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Branching in temperate plants is closely linked to bud fates, either floral or vegetative.
Here, we review how the fate of meristematic tissues contained in buds and their position
along a shoot imprint specific branching patterns which differ among species. Through
examples chosen in closely related species in different genera of the Rosaceae family,
a panorama of patterns is apparent. Patterns depend on whether vegetative and floral
buds are borne individually or together in mixed buds, develop as the shoot grows or
after a rest period, and are located in axillary or terminal positions along the parent
shoot. The resulting branching patterns are conserved among varieties in a given species
but progressively change with the parent shoot length during plant ontogeny. They can
also be modulated by agronomic and environmental conditions. The existence of various
organizations in the topology and fate of meristematic tissues and their appendages in
closely related species questions the between-species conservation of physiological and
molecular mechanisms leading to bud outgrowth vs. quiescence and to floral induction vs.
vegetative development.
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INTRODUCTION

Polycarpic plants are characterized by the co-existence of mul-
tiple axes which result from the activity of different meristems.
These axes can be similar or morphologically differentiated. In
temperate species, axes have been classified depending on the
presence vs. absence of neoformed organs, i.e., organs that were
not included in the bud at an embryonic stage but formed dur-
ing the morphogenesis and elongation period of the shoot (see
also glossary in Supplementary Material). Typically, short axes
are composed of preformed organs only whereas long shoots are
composed of preformed organs followed by neoformed ones (see
Costes et al., 2006). Another category corresponds to epicormic
axes that are assumed to be entirely neoformed and develop in
stressful conditions or after a severe pruning (Nicolini et al,
2003; Negron et al., 2014). At the whole plant scale, architec-
ture and branching result from the relationships between the
different buds and meristematic tissues that constitute them.
Buds are located either terminally or axillary along the shoots.

These relationships dictate how each bud develops, grows, or
stops growing, i.e., whether the corresponding meristem main-
tains its organogenetic activity (i.e., its capability to generate
new organs) or differentiates into specific organs such as thorns,
flowers or inflorescences. Plants exhibit a limited number of pos-
sible branching configurations which make them conform to
22 architectural models (Hallé et al., 1978). Each architectural
model corresponds to a particular combination of four main
criteria that are related to the temporal and topological position-
ing of flowering and vegetative growth. One criterion concerns
branching which can be immediate or delayed, monopodial, or
sympodial with basitonic, mesotonic, or acrotonic positioning
(see Barthélémy and Caraglio, 2007 and glossary). Moreover,
sequential branching has been distinguished from reiteration that
occurs when a lateral shoot has a comparable or longer length
than its parent shoot and partially or totally repeats the parental
branching system (Oldeman, 1974; Bell, 1991). Based on these
founder studies, branching has been described and sometimes
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quantified in a number of different forest and fruit tree species
(e.g., Suzuki, 2002; Renton et al., 2006; Solar and Stampar,
2006).

In parallel, the physiological and genetic mechanisms underly-
ing meristem organogenesis and the control of axillary meristem
outgrowth have been extensively studied. Apical dominance is
considered to be a function of auxin (IAA) production in the
apical meristem (Thiman and Skoog, 1933 in Cline, 2000). The
screening of mutants, mainly in annual plants such as Arabidopsis
thaliana (Leyser, 2003), rice (Li et al., 2003) and pea (Beveridge
et al., 2000; Foo et al., 2001), has led to considerable improve-
ment of knowledge in these domains. Apical dominance has
been shown to involve auxin transport down the shoot via an
active transporter in the parenchyma associated with xylem tis-
sue (Booker et al., 2003). However, when axillary meristems being
controlled are distant from the apex, the speed of IAA transport
appears incompatible with its putative role in axillary bud inhibi-
tion (Renton et al., 2012). The formation of axillary meristems
has been shown to require a Lateral suppressor gene which is
expressed in the boundary region between the leaf primordium
and stem (Ls in tomato, Schumacher et al., 1999; or LAS in
A. thaliana, Greb et al., 2003 and rice, Li et al., 2003). Moreover,
lateral branching has been shown to be under the control of a
complex interaction between cytokinins (CK) that are promoters
of bud outgrowth, auxin (IAA) as a repressor, but also strigolac-
tones (SL) (Leyser, 2009), that inhibit the axillary bud outgrowth
(Gomez-Roldan et al., 2008; Umehara et al., 2008). The cur-
rent debate on the hormonal control of branching focuses on
the interactions of auxin with SL and CK. Some studies sug-
gest that SLs act directly in the bud to inhibit bud outgrowth,
thus acting as secondary messenger to auxin (Brewer et al., 2009;
Dun et al., 2013). Another hypothesis proposes that SLs impede
the ability of buds to export auxin into the main stem, and
hence inhibit their outgrowth (Domagalska and Leyser, 2011).
The BRANCHED 1 (BRCI) gene likely integrates these multi-
ple bud outgrowth pathways (Braun et al., 2012). However, a
recent study revealed that the shoot tip’s strong demand for sug-
ars, rather than auxin supply, inhibits axillary bud outgrowth
by limiting the amount of sugar translocated to those buds
(Mason et al., 2014).

In the present paper, we aim at extending the current debate
to more complex plants with different timings and locations of
meristem outgrowths. In particular, polycarpic perennial plants
growing in temperate conditions are characterized by the for-
mation of buds that are able to survive winter periods and
resume growth at spring. Moreover, these plants can be viewed
as a population of meristems, each of them having differ-
ent stages of differentiation and passing from one stage to
the next one through remarkable transitions during ontogeny
(White, 1979). However, these different meristems are linked
together by the plant age, resource availability, and environ-
mental conditions in which the plant develops. Recent stud-
ies have outlined close relationships between molecular control
of shoot apical meristem transitions, especially floral transi-
tions, entrance/release of dormancy, and the control of axillary
meristem branching (Paul et al., 2014; van der Schoot et al,
2014).

We review branching organization in temperate Rosaceae
species used for ornament or fruit production. The Rosaceae
family constitutes an interesting case study since it includes many
economically important species but also contains very diverse
plant forms; trees (e.g., Prunus and Malus), bushes, and lianas,
(e.g., Rosa), and herbaceous rosettes (e.g., Fragaria). Through
examples chosen in closely related species from different genera
of the Rosaceae family, a panorama of branching patterns is
apparent. The patterns depend on whether lateral shoots develop
immediately or after a rest period, flowering occurs in axillary
or terminal positions and in singular or mixed buds. This reveals
contrasting topological arrangements of vegetative and floral
tissues that can be:

(i) Separated in individual axillary buds located in distinct
zones in a tall tree, with strong apical dominance and
acrotony (cherry),

Separated in axillary buds that are distinct but can be pro-
duced together at the same node in trees, with apical dom-
inance and acrotony (almond), a tendency toward basitony
(peach), or a tendency toward sympodial branching,
Combined into mixed buds located in terminal positions,
composed of leaf primordia and a terminal inflorescence,
that develops after a vegetative period lasting one to sev-
eral years (apple), 1 year (“non-recurrent” or “once flow-
ering,” rose and strawberry), several weeks (“recurrent” or
“perpetual flowering” rose and strawberry, respectively).

(ii)

(iii)

The different configurations in the topology and fate of meris-
tematic tissues and their appendages described in closely related
species questions the evolution within the Rosaceae family
and the co-adaptation of plant forms with their environ-
ment. They also question the between-species conservation
of physiological and molecular mechanisms leading to bud
outgrowth vs. quiescence, and to floral induction vs. vegetative
development.

COMPARATIVE DESCRIPTION OF BRANCHING PATTERNS IN
ROSACEAE

TREES WITH VEGETATIVE AND FLORAL TISSUES SEPARATED IN
AXILLARY BUDS LOCATED IN DISTINCT ZONES

With apical dominace, acrotony and monopodial branching: the
peach and almond case

In the cherry tree (Prunus avium), growth and branching are
strictly monopodial at all stages of growth. Trees have a strong
dimorphism between short or long shoots, composed of pre-
formed only or preformed and neoformed organs, respectively
(see glossary). The framework of the tree is composed of the
trunk, with long and upright side-branches that usually develop
with a strong acrotony, forming tiers of branches just below the
annual growth arrest of the bearing shoot. These traits conform
to the Rauh model of Hallé et al. (1978). The long branches bear
short shoots, also called spurs, in lateral positions on the dis-
tal half or two thirds of the branch with more vigorous spurs
toward the distal part (Lauri, 1993). Flowering occurs in axillary
positions on the five to six basal-most nodes of all shoots whether
long or short (Flore and Layne, 1996). Floral buds are thus located
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FIGURE 1 | Branching pattern along a cherry annual shoot—Flower buds are located along the preformed part and vegetative buds along the neoformed
part. O latent bud, 1 short proleptic shoot, 2 long proleptic shoot, 3 floral bud. Arrows indicate proleptic shoot lengths to be developed in the year n+ 1.

exclusively on the preformed nodes of the previous year shoots.
Flowers are groups of two to five in umbels and are initiated
within the buds formed in the leaf axils in the growing season
prior to anthesis (Guimond et al., 1998). These flower buds will
burst in the following year leaving bare wood after fruit harvest
on the proximal part of long shoots, and on all nodes of the
annual growth increment of the spurs. As a consequence, the
typical branching pattern on the 1-year-old branch consists in
an initial basal zone with single axillary buds containing inflo-
rescences directly, followed by a zone of spurs and a top tier
of long lateral shoots (Figure 1). One-year-old shoots, whether
long or short, bear flowers in their basal part, over consecu-
tive years. This basic branching pattern thus corresponds to a
clear separation between zones along vegetative axes and lateral
flowering. It varies depending on genotype, with sour cherry
having more flower buds on long shoots than sweet cherries
(Thompson, 1996).

TREES WITH VEGETATIVE AND FLORAL TISSUES SEPARATED IN
DISTINCT AXILLARY BUDS, PRODUCED TOGETHER AT A SAME NODE
With apical dominance, acrotony, and monopodial branching: the
almond and peach case

Almond and peach trees also have a monopodial and acro-
tonic branching at all growth stages. They conform to the Rauh
architectural model (Fournier, 1994). In almond, laterals typi-
cally develop at nodes located one-half to two-thirds the distance
from the tip of annual shoots, with a strong shoot dimorphism
(Gradziel, 2009). Peach trees tend to be basitonic when trees
are young, this species being typically bushy in its natural habit
(Lauri, 1991). The bushy habit is related to a high frequency
of sylleptic branching on the proximal part of the main shoot,
the appearance of sylleptic laterals being positively related to the
leaf emergence rate of the growing shoot (Génard et al., 1994).
However, a typical acrotony is observed at the shoot level with, as
in almond, a strong shoot dimorphism.

In both species, axillary buds can be vegetative, floral, or
blind. The floral buds enclose a single, terminal flower, and
typical of Prunus species, no leaves. Along a parent shoot, flow-
ers can be directly inserted on the parent shoot or on the first
scales of the axillary vegetative buds. In these later cases, they

can be grouped by two or more and appear borne laterally in
leaf axils on parent shoots, either long or short (Lamp et al,
2001). In both almond and peach, branching organization along
a l-year old shoot can be described by combining two qualita-
tive variables which take into account (i) the fate of the axillary
meristem (latent, floral, vegetative, or sylleptic) and (ii) the num-
ber of axillary flowers (0, 1, 2, or more) associated with the
axillary vegetative buds (Fournier, 1994). In both peach and
almond, a modeling approach based on Markov chains (Guédon
et al.,, 2001), revealed an organization of lateral bud fates in
consecutive zones which follow each other in an almost deter-
ministic way (Fournier et al, 1998; Negron et al., 2013). In
“Nonpareil,” the main almond scion cultivar in California, and in
“Robin,” a white peach scion cultivar, the typical branching pat-
tern along 1-year-old long proleptic shoots has been described
as a succession of six zones, each one defined according to its
composition of axillary meristem fates and number of flow-
ers (Figure 2). Blind nodes were observed at the proximal and
distal ends of the shoots. Zones with vegetative buds mainly
were associated with few flower buds whereas a zone with a
mixture of sylleptic shoots and vegetative buds was associated
with many flower buds. Also central floral buds were observed
in a zone located in the top third to the shoot, below the
terminal bud.

With tendency to shoot apical meristem death and sympodial
branching: the apricot case

In the apricot tree (Prunus armeniaca), shoots are characterized
by sympodial branching resulting from the frequent abortion of
shoot apical meristem at growth cessation (Costes, 1993). This
death can occur even during the growing season, thus separat-
ing the annual shoot into growth units (see glossary). In young
trees, the growth units are usually long, and their branching pat-
tern has been characterized by a short zone with latent buds at
the base followed by numerous short axillary shoots, mixed with
latent buds and few long axillary shoots. The position of the long
axillary shoots is mainly acrotonic but also depends on the ori-
entation of the parent shoot (Wareing and Nasr, 1958). Frequent
bending of the shoots and the consequent gravimorphic reaction
leads the tree to grow according to a Champagnat model (Costes,
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1993). The flowers are, as in peach and almond, contained in sin-
gle flower buds and associated at the axil of main vegetative buds
along the parent shoot. The branching structure along growth
units of “Lambertin” apricot scion cultivar has been quantified
as a succession of zones differentiated by the type of laterals and
the number of flowers with several recurrent zones (Costes and
Guédon, 1996). The basal part of the growth units contains two
zones, the first one with latent buds and no flowers, the second
one with short vegetative laterals without flowers. Then five zones
occur recurrently: a zone with latent buds and no flowers; a zone
with sylleptic laterals; the last three zones with different num-
bers of flowers (1, 2, and more than 2) observed in succession.
The number of flowers increases from 1 to 2 and 3, but never
directly from 1 to 3 (or decreasing similarly). This suggests that
flowering in axillary buds fluctuates in intensity depending on the
bud position and timing of differentiation along the parent shoot.

VEGETATIVE AND FLORAL TISSUES COMBINED IN A MIXED BUD,
LOCATED IN TERMINAL POSITION

Tree with sympodial branching and acrotony: the apple case

In the apple tree, branching is monopodial before the occur-
rence of flowering and lateral shoots are displayed according to
an acrotonic gradient (Crabbé, 1987; Lauri, 2007). Thus, during
the juvenile phase or during the vegetative state of non-flowering
scions, the apple tree develops according to a Rauh model (Lauri
and Térouanne, 1995). However, because floral differentiation
occurs in terminal positions on all axes, the monopodial growth
phase ends after flowering. The winter floral bud is constituted
of a leafy basal part followed by a floral distal part (Fulford,
1966a,b; Abbott, 1984) and thus corresponds to a mixed bud.
The mixed bud includes preformed leaf primordia of the lateral
shoot that will continue the axis growth through sylleptic and
sympodial branching (Barnola and Crabbé, 1991). The axillary
shoot borne on the floral unit is called a “bourse shoot.” After
the winter period, some of the axillary meristems develop and, as
a consequence of acrotony, those located just below the terminal

bud develop into long axillary shoots. Floral buds located at spe-
cific positions along the parent shoot, below this acrotonic zone
(Costes and Guédon, 2002). The other axillary meristems can
remain latent or develop into spurs. Some axillary meristems
along the parent shoot may develop immediately, i.e., during the
growth of a parent shoot. In apple trees, as in other species, such
sylleptic shoots develop mainly during the early years of tree life
(Crabbé, 1987), and in median position along long to very long
parent shoots. As a whole, long parent shoots have been charac-
terized by a zonation of branching, corresponding to successive
zones that differentiate from each other by the relative proportion
of latent, vegetative, and flowering buds. Depending on the cul-
tivar, 6-7 zones have be distinguished along a long parent shoot
(Guédon et al., 2001; Costes and Guédon, 2002; Figure 3).

Bush to liana with sympodial branching, basitony at the plant level

and acrotony at the shoot level: the rose case

Rosa plants develop according to the model of Champagnat (Le
Bris, 1999). They are characterized by defined growth due to ter-
minal flowering and a subsequent sympodial branching in all
axes. The mode of floral induction makes it possible to distin-
guish non recurrent-flowering from recurrent-flowering behav-
iors (Roberts and Blake, 2003). For non-recurrent flowering roses,
floral induction is dependent on the environmental conditions
in particular winter cold under natural conditions (Roberts and
Blake, 2003). Under these conditions, axes develop from the ter-
minal and axillary buds of the previous year growth, mainly in
distal positions and according to an acrotonic gradient. Some of
these shoots will flower terminally (only once a year), leading to
determinate growth (Figure 4A), others staying vegetative until
the next year. These floriferous axes are much shorter than their
parent axis.

For recurrent-flowering roses which represent the majority
of cultivated roses, the flowering is auto-inducible and system-
atic, i.e., not subject to environmental conditions, provided that
a trophic minimum is reached, and usually corresponding to

FIGURE 2 | Branching pattern along a peach annual shoot,
“Robin” cultivar. First variable: 0 latent bud, 1 isolated floral bud, 2
vegetative bud, 3 sylleptic shoot. Second variable: number (0, 1, 2)
of axillary flowers and schematic representation of the shoot as a

succession of zones (From Fournier et al., 1998). The segmentation

of the parent shoot in branching zones with distinct combinations of
vegetative and floral axillary buds is indicated in the lower part of

the Figure.
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FIGURE 3 | Branching pattern along an apple long annual shoot. The segmentation of the parent shoot in branching zones with a distinct dominant axillary
shoot type is indicated. 0 latent bud, 1 short proleptic shoot, 2 long proleptic shoot, 3 floral shoot, 4 sylleptic shoot (From Guédon et al., 2007).

03
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FIGURE 4 | (A) Representation of a n-1 year old axis carrying n year old
floriferous axes (terminal flower in red) in a non-recurrent flowering rose;
(B) Representation obtained by digitizing of an elementary architectural
structure of a rose having an upright growth habit, aged from 5 to 6
months, cultivated in greenhouse. Three architectural components
(metamer, short, and long axes) and three branching orders are labeled (O1,
02, and O3) (From Crespel et al., 2013).

production of six to seven leaves (Roberts and Blake, 2003).
Under these conditions, during the growth period, all developing
axes become floriferous. Branching after flowering is acrotonic
and often sylleptic (Le Bris, 1999). Due to recurrent flow-
ering, the number of successive sympodial branching orders
can reach five after 5-6 months. The axis length reduces with

consecutive branching orders, the long axes being located mainly
on the first two orders, whereas the short axes are located at
higher orders (Morel et al., 2009; Crespel et al., 2013). This
branching organization and types of axes characterize the ele-
mentary architectural structure of rose bushes (Figure 4B). The
axes in the acrotonic part exhibit dimorphism and their char-
acteristics depend on the genotype (Crespel et al., 2014). In
addition, other axillary shoots may develop in basitonic loca-
tions, from proximal buds which correspond to collateral or
axillary buds located at the basal scales of axes (Marcelis-
van Acker, 1993; Morel et al., 2009). The development of this
type of axillary shoot can be viewed as a reiteration since
it will lead to the repetition of the elementary architectural
structure.

Herbaceous rosette with sympodial branching, basitony at the plant
level and acrotony at the rosette level: the strawberry case

Compared to the other Rosaceae model plants described above,
strawberry is an herbaceous perennial. In strawberry, cultivated
or woody, the branching is sympodial, with floral initiation occur-
ring terminally. Extension axes can develop in the uppermost
axillary buds below the terminal inflorescence (Battey et al., 1998)
or in the basal parts of the primary crown (Sugiyama et al., 2004),
giving birth to new crowns with terminal flowering (Figure 5A).
These new crowns are usually smaller than the primary crown
and thus correspond to sequential branching. In addition to sex-
ual reproduction, new plants can develop from primary stolons
which are specialized and highly elongated axes developing at
the first two nodes of a mother plant. Stolons can be consid-
ered as reiteration of the entire plant with roots. As in rose, it
is possible to distinguish two types of behaviors, non-recurrent
(or once flowering) and recurrent (perpetual flowering) (Gaston
et al., 2013). In non-recurrent genotypes, low temperature and
short days in fall trigger floral initiation (Verheul et al., 2007) with
autumn-initiated flowers emerging in the next spring. In contrast,
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FIGURE 5 | Architecture of a strawberry plant. (A) for a once
flowering genotype, in which axillary meristems will develop into
runners or branch crowns and (B) for a perpetual flowering genotype,
in which axillary meristems will develop into new inflorescences. The
color of inflorescence reflects its stage: purple when already

Leaf primordium

Lo

harvested, red when fruits are mature, dark orange when fruits are
developing, light orange or yellow when inflorescence newly emerged,
and gray when inflorescence will likely not emerged. Small green dot
represents axillary latent meristem observed in perpetual flowering
genotypes.

in recurrent genotypes, flowers are initiated continuously during
the growing season from spring until late autumn (Battey et al.,
1998; Savini et al., 2005).

Whatever the flowering type, stolons emerge in long days from
basal axillary buds, elongate and produce new plants through the
so-called runnering process (Savini et al., 2008). Each new clonal
plant is composed of a very short stem called a rosette (Darrow,
1966). In non-recurrent genotypes, lateral buds remain dormant
or develop into either axillary shoots (branch crowns) or stolons
depending on their positions (Guttridge, 1956) (Figure 5A). In
short days, floral initiation occurs in apical meristems in which
no further vegetative development will be observed. Due to apical
dominance, the number of flower bud primordia increases as the
stage of development of the primary flower advances (Jahn and
Dana, 1970). For recurrent genotypes and as described in rose, all
the axes developing during a growth season are floriferous, with
terminal flowering (Figure 5B).

SYNTHESIS AND DISCUSSION

In this review we have shown that different species are character-
ized by a typical organization of branching and flowering traits.
How these organizations are modulated depends on internal fac-
tors such as the ontogenetic stage of the parent shoot or the
genotype (see Supplementary Material—Changes in branching
pattern with plant ageing (ontogeny) and Variability of branch-
ing pattern depending on the genotype, respectively). Moreover,
branching patterns exhibit plasticity depending on cultural man-
agement and climatic conditions, either in fields or in green-
houses. Examples of this plasticity are provided in Supplementary
material, focusing on tree management in the case of fruit trees
and on the effects 47 of climatic controlled conditions in rose and
strawberry.

A limited number of species and genera of the Rosacea family
were considered which belong to two distant sub-taxa, Rosoideae
for Rosa and Fragaria, Spiroidae for Prunus and Malus (Potter
et al., 2007). Even though no variability exists in the phyllotac-
tic angle (2/5 in all species) there is large variability in branching
patterns that results from bud topology and fate configurations
(Figure 6): (i) vegetative buds may develop into long shoots, in
the distal or proximal zones along the parent shoots or at the
plant level, and (ii) the vegetative and floral buds can be sepa-
rate or mixed. Also, the timing and location of floral induction
in buds differ among species. The bud and tissue configurations
observed in this set of closely related species question the relation-
ships between apical meristem maintenance, determinacy and
floral induction, and the resulting morphotypes. Indeed, meris-
tem maintenance is essential for perennials and the flowering
strategy may be accounted for by differences in the regulation of
meristem identity, developmental phases (juvenile vs. adult) and
determinacy (Battey and Tooke, 2002).

MORPHOTYPES RESULT FROM SHOOT APICAL MERISTEM
MAINTENANCE, DETERMINACY AND FLORAL INDUCTION LOCATION
AT THE SHOOT SCALE

The most forest-type morphotype, represented by the cherry
example, combines a strong acrotony—at both tree and shoot
level—with a systematic separation of floral and vegetative meris-
tems. The location of flowering buds in preformed zones, far from
the SAM, allows the end of the juvenile period without altering
the vegetative growth capacity of the SAM. By maintaining a long
organogenetic period in the SAM of orthotropic axes, especially
in the main axis, a tall tree is constructed, that is able to com-
pete for light with its neighbors in a forest habitat. In contrast,
the closer the floral tissues are from the apex the higher SAM
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FIGURE 6 | Synthesis of the branching organization at the tree and shoot scales, in relation to vegetative and reproductive bud position and internal

determinacy. Among Prunus species, which all exhibit floral and
vegetative buds combined along the neoformed part of the shoots,
almond has a more upright and acrotonic shape compared to
peach (more basitonic) or apricot (sympodial branching), which
exhibit smaller tree sizes. The periodic death of SAM without flo-
ral differentiation, as observed in apricot, is an interesting case
which suggests a deficiency in SAM maintenance. It could reflect
SAM sensivity to climatic conditions. Also, stopping and resum-
ing growth frequently may allow a flexible growth and to be more
adapted to dry ecosystems in which this species is grown (Kodad
etal., 2013).

The proximity between floral induction and SAM is maximal
in the case of terminal flowering leading to sympodial branch-
ing. This sympodial branching when associated to a basitonic
branching, at least for reiteration, leads to more bushy and
creeping morphotypes, as in rose and strawberry. The present
review revealed that apple tree, rose, and strawberry share com-
mon characteristics due to the terminal position of flowering and
mixed buds with vegetative organs (leaf and shoot primordia) and
flowers or inflorescences. Strawberry represents an extreme case
of reduction of the vegetative apparatus into a rosette with axillary
shoots (morphologically equivalent to a bourse and bourse shoot
in apple) and a strong reiteration process via runnering. The
main differences between these species result from (i) the position
of long shoots and reiteration, mainly acrotonic in apple, either

acrotonic when branching sequentially or basitonic when reiter-
ating in rose and strawberry; (ii) the time interval between two
consecutive flowering occurrences, from pluri-annual in apple to
annual in once-flowering genotypes or intra-annual in recurrent-
flowering genotypes of rose and strawberry. Even though trans-
genic plants could be induced to perpetual flowering when AtFT
was overexpressed in apple, vegetative growth was not maintained
and the plant died (Tanaka et al., 2014). Equilibrium between veg-
etative and floral phases is thus required for plants to develop and
survive.

Common molecular mechanisms between these species may
be involved in the SAM maintenance, determinacy and flow-
ering on the one hand and in the monopodial/sympodial and
acrotony/basitony branching on the other hand. Indeed, the role
of TFL1/FT-like genes in the shoot-identity of meristems has been
demonstrated in contrast to “flowering genes” such as LEAFY or
APETALA (Larsson et al., 1998; Parcy et al., 2002). In Rosaceae,
homologs of TFLI-like genes might have diverged evolutionary
in function and expression. In particular, the number of copies
for the different genes differs between species (Esumi et al., 2009;
Mimida et al., 2012, 2013), thus leading to divergences in the
regulating networks controlling meristem identities. This could
explain the variations detailed in this review. However, TFLI
homologs have been shown to have a repressive effect on flow-
ering in most species described in this paper (rose: Randoux
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et al., 2013; strawberry: Gaston et al., 2013; apple: Mimida et al.,
2013). Moreover, in Rosa and Fragaria, mutations on TFLI lead
to extreme branching behavior with all developing axes becoming
floriferous (Iwata et al., 2012). This process was related to the role
of orthologs of AtTFLI in indeterminate and determinate geno-
types in pea (Tian et al., 2010) and in tomato (Shalit et al., 2009).
In contrast, less attention has been paid to other genes such as
WUSCHEL (WUS) which are responsible for the maintenance of
cell population at the SAM in model plants.

BRANCHING PATTERNS RESULT FROM THE LOCATION AXILLARY
FLOWERING IN EITHER PREFORMED OR NEOFORMED PARTS OF THE
PARENT SHOOT

In most species considered in this review, buds are formed and
their fate determined during a growing season whereas they grow
after a dormant winter period, in the following spring. This is
typical of perennial structures, aside from the notable exception
of sylleptic branching. Among the population of buds devel-
oped during a growing season, only a portion differentiates into
flowers, at specific positions. These positions can also be viewed
as particular time steps during the annual shoot development. In
the cherry tree case, floral induction occurs in buds located in
the preformed part of the shoot only, thus in a small number
of meristems formed early during the season. This could result
from the temporary expression of key genes as previously shown
in poplar, in which a peak of FT1 expression in winter initiates
the transition of vegetative meristems to floral state whereas buds
produced before and after FT1 expression are vegetative (Hsu
et al., 2011). In the other Prunus species, including peach and
almond, floral differentiation also occurs in preformed organs but
associated with axillary meristems that are formed all during the
growing season and along the neoformed part of the parent shoot.
This suggests that the conditions of floral induction must be
maintained throughout the growth season. Moreover, the recur-
rence of branching zones associated to the number of flowers, as
found in apricot or almond, suggests that floral induction occurs
in different waves of intensity leading to a variable (increasing or
decreasing) number of flowers associated with axillary meristems.
These fluctuations could result from fluctuating environmen-
tal conditions or internal growth conditions involving resource
availability or molecular controls. Even though investigations are
required to clarify the contribution of these different factors, it is
suspected that in such tissue configurations, the regulation of cel-
lular territory fates must be very precise in time and local space.
In particular the equilibrium between TFLI and FT genes may
be regulated very precisely, in local cell territories (Mimida et al.,
2011).

TERMINAL FLOWERING AND GROWTH CESSATION

In species characterized by terminal flowering, the shoot apical
meristem is not able to maintain its organogenic activity during
an indeterminate period and floral induction occurs when this
acitivity ceases. Because floral induction occurs either on short
or long shoots which stop growing at different periods, the con-
ditions of floral induction must be maintained throughout the
growing season. Several authors have suggested that the consti-
tution of an embryonic shoot in terminal floral buds in apple

requires that organogenic activity is maintained until the win-
ter rest period (Fulford, 1966b) and this could be related to the
growth speed of the parent shoot (Crabbé, 1987). These findings
are consistent with the location of the floral zone in the distal
third of annual shoots, between the sylleptic zone which is con-
sidered as the fastest growing zone, and terminal growth cessation
(Costes and Guédon, 2002). Therefore, as suggested by van der
Schoot et al. (2014), growth cessation and the constitution of the
embryonic shoot within the dormant bud may be a key step for
perennial species with a dormancy period and terminal flower-
ing. This is supported by the fact that floral promoting FT-like
genes are likely to be involved in seasonal growth and dormancy
in trees (Bohlenius et al., 2006; Hsu et al., 2011) and have also
been shown to regulate branching in some trees (Srinivasan et al.,
2012). Even though van der Schoot et al. (2014) insisted on the
environmental control of meristem activity, especially during the
period of growth cessation prior to dormancy, the nutritional
status of each bud during this period is likely to be as impor-
tant as climatic conditions. This is supported by physiological
studies that emphasized the role of carbohydrates in floral induc-
tion (Bangerth, 2009; Wahl et al., 2013), as well as in axillary shoot
control (Mason et al., 2014).

CONCLUSION

Examining the topology and fates of meristematic and floral tis-
sues at more global scales shows that the differentiation of tissues
issuing from meristems is not limited to leaf emergence and
phyllotactic arrangement but complex and precise spatial and
temporal regulation operate in the populations of meristems con-
stituting polycarpic plants. The quantification and modeling of
bud fates depending on their position makes possible the simula-
tion of plant development over time (e.g., Lopez et al., 2008). In
turn, the simulation of realistic plant structures allows estimat-
ing interactions with environmental conditions and/or between
organs competitions in structural-functional plant models. The
spatial and temporal regulation of bud fates certainly involves the
coordination of several classes of genes which control meristem
organization, maintenance and identity. Part could be common
to different processes involved in plant architecture; for instance,
the pleiotropic effect of gibberellins on both cell division and
cell elongation (Yamaguchi, 2008; Claeys et al., 2014), or TFLI1
effects on meristem identity (Iwata et al., 2012; Mimida et al.,
2013; Randoux et al., 2013). Finally, the factors leading to meris-
tem fate, i.e., the length and intensity of its organogenic activity
and its transition from vegetative toward floral state, are likely
to involve its position relatively to other meristems, in addition
to environmental factors. This may involve apical dominance
and hormonal controls (cytokinins, auxin, and gibberellins), in
coordination with key gene activities such as FT/TFL1-like genes
(Bangerth, 2009; Mimida et al., 2011; Iwata et al., 2012; Koskela
et al.,, 2012). But, interactions between floral differentiation and
development of vegetative axillary shoots appear to be complex
as suggested in a recent study showing that the branching factor
BRCI modulates FT activity in the axillary buds of Arabidopsis
(Niwa et al., 2013). Deciphering the common vs. specific molec-
ular mechanisms driving meristem identity, determinacy and
phases in several species represents a new avenue for research
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that will certainly benefit from revisiting plant morphology and
architecture at more global scales.
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