) in rice were up-regulated in response to
BTH (Nakayama et al., 2013). In addition to putative defense genes
such as those encoding PR proteins and other proteins involved
in secondary metabolism of defense products, several genes for
defense-related TFs were directly or indirectly regulated down-
stream of WRKY45 (Figure 2; Nakayama etal., 2013). These
TFs included WRKY62, which negatively regulates Xoo resistance
dependent on the PRR Xa21 (Penget al.,2008); OsNAC4, a positive
regulator of programmed cell death associated with the hyper-
sensitive reaction (Kaneda etal., 2009); and OsHSF1, a negative
regulator of plant cell death through decreasing reactive oxygen
species (ROS) levels (Yamanouchi et al., 2002). These results sug-
gest that a transcriptional cascade underpins WRKY45-dependent
defense reactions in rice (Figure 2; Nakayama etal., 2013).

WRKY13 has also been implicated in the SA pathway in rice.
This TF positively regulates SA-pathway-dependent disease resis-
tance against M. oryzae and Xoo (Figure 2; Qiu etal., 2007).
WRKY13 has been shown to play a role in regulating antagonis-
tic crosstalk between SA- and JA-dependent signaling pathways,
acting upstream of OsNPRI1/NH1 (Qiu etal., 2007, 2008, 2009).
Recently, WRKY13 was reported to function as a transcriptional
repressor. WRKY13 repressed drought tolerance through down-
regulating expression of the gene encoding the downstream TF
SNACI (Figure 2; Xiao etal., 2013). SNACI is a positive regu-
lator of drought tolerance (Hu etal., 2006) and its suppression
by WRKY13 resulted in increased sensitivity to drought (Xiao
etal.,,2013). WRKY13 also transcriptionally represses WRKY45-1,
which negatively regulates Xoo resistance (Tao etal., 2009); con-
sequently, WRKY13 increases Xoo resistance. Here, the repression
of WRKY45-1 by WRKY13 is puzzling, because previous studies
demonstrated that both WRKY45-1 (Shimono etal., 2007; Tao
etal.,2009) and WRKY13 (Qiu etal., 2007) are positive regulators
of M. oryzae resistance.

WRKY76 is another WRKY transcriptional repressor that is
inducible by SA/BTH (Shimono etal., 2007), as well as wounding,
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FIGURE 2 | Current status of knowledge about the SA signaling pathway
in rice. The rice SA pathway branches into OsNPR1- and WRKY45-dependent
sub-pathways. OsNPR1 positively regulates defense reactions and
suppresses JA signaling, and also down-regulates cellular activities such as
photosynthesis, thereby playing a role in resource allocation during defense
responses. WRKY45 positively regulates disease resistance through
downstream transcription factors; WRKY62, OsNAC4, and HSF1. The role of
WRKY®62 in defense needs further investigation because there are conflicting
data. The degradation of WRKY45 by the UPS has two effects: defense
suppression in the absence of pathogens; and defense enhancement upon
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pRotesy > > D
Cold Defense proteins HR cell cell death
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SA-pathway activation and/or pathogen infection. ABA signaling, which
mediates abiotic stresses, negatively regulates the SA-pathway-dependent
defense by acting upstream of WRKY45 and OsNPR1 (red lines). Cytokinin
signaling, which is activated by M. oryzae infection, acts synergistically with
the SA pathway to trigger defense responses, thereby possibly underpinning
the priming effect (purple lines). WRKY13, a transcriptional repressor,
positively regulates OsNPR1 and disease resistance by acting upstream of
OsNPR1. WRKY13 also plays a role in down-regulating drought tolerance of
rice through repressing SNAC1. By contrast, WRKY76 suppresses disease
resistance while enhancing cold tolerance.

low temperature, and ABA (Yokotani et al., 2013). Overexpression
of WRKY76 increased susceptibility of rice to M. oryzae and Xoo
(Figure 2; Seo etal., 2011; Yokotani etal., 2013) but improved
cold tolerance (Yokotani etal., 2013). These results suggest that
WRKY76 plays a role in the crosstalk between disease resistance
and abiotic stress tolerance.

WRKY30 is a newly identified interesting TF in that it is
involved in both SA and JA pathways. Its transcripts are rapidly
inducible by both SA and JA (Peng etal., 2012). In addition,
its overexpression induces the expression of WRKY45 (Han
etal., 2013), the SA-pathway specific gene, as well as LOX and
AOS2 genes (Peng etal., 2012), the JA-pathway marker genes.
Strikingly, WRKY30-ox rice transformants are resistant to both
(hemi)biotrophic pathogens (M. oryzae and Xoo) and R. solani, a
necrotrophic pathogen (Peng etal., 2012; Han etal., 2013), con-
sistent with the fact that WRKY30 is involved in both SA and JA
pathways.

There are several other examples of proteins that negatively or
positively affect disease resistance in rice. For example, OsSGT1

(Oryza sativa UDP-glucose:SA glucosyltransferase 1), which cat-
alyzes the conversion of free SA into SA-O-f3-glucoside, can
promote probenazole-inducible resistance (Figure 2; Umemura
etal., 2009). OsSSI2, the ortholog of Arabidopsis SSI2 (Suppressor
of SA insensitivity 2; Shah etal., 2001), encodes a fatty-acid desat-
urase, and was shown to act upstream of WRKY45 to negatively
regulate WRKY45-dependent resistance to M. oryzae and Xoo
(Figure 2; Jiang etal., 2009).

PROTEASOME DEGRADATION OF WRKY45

In rice, WRKY45 is degraded by the UPS in the nucleus (Figure 2;
Matsushita etal., 2013). The regulation of WRKY45 by the
UPS has a dual role, similar to the case of Arabidopsis NPR1
(Matsushita etal., 2013). WRKY45 is constantly degraded by the
UPS in the absence of pathogens and/or defense signals. However,
in the presence of an SA signal and/or pathogen infection, there
is increased WRKY45-dependent induction of defense responses.
It was proposed that the induced accumulation of WRKY45 in
response to the SA signal exceeds the rate of its degradation
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by the UPS. Therefore, the surplus WRKY45 can bind to tar-
get promoters, and the transcriptional activity of WRKY45 is
enhanced by UPS-mediated turnover. Based on studies in human
and yeast, multiple models have been proposed to explain the
role of UPS degradation of TFs in enhancing their transcrip-
tional activities (Lipford and Deshaies, 2003; Muratani and Tansey,
2003). The dual mode of UPS regulation of WRKY45 is probably
partly responsible for the priming effect of WRKY45-dependent
defense (Spoel etal., 2009; Matsushita etal., 2013). WRKY45-
ox rice plants, despite their extremely strong resistance to M.
oryzae and Xoo, show only minor fitness costs, at least under
particular growth conditions. It is likely that UPS degradation
contributes to reducing the fitness costs of WRKY45 overexpres-
sion by decreasing the basal level of WRKY45 protein, and/or
by suppressing the spurious induction of WRKY45 proteins in
the absence of pathogens (Figure 1C). Also, the UPS degrada-
tion of WRKY45 on target promoters increases its transcriptional
activity, thereby enhancing the expression levels of defense genes
(Figure 1C).

Unlike Arabidopsis NPR1, OsNPR1/NHI1 was not degraded
by the UPS (Matsushita etal., 2013). Overexpression of
OsNPRI/NHI in rice induced constitutive activation of PR
gene expression, accompanied by lesion-mimic symptoms
and light hypersensitivity (Chern etal., 2005b). NPRI over-
expression in Arabidopsis did not trigger defense reactions
until subsequent induction by chemicals or pathogen infec-
tion (Cao etal, 1998). The presence or absence of UPS
degradation, which affects the levels of transgene prod-
ucts, could be responsible for the differences in the pheno-
types of transformants; that is, priming vs. direct defense
responses.

Recently, we have shown that the UPS degradation of WRKY45
plays an important role in blast resistance associated with Pbl
(Panicle blast 1), an R-protein-like coiled-coil-nucleotide-binding
site leucine-rich repeat (CC-NB-LRR) protein (Inoue etal., 2013).
R-gene-mediated disease resistance is usually race-specific and
is prone to breakdown. By contrast, the resistance conferred
by Pbl is non-race-specific and durable against M. oryzae in
rice, despite the R-like structure of Pbl. The Pbl-induced resis-
tance is especially strong in rice at the adult phase; therefore,
it has been used for breeding (Fujii and Hayano-Saito, 2007;
Hayashi etal., 2010). The blast resistance associated with Pb1 is
clearly dependent on WRKY45, because WRKY45-knockdown
significantly decreased Pbl-dependent blast resistance in Pbl-
containing rice lines and Pbl-overexpressing rice transformants
(Inoue etal., 2013). Pbl and WRKY45 were shown to interact
in the nucleus, and this interaction inhibited the UPS degra-
dation of WRKY45 (Inoue etal., 2013). Based on these results,
we propose that the protection of WRKY45 from UPS degra-
dation at least partly explains Pbl-dependent blast resistance
(Inoue etal., 2013).

SIGNALING CROSSTALKS MODIFY SA-PATHWAY-
DEPENDENT DEFENSE RESPONSES

As in dicots, positive and negative crosstalks between the SA sig-
naling pathway and other signaling pathways are also prevalent
in rice, for which detailed reviews can be found elsewhere (De

Vleesschauwer etal., 2013; Takatsuji and Jiang, 2014). Here, I dis-
cuss the significance of these signaling crosstalks in plants’ defense
systems and their potential uses in genetic engineering strate-
gies to improve disease resistance by modifying defense signaling
components.

Application of exogenous ABA compromised rice resistance
to M. oryzae (Matsumoto, 1980; Koga etal., 2004; Bailey etal,,
2009; Jiang etal., 2010), Xoo (Xu etal., 2013) and the migratory
nematode Hirschmanniella oryzae (Nahar et al.,2012). By contrast,
inhibition of ABA biosynthesis, degradation of ABA, or blocking
of ABA signaling enhanced rice resistance to M. oryzae (Koga et al.,
2004; Yazawa etal., 2012) and Xoo (Xu etal., 2013). These results
are consistent with the observations that abiotic stresses such as
low temperature and drought, which induce ABA accumulation,
render rice plants more susceptible to blast disease (Kahn and
Libby, 1958; Bonman etal., 1988; Gill and Bonman, 1988; Koga
etal,, 2004). Jiang etal. (2010) detected ABA in the fungal bodies
and culture media of M. oryzae. Thus, it is possible that the fungus
produces its own ABA to attenuate the plant defense system. Recent
studies have provided evidence that antagonistic crosstalk between
ABA signaling and SA signaling underpins these phenomena in
rice (Jiang etal., 2010; Sugano etal., 2010; Yazawa etal., 2012; Xu
etal.,2013) as well as in Arabidopsis (Yasuda et al., 2008). ABA sup-
pressed SA/BTH- or pathogen-induced up-regulation of WRKY45
and OsNPR1/NH]1 (Figure 2; Jiang et al., 2010). Overexpression of
OsNPRI/NH1 or WRKY45 largely eliminated increased-blast sus-
ceptibility induced by ABA, suggesting that ABA acts upstream
of WRKY45 and OsNPR1/NHI in the rice SA pathway (Jiang
etal., 2010; Xu etal., 2013). This antagonistic crosstalk presum-
ably redirects resources from pathogen defense to the abiotic stress
response, thereby enabling plants to survive under abiotic stress
conditions in nature. Recently, we showed that the MAP kinase
OsMPK6 phosphorylates WRKY45 in an SA-dependent manner
(Ueno etal., 2013). Our data suggest that OsMPKG6 is the node of
convergence of this antagonistic crosstalk.

Cytokinin-mediated signaling also plays an important role in
pathogen defenses by interacting with the SA pathway. In Ara-
bidopsis, cytokinins were shown to act on the SA-signaling pathway
synergistically, enhancing resistance to the hemibiotrophic bacte-
rial pathogen Pst DC3000 and the biotrophic oomycete pathogen
Hyaloperonospora Arabidopsis (Choi etal., 2010; Argueso etal.,
2012). In this process, Arabidopsis response regulator 2 (ARR2),
a TF activated by cytokinin signaling, forms a complex with
TGA3 (TGAla-related 3), an SA-responsive TF. This complex acti-
vates the transcription of PR genes, resulting in disease resistance
(Choi etal., 2010, 2012). The synergistic relationship between
cytokinin signaling and SA signaling has also been observed in
rice (Figure 2). Co-treatment of rice leaf blades with cytokinins
and SA strongly induced the expression of the defense genes PR1b
and PBZI (probenazole-inducible protein 1), whereas treatment
with either one alone only slightly increased their expression lev-
els (Jiang etal.,, 2013). The induction of these defense genes was
diminished by RNAi-knockdown of OsNPRI/NH1 or WRKY45,
indicating that the synergistic crosstalk depends on these cen-
tral regulators of the SA pathway. The levels of cytokinin species
were shown to increase in rice leaf blades during blast infec-
tion (Jiang etal., 2013). Given that M. oryzae can produce and
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secrete cytokinins (Jiang etal., 2013), fungus-derived cytokinins
could contribute, at least partly, to the increased cytokinin level
in infected leaves. These cytokinin species, whether derived from
the fungus or produced de novo in the plant, could benefit the
pathogen by promoting nutrient translocation to the infection
sites (Walters etal., 2008). Conversely, the synergistic crosstalk
between cytokinin signaling and SA signaling could trigger defense
responses in plants primed for defense through the SA signaling
pathway. Thus, both pathogens and hosts exploit cytokinin signal-
ing. Recently, we have demonstrated that diterpenoid phytoalexin
synthetic genes were primed by BTH and proposed that the SA-
cytokinin synergism plays a crucial role in full activation of these
genes (Akagi etal, 2014). Thus, this signaling crosstalk repre-
sents a new possible mechanism that could underlie priming-based
pathogen defense in rice.

Both negative and positive crosstalks between SA and JA
signaling have been reported in many plant species, although
antagonistic crosstalk is more common (Thaler etal., 2012). Sev-
eral studies have demonstrated SA-JA crosstalk in rice. Like
NPR1 in Arabidopsis (Spoel etal., 2003), OsNPR1/NH1 has been
implicated in SA-JA antagonistic crosstalk in rice. Overexpres-
sion of OsNPR1/NH1 strongly activated SA-responsive genes and
suppressed JA marker genes (Yuan etal.,, 2007). Consequently,
OsNPRI/NHI overexpression rendered rice more susceptible to
herbivorous insects (Yuan etal., 2007; Li etal., 2013), but con-
ferred strong resistance to M. oryzae and Xoo. A role of WRKY13
in SA-JA antagonistic crosstalk has also been suggested (Qiu et al.,
2007, 2008, 2009). Several studies have suggested that the two
hormone signaling pathways may feed into a common defense
system that is effective against both biotrophic and necrotrophic
pathogens in rice (Garg etal., 2012; Liu etal., 2012; Tong etal,,
2012; Yamada etal., 2012; De Vleesschauwer etal., 2013; Takatsuji
and Jiang, 2014).

DEVELOPMENT OF DISEASE-RESISTANT RICE USING
COMPONENTS OF THE SA SIGNALING PATHWAY

The components of the SA signaling pathway are important
genetic resources for improving rice resistance against pathogens
using transgenic approaches. The NPR1 proteins (in Arabidopsis
and rice) and WRKY45 positively regulate the rice SA pathway
and their up-regulation enhances rice resistance against M. oryzae
and Xoo, and possibly other (hemi)biotrophic pathogens. Overex-
pression of WRKY13 also enhances M. oryzae and Xoo resistance
through modulating the SA pathway (Qiu etal., 2007). Although
these factors have strong potential to prevent diseases, their con-
stitutive overexpression at high levels has been accompanied
by various negative effects, which were often environment-
dependent. Overexpression of Arabidopsis NPR1 in rice results
in lesion mimic/cell death phenotype under specific environ-
mental condition (Fitzgerald etal., 2004). OsNPR1/NH]I-ox rice
plants showed spontaneous lesion-mimic symptoms without
other developmental effect when grown in a greenhouse; how-
ever, a dwarf phenotype accompanied by increased SA contents
occurred after cultivation in a growth chamber under low light
intensity (Chern etal., 2005b). These observations are presumably
due to light-sensitive tradeoff between plant growth (dwarf) and
disease resistance (increased SA). Overexpression of WRKY45 also

resulted in growth retardation that was dependent on the culti-
vation conditions (Shimono etal., 2007). The WRKY45-0x rice
plants cultivated in a growth chamber showed severely restricted
growth accompanied by up-regulation of PR genes, whereas those
cultivated in a greenhouse showed only minor growth retardation
(Shimono etal., 2007). Multiple environmental factors negatively
affected the growth of WRKY45-ox rice plants, and the neg-
ative effects were correlated with elevated WRKY45-dependent
defense responses in the absence of pathogens (Figure 1D; Goto
etal., in press). Overexpression of WRKY13 resulted in reduced
drought tolerance (Figure 2; Xiao etal., 2013). These phenom-
ena are because of tradeoffs between disease resistance and plant
growth and/or abiotic stress tolerance. Meanwhile, OsNPR1/NH1-
ox rice plants are less tolerant to herbivore, which can be regarded
as a tradeoff between the responses to different biotic stresses,
pathogens and pests (Yuan etal., 2007; Li et al., 2013). These prob-
lems must be overcome to develop practicable disease-resistant
rice lines.

Suppression of negative regulators of the SA pathway can also
increase disease resistance of rice. In the case of OsSSI2, the com-
plete loss-of-function mutation of its gene negatively affected plant
growth, because of the constitutive activation of the SA pathway
(Jiang etal., 2009). This may reflect the tradeoff between defense
and growth, or result from the toxicity of the defense products.
Meanwhile, the incomplete loss-of-function of this gene by RNAi
resulted in strong resistance to both M. oryzae and Xoo without
major negative effects on plant growth (Jiang etal., 2009). These
results suggest that controlling the activation of defense signaling
at moderate levels is one way to manage the tradeoff effects.

The priming effect is another crucial factor in alleviating the
tradeoff between disease resistance and growth/abiotic stress resis-
tance. In previous studies on rice overexpressing WRKY45 or
Arabidopsis overexpressing NPRI, it was particularly important
to control their expression levels to fully realize the benefit of the
priming effect. This is because like chemical inducers, overex-
pression of WRKY45 or NPRI leads to dose-dependent defense
responses, ranging from direct defense to priming (Conrath etal.,
2002). Constitutive expression of Arabidopsis NPR1 had a priming
effect on Arabidopsis transformants (Heidel et al., 2004), whereas
that of OsNPRI/NHI in rice led to constitutive defense activation
(Chern et al., 2005b). One of the differences between these coun-
terpart proteins is the presence (Arabidopsis) or absence (rice) of
their UPS degradation (Spoel et al., 2009; Matsushita etal., 2013).
UPS degradation reduces the basal levels of the target protein,
and consequently, decreases the fitness costs associated with its
defense-activating function.

Unlike OsNPR1/NHI, rice WRKY45 is degraded by the UPS.
The dual role of UPS degradation at least partly explains the prim-
ing effect caused by WRKY45 overexpression (Matsushita etal.,
2013). There is a synergistic interaction between SA and cytokinin
signaling (Jiang etal., 2013), and this interaction also likely con-
tributes to the priming effect on the basis of the transcriptional
regulation of diterpenoid phytoalexin biosynthetic genes (Akagi
etal., 2014). However, the high-level expression of WRKY45 still
imposed significant fitness costs, which were exacerbated by some
environmental factors (Shimono etal., 2007). Recently, we found
that controlling the level of WRKY45 expression at moderate levels
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using a weaker constitutive promoter largely eliminated the fitness
costs and environmental sensitivity related to WRKY45 expression,
while retaining strong disease resistance (Goto et al., in press). The
use of pathogen-responsive or tissue-specific promoters is another
strategy to drive gene expression when and where pathogens
invade. We have screened and identified a pathogen-responsive
promoter from rice that can confer strong resistance to both M.
oryzae and Xoo by driving WRKY45 expression without causing a
yield penalty in field-grown rice crops. Details of these studies will
be described elsewhere.

FUTURE PROSPECTS

Disease resistance strategies using the components of the SA-
signaling pathway have the potential to be effective and versa-
tile. However, their success depends on managing the tradeoffs
between pathogen defense and plant growth and/or abiotic-
stress tolerance. In this article, I discussed the importance of
the priming effect and transgene expression levels. The use of
pathogen-inducible promoters is one effective strategy for con-
ditional transgene expression. However, these strategies do not
exploit the full potential of the signaling components, because
their potential is sacrificed to some extent to manage the tradeoff.
In principle, the tradeoffs reflect the plant’s strategy to prioritize
the responses to the most significant life-threating stress at the
cost of plant growth or the responses to less serious stresses under
resource-limited conditions. However, such regulation is probably
not essential in crops cultivated under resource-rich conditions.
Rather, unnecessary tradeoffs can decrease crop yields by lim-
iting the resources available for plant growth and development.
There is mounting evidence that signaling crosstalks play roles in
tradeoffs. By disconnecting such crosstalks via targeting precise
molecular mechanisms, it will become possible to establish even
more robust disease resistance without adversely affecting the crop
yield or abiotic stress tolerance. Although several signaling com-
ponents have been reported to affect the interconnections among
pathways, many of them act indirectly, and their manipulation is
unlikely to disconnect the crosstalks. Therefore, it is important
to identify and manipulate the molecules that play direct roles in
regulating crosstalks. These are probably among the most impor-
tant challenges for improving the disease resistance of crops in the
future.
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