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The response to mechanical damage is crucial for the survival of multicellular organisms,
enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous
fungus of great importance in the biological control of plant diseases, responds to mechan-
ical damage by activating regenerative processes and asexual reproduction (conidiation).
During this response, reactive oxygen species (ROS) are produced by the NADPH oxidase
complex.To understand the underlying early signaling events, we evaluated molecules such
as extracellular ATP (eATP) and Ca2+ that are known to trigger wound-induced responses
in plants and animals. Concretely, we investigated the activation of mitogen-activated
protein kinase (MAPK) pathways by eATP, Ca2+, and ROS. Indeed, application of exogenous
ATP and Ca2+ triggered conidiation. Furthermore, eATP promoted the Nox1-dependent
production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes
tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of
both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts
as a damage-associated molecular pattern (DAMP). Our data indicate the existence of
an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to
regulate asexual reproduction genes that are required for injury-induced conidiation. By
contrast, Ca2+ is more likely to act as a downstream second messenger.The early steps of
mechanical damage response inT. atroviride share conserved elements with those known
from plants and animals.

Keywords: injury response, extracellular ATP (eATP), conidiation, reactive oxygen species (ROS), mitogen-activated

protein kinase (MAPK), calcium

INTRODUCTION
Wound response is a crucial process for the survival of mul-
ticellular organisms and facilitates their adaptation to hostile
environments. Plants, being sessile organisms, cannot escape from
attack by insects or larger herbivores. Animals, although motile,
are also exposed to mechanical damage and injuries inflicted
by predators. Similarly, due to their absorptive nutrition mode
and their immobility, multicellular (filamentous) fungi are prey
to a variety of animal predators including fungivorous nema-
todes and insects. Nevertheless, the physiological response of
fungi to wounding and its implications, if any, remains mostly
unexplored.

The topic of damage signals and their perception in differ-
ent organisms has been of recent interest since key mechanisms
such as wound sealing and healing of the damaged tissue, as well
as local or systemic responses to prevent infection, contain con-
served elements. In highly regenerative animals, wounding can
trigger regrowth of a missing body part, involving gene expres-
sion changes specific for tissue regeneration (Nacu and Tanaka,
2011; Lee and Gardiner, 2012; Wenemoser et al., 2012). Simi-
larly, plant and moss cells can be reprogrammed to initiate tip
growth in wounded tissues (Ishikawa et al., 2011). Unfortunately,
our current knowledge of wound response in filamentous fungi

is mostly limited to the well-characterized sealing of septal pores
by Woronin bodies. This sealing reduces loss of cytoplasmic con-
tent to prevent cell death, and is followed by the formation of one
or more hyphal tips at the plugged septum, resulting in reiniti-
ation of growth and hyphal reconnection (Jedd, 2011). Despite
our limited understanding of wound response in fungi, mechan-
ical damage has been found to trigger entry into development
in several species. One of the first reports refers to the forma-
tion of fruiting bodies in Schizophyllum commune in response
to mycelial injury (Leonard and Dick, 1968). These authors sug-
gested the participation of oxidative stress in the production of
fruiting bodies in response to injury (Leonard and Dick, 1968).
Later, Georgiou et al. (2006) reported the formation of scle-
rotia in response to oxidative stress in Sclerotium rolfsii, and
increased reactive oxygen species (ROS) were found in dam-
aged hyphae of the fungus Glomus intraradices (Fester and Hause,
2005).

Unfortunately, none of the mentioned reports provided mech-
anistic insights such that injury-signaling remains poorly under-
stood. In other systems, reliable signals of tissue disruption are
known to comprise fragments of the extracellular matrix, extra-
cellular molecules such as ATP, adenosine, RNA or DNA, and
certain proteins or protein fragments (Chen and Nuñez, 2010;
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Zeiser et al., 2011; Heil, 2012). These warning signals are known
as damage-associated molecular patterns (DAMPs; Heil and Land,
2014).

The release of ATP is an important early danger signal in
humans (Chen and Nuñez, 2010; Zeiser et al., 2011), fish (Kawate
et al., 2009), algae (Torres et al., 2008), and plants (Chivasa et al.,
2009; Heil et al., 2012). In humans, perception of extracellular
ATP (eATP) by purinergic receptors is one of the main biolog-
ical mechanisms responsible for epithelial intracellular calcium
mobilization (Sherwood et al., 2011; Kurashima et al., 2012). In
zebrafish, ATP released after an injury is sensed by a purinergic
P2Y receptor, which in turn modulates NADPH-oxidase activity
(Dual oxidase Duox1; de Oliveira et al., 2014). G-protein-coupled
P2Y receptors can also recognize other nucleotides, such as
adenosine diphosphate (ADP) and uridine triphosphate (UTP;
Abbracchio et al., 2006; Covian-Nares et al., 2010). Purinergic
receptors similar to those described in animal systems have not
been found in plants. However, an extracellular lectin ATP receptor
kinase (LecRK-I.9) was recently discovered in Arabidopsis (Choi
et al., 2014).

One of the earliest events upon detection of a stress signal
is the activation of mitogen-activated protein kinases (MAPKs).
MAPKs are part of well-conserved eukaryotic signaling cascades.
In Arabidopsis at least two MAPKs, MPK6, and MPK3, are
rapidly activated by wounding and during plant-pathogen inter-
actions. MPK6 directly phosphorylates the 1-aminocyclopropane-
1-carboxylic acid synthases (ACS), ACS6, and ACS2 and thus
stabilizes these enzymes, increasing the production of ethy-
lene; while MPK3 activity increases after wounding (Ichimura
et al., 2000; Liu and Zhang, 2004; Wang et al., 2008). In Nico-
tiana species, orthologs of MPK6 (SIPK) and MPK3 (WIPK)
are activated by wounding (reviewed in Hettenhausen et al.,
2014). Plants carrying a mutation in LecRK-I.9 that do not
respond to ATP (DORN1), fail to trigger phosphorylation of
MPK3 and MPK6 (Choi et al., 2014). Further, plant leaf extracts
(which contain multiple DAMPs) can induce secretion of extraflo-
ral nectar, an indirect defense response to damage (Heil et al.,
2012).

Based on these precedents we hypothesized that fungi could
regulate wound response via MAPK pathways, triggering the acti-
vation of developmental processes such as cell growth and differen-
tiation. In most filamentous fungi, there are three MAPK pathways
that are involved in several processes, such as asexual and sex-
ual reproduction, general stress response, spore germination, cell
fusion, secondary metabolism, and mycoparasitism (Mendoza-
Mendoza et al., 2003; Delgado-Jarana et al., 2006; Reithner et al.,
2007; Fleissner et al., 2009; Kumar et al., 2010; Lara-Rojas et al.,
2011; Bayram et al., 2012; Lichius et al., 2012). Defective sexual
and asexual development resulting from MAP kinase mutations
have been reported in Magnaporthe grisea (Xu et al., 1998), Fusar-
ium graminearum (Hou et al., 2002), Neurospora crassa (Lichius
et al., 2012), and Aspergillus nidulans (Wei et al., 2003).

Trichoderma species are often a predominant component of
the mycoflora in native and agricultural soils, and are consid-
ered effective biocontrol agents due to their ability to parasitize
phytopathogenic fungi (Herrera-Estrella and Chet, 2003). These
ascomycete fungi reproduce asexually forming conidia, as a

mechanism for survival and dispersal. Accordingly, the switch
from vegetative to reproductive growth is triggered by several types
of stress such as light, nutrient deprivation, and acid environ-
ments (for a review see Carreras-Villasenor et al., 2012). Recently,
Hernández-Oñate et al. (2012) showed that Trichoderma atroviride
responds to mechanical damage with a morphogenetic change ini-
tiated by the activation of regenerative processes, and entry into
asexual reproduction (conidiation). Their transcriptome analy-
sis revealed over nine hundred injury-responsive genes, including
subsets involved in cell cycle control, oxidative stress, and calcium
signaling and transport. The injury response depended on acti-
vation of the NADPH-oxidase complex formed by the catalytic
(Nox1) and the regulatory (NoxR) subunits, which resulted in
ROS production at the hyphal tip within the first minutes after
injury. Both Nox1 and NoxR are essential for conidiation since
�nox1 and �noxR mutants do not conidiate in response to this
stimulus.

Trichoderma species have three MAPKs that belong to the
so-called mycoparasitism/filamentous growth, cell wall integrity,
and osmotic stress response pathways. In T. atroviride they
are named Tmk1, Tmk2, and Tmk3, and their corresponding
orthologs in yeast are Kss1/Fus3, Slt2, and Hog1 (Mendoza-
Mendoza et al., 2003; Delgado-Jarana et al., 2006; Reithner
et al., 2007; Zeilinger and Omann, 2007). None of the reports
on the role of Trichoderma’s MAPKs establishes a connec-
tion between them and signaling molecules of the injury
response.

Here, we show that eATP serves as a cue that signals tissue dis-
ruption to as yet intact hyphae (and, thus, acts as a DAMP) and
that Ca2+ also plays an important role in asexual reproduction
triggered by wounding in T. atroviride, likely as a downstream
second messenger. We further demonstrate that transduction of
eATP signaling takes place through the activation of MAPK cas-
cades involving Tmk1 and Tmk3. Activation of Tmk3 depends
on this NoxR/Nox1 complex, whereas that of Tmk1 is indepen-
dent of the complex. By contrast, calcium signaling appears to
take place through a MAPK-independent pathway. In conclusion,
DAMPs are involved in the fungal wound response and trigger
downstream signaling events that are similar to those known in
other organisms.

MATERIALS AND METHODS
STRAINS AND CULTURE CONDITIONS
Trichoderma atroviride IMI 206040 was used as wild type (WT)
strain, the mutants �tmk3 and �tmk1 are described below.
The �nox1, �nox2, and �noxR have been reported earlier
(Hernández-Oñate et al., 2012). All strains were propagated on
potato dextrose agar (PDA) or potato dextrose broth (PDB; Difco)
in the dark at 27◦C.

GENERATION OF �tmk1 AND �tmk3 MUTANTS
The open reading frames (ORF) of genes tmk1 and tmk3 were
replaced by a hygromycin resistance cassette (hph), using the
double-joint PCR method, as previously described (Yu et al.,
2004). All transformants were subjected to three to five rounds
of single spore isolation and gene replacement events verified by
PCR and Southern blot (data not shown).
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SOUTHERN BLOT ANALYSIS
The �tmk1 and �tmk3 mutants were verified by Southern blot,
following standard procedures (Sambrook and Russell, 2001).
Genomic DNA of �tmk1 and �tmk3 was extracted and digested
with PvuII and EcoRI, respectively, then separated by electrophore-
sis in a 1% agarose gel, and transferred onto Hybond-N+
membranes (Amersham). The probes used to verify the �tmk1
and �tmk3 mutants (2.9 and 3.3 kb) included the complete ORF
and 1.5 kb at the 5′ UTR. The probes were labeled with [α32P]
dCTP by random priming, using the Readyprime kit (Amersham)
according to the manufacturer’s specifications.

INJURY-INDUCED CONIDIATION ASSAYS
All strains tested were grown for 40 h in the dark on a cellophane
sheet placed over a single layer of Whatman 1 filter paper. To test
the influence of calcium on the response to injury, the strains were
exposed to 15 mM ethylene glycol tetraacetic acid (EGTA) (Sigma)
for 15 min, or treated with 2 units of apyrase to test the influence of
ATP. Mycelia was then damaged with a scalpel or a cookie mold and
transferred to fresh media (PBD) and incubated for an additional
48 h in the dark. Subsequently conidia were collected in sterile
water and quantified by direct counting in a Neubauer chamber.
Strains grown under the same conditions but without treatment
were used as controls.

ATP-INDUCED CONIDIATION ASSAYS
The WT strain was grown in the dark on a cellophane sheet placed
on a single layer of Whatman 1 filter for 40 h. The fungus was then
transferred to plates containing ATP, ATPγ-S, ADP, CTP, UTP or
GTP at a 0.1 mM concentration (Sigma). Additionally, colonies
were transferred to plates containing 2 units of apyrase and ATP
(0.1 mM) or EGTA (15 mM; Sigma) or N-acetylcysteine (NAC;
60 mM) for 15 min. Finally, colonies were washed with sterile water
and transferred to Petri dishes containing fresh PDB medium and
incubated for additional 48 h in the dark. Control colonies did
not receive any treatment. Colonies were photographed; coni-
dia collected in sterile water, and quantified using a Neubauer
chamber.

WESTERN BLOT ANALYSIS
Fresh mycelia with cellophane paper were frozen in liquid nitro-
gen, ground in a mortar and resuspended in Laemmli’s SDS/DTT
sample buffer without dye and maintained on ice. Samples were
further disrupted by vortexing; cell and cellophane debris were
removed by centrifugation (12000 rpm) for 2 min at 4◦C. Pro-
tein concentration was determined by using the Bradford assay
(Bio-Rad) with BSA as a standard. Equivalent amounts of pro-
tein (40 μg) were used for immunoblotting and analyzed by
12% SDS-PAGE followed by electro-blotting onto polyvinyl diflu-
oride (PVDF; Inmobilon®-P) membranes (Milipore, Billerica,
MA, USA). The membrane was blocked with 5% low fat milk
in TBS-Tween, and probed (overnight at 4◦C) with Phospho-
p38 MAP Kinase (Thr180/Tyr182) rabbit monoclonal antibody
or Hog1 (y-215) polyclonal antibody (Santa Cruz Biotechnology,
Santa Cruz, CA, USA) to detect phosphorylated and total Tmk3.
Phospho-p42/p44 MAP Kinase (Thr202/Tyr204) polyclonal anti-
body or p42/p44 MAP Kinase rabbit monoclonal antibodies (Cell

Signaling Technology, Beverly, MA, USA) were used to detect
phosphorylated and total Tmk1, as indicated. For immunode-
tection of Tmk-P and total Tmk two separated gels were run using
the same sample, transferred onto PVDF membranes and each
blot probed with the indicated antibody. Horse Radish Peroxidase-
conjugated secondary antibodies (Promega, Madison, WI, USA)
and Super Signal West Pico Chemiluminescent Substrate (Pierce-
search; Thermo Scientific, Rockford, IL, USA) were used for
detection.

ROS DETECTION ASSAYS
Superoxide detection was performed as described by Lara-Ortíz
et al. (2003) with slight modifications. The �nox1, �nox2, �noxR
mutants, and the WT strain were grown on cellophane and filter
paper in plates containing PDB for 40 h. The filter papers with the
fungus were washed with sterile water and transferred to plates
with or without 0.3 mM nitroblue tetrazolium chloride (NBT;
Sigma) aqueous solution, and incubated for 30 min in the dark at
27◦C. Samples were photographed under an inverted microscope.

STATISTICAL ANALYSIS
The program Graphpad Prism version 6 was used for statistic
analysis and constructing graphs. All error bars indicate SEM.
A one-way ANOVA test followed by Bonferroni multiple-test
correction was used.

RESULTS
eATP AND CALCIUM SIGNALING MODULATE CONIDIATION IN
RESPONSE TO INJURY
When a hypha is damaged, release of cytoplasmic content is
inevitable and, thus, surrounding healthy cells could recognize
its components as a danger signal. Accordingly, we first focused on
extracellular signals that might be responsible for conidiation dur-
ing the wound response in T. atroviride, and evaluated eATP and
Ca2+ as potential damage signal molecules. For this purpose, we
incubated T. atroviride with apyrase, an enzyme that hydrolyzes
eATP, or an extracellular Ca2+ chelating agent. Degradation of
ATP by apyrase or trapping Ca2+ with EGTA in colonies that were
damaged with a scalpel resulted in strongly reduced conidiation in
the wound region (96 and 98%, respectively), as compared with
an injured control (Figures 1A,B). These observations suggested
that eATP and Ca2+ play a major role in the wound response.

We analyzed the effect of adding eATP and found that it
strongly induced conidiation in the peripheral region of an
undamaged colony (Figure 2A). We also tested the effect of differ-
ent purine and pyrimidine triphosphate compounds, ADP, and
ATPγ-S (a non-hydrolysable analog of ATP). Conidiation was
induced by CTP and ATPγ-S, although not to the same extent
observed upon application of ATP (Figures 2A,B). The purine
nucleotides ADP and guanosine triphosphate (GTP), as well as
the pyrimidine nucleotide UTP had only a minor impact on
the production of conidia (Figures 2A,B). These data suggest
that energy derived from ATP hydrolysis is not required for the
induction of conidiation, and that a putative receptor with higher
affinity for ATP than for other nucleotides is required. Finally,
conidiation induction by eATP appears to be dose-dependent
(Figure 2C).
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FIGURE 1 | Effect of EGTA and apyrase on injury-induced conidiation.

(A) Colonies of the fungus were damaged using a scalpel to induce
conidiation (visualized as green lines). Prior to damage, apyrase or 15mM
EGTA were added. Photographs were taken 48 hours after injury. An

undamaged colony is shown as control. (B) Quantification of conidia
produced after injury. Error bars represent the mean ± SEM of three
biological replicas. Bars with different letters indicate treatments that were
significantly different (P < 0.001).

Tmk1 AND Tmk3 ARE ACTIVATED IN RESPONSE TO INJURY AND eATP
To determine if a MAPK pathway is involved during wound
response, we evaluated mycelial growth and conidiation in the
knockout mutants �tmk1 and �tmk3 in response to injury. We
damaged hyphae of WT, �tmk1 and �tmk3 strains with a star
shaped cookie mold and observed that the �tmk1 strain did not
produce aerial mycelia in response to damage, whereas the �tmk3
and WT produced aerial mycelia to a similar extent (data not
shown). Both �tmk1 and �tmk3 mutants exhibited a dramatic
decrease in conidia production (Figure 3A), with reductions of 95
and 80%, respectively (Figure 3B). This suggests that transduc-
tion of injury related signals leading to conidiation is modulated
mainly by MAPK pathways.

To further investigate the activation of MAPK pathways by
wounding and eATP, we performed western blots using specific
antibodies to detect phosphorylation of Tmk1 and Tmk3. Tmk1
was phosphorylated very rapidly, within the first five minutes
after wounding, to then decrease but still slightly detectable up
to 30 min later; whereas Tmk3 exhibited maximum phosphory-
lation a minute after injury, decreasing very rapidly afterwards
(Figure 4A). This suggests that Tmk1 plays a sustained role, while
Tmk3 participates only during the immediate response.

Given that injury activates MAPK pathways and that ATP
is essential for, and mimics this response, we tested if eATP is
sufficient to activate MAPK pathways. Application of eATP to

T. atroviride activated both MAPK pathways following similar
kinetics to those observed after injury (Figure 4B). Using the
Tmk1-Phospho and total antibodies we observed two bands for
Tmk1 identification, due to the fact that the antibodies recog-
nize two MAPKs; Tmk1 (p42) and Tmk2 (p44). However, the
antibodies used showed higher affinity for Tmk1, as shown in
Figure 4B. This result indicates that both stimuli use the Tmk1
and Tmk3 pathways for signaling. Tmk1 and Tmk3 were phospho-
rylated even when extracellular calcium was chelated by added
EGTA (Figure 4B; EGTA + injury). Together these results sug-
gest that there are at least three signaling pathways involved in the
wound response, two of them regulated by MAPKs and the third
one involving calcium signaling.

eATP SIGNALING PROMOTES Nox1-DEPENDENT ROS PRODUCTION
AND REQUIRES ACTIVATION OF A MAPK PATHWAY
Injury-stimulated Nox1-dependent ROS production is essential
for conidiation (Hernández-Oñate et al., 2012). To determine
whether eATP could activate NADPH oxidase (Nox1/NoxR)-
dependent ROS production, triggering conidiation, we ana-
lyzed the production of superoxide and conidia in response
to eATP in the �nox1, �nox2, and �noxR mutants. Sam-
ples of mycelia collected 15 min after eATP induction in the
presence of Nitroblue tetrazolium chloride (NBT) were used
to detect production of superoxide. After a few minutes of
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FIGURE 2 | eATP stimulates conidiation. (A) Analysis of the WT strain in
response to ATP, ATPγS, ADP, CTP, UTP, and GTP (0.1 mM), or ATP and 2 units
of apyrase. Photographs were taken 48 hours after treatment. An undamaged
colony is shown as control. (B) Quantification of conidia produced after the

treatments shown in (A). (C) Quantification of conidia produced in response
to different ATP concentrations. Error bars represent the mean ± SEM of
three biological replicates. Bars with different letters indicate treatments that
were significantly different (P < 0.01).

eATP exposure, hyphal tips of the WT and �nox2 strains
showed the characteristic dark-blue precipitate indicating for-
mazan formation. In contrast, the �nox1 and �noxR strains
failed to produce superoxide at the hyphal tips (Figure 5A).
To test whether eATP promotes conidiation in the absence of
Nox1-dependent ROS, we exposed the WT strain to eATP or
injured it in the presence of the antioxidant N-acetyl cysteine
(NAC). In both cases conidiation was abolished (Figure 5B).
Similarly, the �nox1 and �noxR mutants did not conidiate in
response to eATP. In contrast, the �nox2 mutant strain coni-
diated similarly to the WT (Figure 5B). These observations
indicate that eATP stimulates Nox1-dependent ROS produc-
tion (acts downstream of eATP); hence we decided to explore
the activation of Tmk1 and Tmk3 in the �nox1 mutant.
Tmk1 activation appeared to be Nox1 independent, since it
was still phosphorylated after injury in the absence of Nox1,
while Tmk3 phosphorylation was not observed in the �nox1
strain (Figure 5C). Together these results strongly suggest that
eATP is a cell-damage signal that promotes the production of
ROS by Nox1, which in turn activates Tmk3, whereas cal-
cium signaling participates independently of the MAPK path-
ways.

DISCUSSION
Wound detection and healing represent important processes for
the survival of any multicellular organism, involving conserved

mechanisms across species. Multicellular fungi respond to wound-
ing by sealing the septa of the cell adjacent to the damaged
one by rapidly mobilizing proteins and forming Woronin bodies
(Jedd, 2011). Interestingly, several fungi respond also by initi-
ating a morphogenetic change that leads to the formation of
different structures, such as sexual fruiting bodies, and conid-
iophores (Leonard and Dick, 1968; Hernández-Oñate et al., 2012).
Unfortunately, there is scarce information about the perception of
potential danger signaling molecules and their transduction. To
the best of our knowledge, the present report is the first that con-
tributes to understanding the signaling pathways involved in the
wound response in filamentous fungi.

Hernández-Oñate et al. (2012) recently showed that mycelial
injury in T. atroviride results in the formation of conidiophores
that are produced exclusively from the newly regenerated hyphae.
This observation suggests that signal molecules are released to the
extracellular matrix during injury and that adjacent cells recognize
these molecules. In plants, eATP is considered a damage signaling
molecule, included in a group of molecules known as DAMPs, pro-
duced during herbivory, mechanical damage, or pathogen attack
(Roux and Steinebrunner, 2007; Chivasa et al., 2009; Heil, 2012;
Heil et al., 2012). Interestingly, our data show that eATP induces
conidiation in response to injury and suggest that eATP is an
important signal molecule that is released from damaged hyphae.
Thus, eATP can also be considered a damage signaling molecule
in fungi, which plays a similar role in wound signaling to that
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FIGURE 3 | Injury response of theTmk1 andTmk3 mutants. (A)The WT,
�tmk1 and �tmk3 strains growing on PDA were damaged with a cookie mold,
and photographs taken 48 hours later. An undamaged WT strain is shown as

control. (B) Quantification of conidia produced after injury for each strain. Error
bars represent the mean ± SEM of three biological replicas. Bars with different
letters indicate treatments that were significantly different (P < 0.001).

FIGURE 4 | Phosphorylation of TMK1 and TMK3 in response to injury

and eATP. (A) The WT strain was injured and mycelial samples
collected at the indicated times. Mycelium from an undamaged colony
was included as control (C). Proteins were extracted, separated by
SDS-PAGE, and used for immunoblotting. Blots were probed with
anti-Tmk1 (anti-p42/p44) and Tmk1-P (anti-Phospho-p42/p44) antibodies
(left panel) or anti-Tmk3 (antip38) and Tmk3-P (anti-Phospho-p38)
antibodies (right panel). Note that the anti-Tmk1 antibodies also

recognize Tmk2 (p44), as previously shown (Mendoza-Mendoza et al.,
2003). (B) The WT strain was ATP induced (0.1 mM) or treated with
EGTA (15 mM) and mycelial samples collected at the indicated times.
Proteins were extracted, separated by SDS-PAGE, and used for
immunoblotting. Blots were probed as in (A). Arrows indicate the bands
corresponding to Tmk1 or Tmk3. The �tmk1 and �tmk3 mutants were
included as controls. The experiments were repeated three times with
similar results.
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FIGURE 5 | Production of superoxide in response to extracellular ATP

(eATP). (A) Detection of superoxide. WT, �nox1, �nox2, and �noxR strains
were incubated with ATP (0.1 mM), followed by incubation in a 0.3 mM
NBT solution and examined by bright-field microscopy (BF). The blue/purple
coloration indicates the production of superoxide (formazan generation). The
scale bar = 10 μm. (B) eATP-induced conidiation. The WT strain was treated
with ATP (0.1 mM), or a combination of NAC (60 mM) and ATP, or NAC and
injured with a scalpel. The �nox1, �nox2, and �noxR mutants were

induced with ATP (0.1 mM). (C) The �nox1 mutant was injured and mycelial
samples collected at the indicated times. Proteins were extracted,
separated by SDS-PAGE, and used for immunoblotting with anti-Tmk1
(anti-p42/p44), Tmk1-P (anti-Phospho-p42/p44), anti-Tmk3 (antip38) and
Tmk3-P (anti-Phospho-p38) antibodies. Mycelium from an undamaged colony
was included as control (C). Arrows indicate the bands corresponding to
Tmk1 or Tmk3. The experiments were repeated two times with similar
results.

reported in triggering immune responses in mammals (Chen and
Nuñez, 2010; Zeiser et al., 2011; Cordeiro and Jacinto, 2013), fish
(Kawate et al., 2009), insects (Moreno-García et al., 2014), algae
(Torres et al., 2008), and plants (Chivasa et al., 2009). Elevations in
the concentration of intracellular calcium have also been observed
in Arabidopsis upon application of eATP (Tanaka et al., 2010).
Further, the induction of conidiation by eATP displayed a dose-
dependent trend. This observation suggests that the fungus senses
the concentration of eATP, which is probably correlated with the
level or extension of the injury, and, thus produces more coni-
dia to warrant survival when it suffers from particularly strong
damage.

In accordance with reports of plants and animals, where Ca2+
influxes into the cytosol follow the perception of DAMPs (Heil
and Land, 2014), our observation that chelating extracellular
calcium blocked injury-induced conidiation would suggest that
calcium plays a key role as second messenger of wounding. The
early wound signaling response in animals, including humans
(Shabir and Southgate, 2008; Covian-Nares et al., 2010), and plants
(Arimura and Maffei, 2010; Beneloujaephajri et al., 2013) includes
an increase in intracellular calcium and the activation of the
calcium signaling machinery. Interestingly, calcium induces the

formation of conidia in submerged cultures of T. viride (Simkovic
et al., 2008). Furthermore, transcriptomic analysis of the response
to injury in T. atroviride suggested the participation of a cal-
cium signaling pathway, since several genes related to calcium
signaling, including calcium transporters, phospholipase C, and
a Ca2+/calmodulin-dependent kinase-1 (CAMK-1) were induced
(Hernández-Oñate et al., 2012). In agreement with these observa-
tions, Nelson et al. (2004) showed that hypo-osmotic shock and
external calcium treatment induce transient increase in intracellu-
lar calcium in Neurospora crassa, Aspergillus niger, and Aspergillus
awamori. Our results strongly indicate that eATP is a damage
signal, and that calcium acts downstream of this DAMP.

The recognition of nucleotides through purinergic receptors
(a family of receptors initially classified according to the rel-
ative potency of purine nucleotides to stimulate them), which
exhibit different affinities for different nucleotides, is well known
in animal systems. Efforts to identify plant ATP receptors through
homology of their genomic sequence to animal purinergic recep-
tors failed to find any suitable candidates, but recently the lectin
receptor kinase-I.9 (LecRK-I.9) has been shown to perceive eATP
(Choi et al., 2014). In contrast, no single nucleotide receptor has
been reported in fungi to date. However, our results indicate that
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FIGURE 6 | Model for injury-induced signaling in Trichoderma atroviride.

Broken hyphae release ATP as a signal molecule. ATP is perceived by a
putative G protein-coupled receptor (GPCR) activating the Tmk1 and Tmk3
MAPK pathways (highlighted by red arrows). Activation of the GPCR turns
on the Cdc42 GTPase in coordination with an increase of Nox1-dependent
reactive oxygen species (ROS) production. Cdc42 may in turn activate the
Ste20 MAPK pathway, leading to Tmk1 phosphorylation. In a parallel
pathway increases in intracellular calcium and CamK kinases, regulate

targets required for the damage response. Calcium influx may also lead to
changes in membrane potential (Vm) and/or directly activate the Rac
GTPase component of the NADPH oxidase (Nox1/NoxR) complex,
generating O−

2 . A superoxide dismutase (Sod) converts O−
2 into H2O2 that

can diffuse into the cell, activating the Ste11 MAPK pathway, leading to
Tmk3 phosphorylation. Phosphorylation of Tmk1 and/or Tmk3 results in the
activation of the developmental program that results in the formation
conidia.

there must be a nucleotide receptor, with higher affinity for ATP
than for other nucleotides.

Here we show that T. atroviride also responds to extracellular
CTP by forming conidia, consistent with evidence in Arabidopsis,
where a significant elevation in cytosolic Ca2+ could be elicited
by the application of exogenous ATP or CTP but not by ITP, TTP,
or UTP ( Tanaka et al., 2010; Choi et al., 2014). In addition GTP,
CTP, and UTP (as well as ATP) were found to induce superoxide
production in Arabidopsis leaves (Song et al., 2006).

Although a BLAST based search for homologues of lectin recep-
tor kinases in the T. atroviride genome database failed to find any
match, the kinase domain of the lectin receptor presents high
similarity with a MAPKKK orthologous to yeast Bck1, which par-
ticipates in the protein kinase C signaling pathway that controls
cell wall integrity (Lee and Levin, 1992; Lee et al., 1993). In this
sense, one of the earliest signaling events after wound in animals
and plants is the activation of MAPKs (Wu and Baldwin, 2010;
Suzuki and Mittler, 2012). The first report of the involvement of
MAPKs in plant–herbivore interactions showed that transcrip-
tion and activity of wound-induced protein kinase (WIPK), a
member of MAPK subfamily A, increased 1 min after wound-
ing (Seo et al., 1995). In filamentous fungi, MAPKs play a central
role in development and sexual/asexual reproduction (Xu et al.,

1998; Hou et al., 2002; Wei et al., 2003; Lara-Rojas et al., 2011;
Lichius et al., 2012). In agreement, Tvk1, the T. virens ortholog
of Tmk1, is involved in conidiation and the activation of genes
encoding cell wall proteins (Mendoza-Mendoza et al., 2007), and
the ortholog of Tmk3 in T. harzianum plays an important role
in the oxidative and osmotic stress response (Delgado-Jarana
et al., 2006). Nevertheless, according to these reports there was
no evidence of their involvement during wound response.

Here we describe, for the first time in a filamentous fungus,
the activation of MAPKs upon wounding, as well as the phospho-
rylation of two of them (Tmk1 and Tmk3) in response to eATP.
Interestingly, we observed that Tmk1 protein levels decreased in the
tmk3 mutant background. In this regard, in Saccharomyces cere-
visiae Hog1 (the ortholog of Tmk3) induces changes in RNA Pol
II localization, with a shift toward stress-responsive genes (Nadal-
Ribelles et al., 2012). Therefore, it is tempting to speculate that
lack of tmk3 could result in a modified expression profile, includ-
ing decreased expression of tmk1. Remarkably, Tmk2 appears to
also be induced by injury and eATP.

During tissue regeneration and healing in Drosophila
melanogaster, Grainy head, a transcription factor responsible
for epidermal barrier formation and repair, is phosphorylated
by ERK1 (Rämet et al., 2002; Kim and McGinnis, 2011), and

Frontiers in Plant Science | Plant-Microbe Interaction November 2014 | Volume 5 | Article 659 | 8

http://www.frontiersin.org/Plant-Microbe_Interaction/
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Medina-Castellanos et al. Signal transduction in injury

the activation of ERK is required in mammalian cells for both
restoration of damaged tubular epithelial cells and inhibition of
fibrosis progression following injury (Jang et al., 2013). Consis-
tently, Tmk1, the T. atroviride ortholog of mammalian ERK1/2
and plant MAP2K1, as well as Tmk3, the ortholog of mammalian
MAPK p38 and plant MAPK3, were also activated by wound-
ing (for a review see Taj et al., 2010). We further showed that
eATP induces Nox1-dependent ROS production, and that this
activates exclusively the Tmk3 pathway. The Tmk1 pathway is
likely activated by small GTPases, as proposed in previous reports
(Schmoll, 2008). Similarly, Hernández-Oñate et al. (2012) showed
in T. atroviride that wounding promotes ROS production through
Nox1.

Interestingly, a recent report in the fungus Ganoderma lucidum
revealed that Nox-generated ROS elevated cytosolic Ca2+ levels
by activating a plasma membrane Ca2+ influx pathway, thereby
regulating ganoderic acid biosynthesis and hyphal branching (Mu
et al., 2013). ROS play essential roles in sexual development in
Aspergillus nidulans and N. crassa (Lara-Ortíz et al., 2003; Cano-
Domínguez et al., 2008), as well as cell signaling roles (Aguirre
et al., 2005). In agreement with these observations, we showed
that T. atroviride responds to eATP by developing asexual struc-
tures. In animals, production of ROS by Nox1/NoxR or Dual
oxidases is crucial for the inflammatory response or activation
of systemic defense after wounding (de Oliveira et al., 2014). In
plants and animals, Ca2+ stimulates Nox1/NoxR and Dual oxi-
dase activity through their EF-hand calcium-binding domain, a
domain not found in fungal Nox1/NoxR. These enzymes in turn
produce ROS, which provoke liberation of intracellular Ca2+,
likely causing feed back regulation (Niethammer et al., 2009; Wu
and Baldwin, 2010; Razzell et al., 2013). The precise role of Ca2+
in the damage response of Trichoderma remains to be proven,
since calcium released from a broken cell could be detected by
neighboring cells as a signal molecule, but it could also serve as a
second messenger liberated from intracellular pools or transported
across the plasma membrane upon detection of DAMPs. Our
results suggest that eATP induces conidiation in a Ca-independent
manner, as phosphorylation of Tmk1 and Tmk3 occurred also
in the presence of the Ca-chelating agent, EGTA. On the other
hand, increasing the extracellular concentration of Ca2+ was suf-
ficient to trigger conidiation. Thus, we hypothesize that more than
one signaling pathway may converge in triggering the expression
of genes that are required for the wound-induced formation of
conidia.

In summary, we have shown that eATP can serve as DAMP
that activates ROS production by Nox1. Tmk3 is activated in a
NoxR–Nox1 dependent fashion, whereas Tmk1 is independently
activated. In parallel, Ca2+ signaling, which appears to be essen-
tial for the wound response, likely activates CAMK or the PKC
pathway, to finally trigger a transcriptional response that turns
on genes related to cellular stress, regeneration, and conidiation.
Figure 6 shows a model of the cellular response to damage of T.
atroviride, where we propose eATP as a damage molecule released
from wounded hyphae that promotes Nox1-dependent ROS pro-
duction and in turn activates Tmk3 phosphorylation. Activation of
Tmk1 appears to be independent of ROS and extracellular Ca2+
but important for injury-induced conidiation. Nevertheless, we

can not exclude the possible activation of Tmk1 by Ca2+ mobilized
from intracellular pools in response to damage. In conclusion,
wound signaling in T. atroviride is an evolutionarily conserved
process displaying multiple similarities to processes described in
other higher eukaryotes. The relative simplicity of T. atroviride
makes it an excellent model for the study of wound response and
regeneration in multicellular organisms.
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