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INTRODUCTION
Agricultural soils in the vicinity of exten-
sive anthropogenic activities may exhibit
salinity together with high levels of
metals/metalloids (hereafter termed as
“metal/s”) as co-stressors. Elevated con-
centrations of metals (such as As, Cd, Cr,
Hg, Ni, and Pb) may affect photosyn-
thetic apparatus, electron transport chain
and chlorophyll biosynthesis, induce cel-
lular damage, impair cellular redox home-
ostasis, and finally cause cellular metabolic
arrest (Anjum et al., 2010, 2012a; Gill and
Tuteja, 2010; Talukdar, 2012; Talukdar and
Talukdar, 2014). Saline soil conditions, on
the other hand, can cause osmotic stress
that in turn can inhibit cell expansion
and cell division, impact stomatal clo-
sure, induce cell turgor via lowering water
potential, and alter the normal homeosta-
sis of cells (Miller et al., 2010). However,
the generation of osmotic stress through
impaired plant water relations, and oxida-
tive stress caused by uncontrolled gen-
eration of varied reactive oxygen species
(ROS; such as such as -OH, H2O2, O−

2 ) are
common in plants exposed to high levels
of salinity and/or metals (Benavides et al.,
2005; Anjum et al., 2010, 2012a).

Diverse plant taxa have been reported
to adapt metabolically to salinity and
exposure to metals by enhancing syn-
thesis of sulfur (S)-rich peptides (such as
glutathione, GSH) and low-molecular-
weight nitrogenous and proteogenic
amino acids/osmolytes (such as proline,

Pro) (Khan et al., 2009; Anjum et al.,
2010, 2012a; Talukdar, 2012; Kishor
and Sreenivasulu, 2014; Talukdar and
Talukdar, 2014). Nevertheless, both GSH
and Pro share L-glutamate as a common
biosynthesis precursor (Moat et al., 2003)
(Figure 1). However, very little or no
effort has been made so far to dissect the
intricacies of potential metabolic inter-
relationships between the GSH and Pro
induction either under salinity/osmotic or
metal stress conditions.

Therefore, we discuss and interpret
through this note the facts related with
the mainstays (chemistry, biosynthesis,
compartmentalization, significance) com-
monly and potentially shared by these
two enigmatic compounds (GSH and Pro)
in plants. The outcome of the present
endeavor can be useful in designing future
research aimed at sustainably alleviating
isolated and/or joint impact of metal and
salinity stresses in crop plants through
exploiting the GSH and Pro metabolism.

CROSS-TALKS AND PERSPECTIVES
Both GSH and Pro, with molecular for-
mula C10 H17 N3 O6 S and C5 H9 NO2,
respectively, belong to the “glutamate
or α-ketoglutarate” family and originate
from a common precursor L-glutamate
(Moat et al., 2003). Although cellu-
lar compartments and changing growth
conditions may influence their levels,
biosynthesis of both GSH (Preuss et al.,
2014) and Pro (Lehmann et al., 2010) is

predominantly plastidic. Of the two major
GSH-biosynthesis enzymes, glutamate
cysteine ligase (GCL; γ-glutamylcysteine
synthetase; E.C. 6.3.2.2) is localized
to plastid stroma; whereas GSH syn-
thetase (GS; E.C. 6.3.2.3) is targeted to
plastid stroma and cytosol (Ravilious
and Jez, 2012). On the other hand, the
Pro-biosynthesis enzymes, namely �1-
pyrroline-5-carboxylate synthetase (P5CS)
and �1-pyrroline-5-carboxylate reductase
(P5CR), occur in cytosol and plastids
(reviewed by Szabados and Savouré,
2010). Since plastids are among the
major organelles with: (a) a highly oxi-
dizing metabolic activity; (b) an intense
rate of electron flow; and (c) plastid
signal-mediated regulation of different
cellular processes (Barajas-López et al.,
2013), localization of both GSH and Pro
is apt to their role as the major ROS-
scavenger and singlet-oxygen quencher
during photosynthesis (Szekely et al.,
2008).

GSH and Pro may occur in the con-
centrations of few mM (2–3 mM) in var-
ious plant tissues (Noctor et al., 2002;
Kishor et al., 2005). The GSH and Pro lev-
els of plant tissues are indicators of the
S (reduced) (Hubberten et al., 2012) and
nitrogen (N) (Sánchez et al., 2001) nutri-
tional status of the plant respectively. GSH
and Pro have also been reported to act
as sources of (reduced)-S (Anjum et al.,
2010) and N (reviewed by Kishor and
Sreenivasulu, 2014), respectively, under
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FIGURE 1 | Schematic representation of the points of interrelationships in the major metabolic pathway of sulfur-rich peptide—glutathione (GSH)

and nitrogenous and proteogenic amino acid—proline (Pro).

stress conditions. Additionally, their sta-
tus may presumably be improved through
enhancing L-glutamate level via N and
S nutrition, respectively (Anjum et al.,
2012b). Moreover, modulation of biosyn-
thesis of GSH (Bartoli et al., 2009) and
Pro (Abraham et al., 2003) is reportedly
light dependent. In particular, GSH levels
may depend on growth and photosynthet-
ically active photon flux density at low
light intensities (up to ca. 100 μmol m−2

s−1) (Ogawa et al., 2004). GSH (Son et al.,
2014) and Pro (Sivakumar et al., 2001) can
negatively/positively modulate the pho-
tosynthesis functions by influencing the
activity of ribulose-1,5-bisphosphate oxy-
genase, an enzyme involved in the first
major step of carbon fixation. Moreover,
an increased intracellular ROS-availability
can shift the reduced GSH toward a more
oxidized GSH (i.e., GSSG) status (Anjum

et al., 2010, 2012a; Noctor et al., 2012). In
contrast, increased status of cellular H2O2

(or exogenous H2O2) can increase Pro
level by modulating the ex-novo synthesis
of Pro (Matysik et al., 2002). Oxidation
of Pro generates NADP/NADPH cycling
or redox balance (Kishor et al., 2005) that
in turn may regulate the reduction of
GSSG to GSH via GSH reductase (Anjum
et al., 2010, 2012a; Noctor et al., 2012).
Interaction of Pro (Iqbal et al., 2014)
and GSH (Mhamdi et al., 2010; Ghanta
et al., 2014) with a number of defense-
related phytohormones (such as ethylene,
jasmonic acid and salicylic acid) and/or
their analogs has also been reported to
modulate plant stress tolerance.

Both GSH (Ogawa, 2005) and Pro
(Lehmann et al., 2010) perform mul-
tiple functions in plants including
the modulation of plant growth and

developmental processes. In particular,
under metal stress, apart from the induc-
tion of GSH-based defense system (Anjum
et al., 2010, 2012a; Noctor et al., 2012;
Talukdar, 2012; Talukdar and Talukdar,
2014), elevated accumulation of osmolytes
such as Pro has been extensively noticed
(reviewed by Gill et al., 2014). Under
salinity stress also, in addition to the
accumulation of Pro that maintains both
cell turgor and cellular redox homeosta-
sis (Lehmann et al., 2010; Szabados and
Savouré, 2010; Kishor and Sreenivasulu,
2014), GSH-based defense system is acti-
vated to maintain reduced cellular redox
environment via metabolizing the varied
ROS and their reaction products (Ruiz
and Blumwald, 2002; Kocsy et al., 2004).
Nevertheless, reports are available on the
efficient Pro-metal, GSH-metal or Pro-
GSH-metal sequestration, scavenging of
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ROS-types and also on the maintenance
of reduced cellular redox environment by
GSH (Anjum et al., 2010, 2012a; Noctor
et al., 2012; Talukdar, 2012; Talukdar and
Talukdar, 2014) and Pro (Matysik et al.,
2002; Siripornadulsil et al., 2002; Lehmann
et al., 2010; Szabados and Savouré, 2010;
Kishor and Sreenivasulu, 2014).

A differential coordination of other
components of ascorbate (AsA)-GSH
pathway (enzymes such as ascorbate per-
oxidase, GSH reductase, GSH peroxidase,
GSH sulfo-transferase, monodehy-
droascorbate reductase, dehydroascorbate
reductase and catalase; and non-enzymes
such as AsA) with GSH (Khan et al., 2009;
Anjum et al., 2012a, 2014; Talukdar, 2012;
Talukdar and Talukdar, 2014) and Pro
(Omidi, 2010; Hossain et al., 2011; Anjum
et al., 2014; Hasanuzzaman et al., 2014)
was also reported to control plant tol-
erance to abiotic stress factors including
the metal and salinity stress. Nevertheless,
the status and responses of GSH and Pro
together have been little explored in the
same plant under similar stress conditions
(Siripornadulsil et al., 2002; Hossain et al.,
2011; Anjum et al., 2014; Hasanuzzaman
et al., 2014). Notably, these studies helped
to infer that there exists a close relation
between GSH and Pro, and that exoge-
nous and/or synthesized/ stress-caused
elevated Pro can protect plants against
the metal and salinity-stress impacts by
safe-guarding the activity of previous
enzymatic components, improving the
cellular redox environment via decreasing
H2O2 level and maintaining an increased
level of reduced GSH and GSSG/GSH
ratio.

Though an increased cellular GSH sta-
tus is indicative of a plant’s capacity to tol-
erate different stress pressures (Khan et al.,
2009; Anjum et al., 2010, 2012a; Talukdar,
2012; Noctor et al., 2012; Talukdar and
Talukdar, 2014), it is debatable whether
accumulation of Pro is a plant response
to abiotic stresses or it is associated with
stress tolerance (Sorkheh et al., 2012;
Kishor and Sreenivasulu, 2014). Also, ele-
vated GSH is not always correlated with
enhanced tolerance to stresses such as
metals (Xiang et al., 2001; reviewed by
Anjum et al., 2012a). Despite previous
facts, as versatile redox buffers, Pro (Kishor
and Sreenivasulu, 2014) and GSH (Anjum
et al., 2010, 2012a; Noctor et al., 2012) have

been extensively evidenced to protect cel-
lular metabolism against a range of abiotic
stresses.

The causal relationships of Pro accu-
mulation and significance of GSH
metabolism with enhanced tolerance
to single stress factor (either metal
or salinity) have been reported exten-
sively in separate studies using natural
variants, mutants or transgenic plants
(Matysik et al., 2002; Anjum et al., 2010,
2012a; Noctor et al., 2012; Kishor and
Sreenivasulu, 2014). However, significance
of the potential “metabolic interrela-
tionships” between GSH and Pro with
reference to the plant’s adaptive responses
to prevailing multiple stressors has not
been fully appreciated and the molecular
insights of these relationships have yet to
be developed.

Nevertheless, owing to the facts that:
(a) deficiency of S and N has become
extensive in agricultural soils on the globe
(reviewed by Anjum et al., 2012b); (b)
plant’s S requirement and S metabolism
are closely related to N nutrition, and
the N metabolism is strongly affected by
the plant’s S status (Fazili et al., 2008;
Anjum et al., 2012b); and (c) both GSH
(Kopriva and Rennenberg, 2004; Anjum
et al., 2012b) and Pro (Sánchez et al., 2001;
Rais et al., 2013) are closely related to
these nutrients, integrated efforts should
be made to work-out the coordinated role
of S and N in the GSH and Pro metabolic
pathways, develop more insights into their
biochemistry/physiology and molecular
biology and understand potential interre-
lationships among different components
of these pathways.
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