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In flowering plants, the arrangement of flowers on a stem becomes an inflorescence, and
a huge variety of inflorescence architecture occurs in nature. Inflorescence architecture
also affects crop yield. In simple inflorescences, flowers form on a main stem; by contrast,
in compound inflorescences, flowers form on branched stems and the branching pattern
defines the architecture of the inflorescence. In this review, we highlight recent findings
on the regulation of inflorescence architecture by cytokinin plant hormones. Results in rice
(Oryza sativa) and Arabidopsis thaliana show that although these two species have distinct
inflorescence architectures, cytokinins have a common effect on inflorescence branching.
Based on these studies, we discuss how cytokinins regulate distinct types of inflorescence
architecture through their effect on meristem activities.
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INTRODUCTION
Plants have an enormous, striking diversity of forms, with vary-
ing numbers and arrangements of organs in different sizes and
shapes; this diversity derives from regulation of meristem activ-
ity. The aerial organs of a plant come from the shoot apical
meristem (SAM) which gives rise to leaves, stem, and axillary
meristems during the vegetative stage and transforms into the
inflorescence meristem (IM) after the floral transition. The vari-
ous developmental patterns of the IM in different species produce
diverse inflorescence architectures, which not only attract artists
and plant scientists, but also draw the attention of plant breeders,
because inflorescence traits directly affect crop yields. Branch-
ing hierarchy and complexity depend on the species, but are also
affected by environmental factors, including nutrition, light, and
temperature (Tanaka et al., 2013; Kyozuka et al., 2014; Teo et al.,
2014).

The enormous diversity of inflorescence architecture also leads
to difficulties in defining consensus criteria to classify these
structures. Following Weberling’s (1989) suggestions, inflores-
cence architectures can be broadly grouped into inflorescences
without branching (simple) and inflorescences with branching
(compound). Another key parameter is whether the IM ends in
a terminal flower (determinate) or continues to produce struc-
tures, including branches and flowers (indeterminate). Following
these key distinctions, at least three typical groups of inflorescence
architectures are commonly seen, namely the raceme (simple,
indeterminate, as in Arabidopsis), the cyme (complex, determi-
nate, as in tomato), and the panicle [complex, determinate, as in
wheat (Triticum aestivum); or complex, indeterminate, as in maize
(Zea mays), especially tassel; Figure 1; Prusinkiewicz et al., 2007;
Kellogg et al., 2013]. These distinct inflorescence architectures

result from different developmental programs that are elaborated
below.

Development of the IM conditions the branching of the inflo-
rescence. In Arabidopsis, the IM directly initiates floral meristems
(FMs, which are determinate meristems) on its flanks; this forms
a simple raceme (Figure 1A; Benlloch et al., 2007; Tanaka et al.,
2013; Teo et al., 2014). The grasses have more diverse inflorescence
architectures (Kellogg et al., 2013). In a generalized grass inflores-
cence, the IM gives rise to several branch meristems (BMs, which
are usually indeterminate meristems). These BMs may initiate sec-
ondary BMs to form lateral branches and spikelet meristems (SMs)
that then initiate FMs (Figure 1E). In maize and other Andro-
pogoneae species, determinate spikelet-pair meristems (SPMs) are
produced from the IM or BMs, and each SPM makes two SMs.
The SM initiates one or more FMs (Kellogg et al., 2013; Kyozuka
et al., 2014). These intermediate BMs cause secondary or higher-
order branches, which form a compound inflorescence termed
the panicle (Benlloch et al., 2007). Therefore, the branch struc-
ture determines the final inflorescence pattern, which contributes
to the enormous diversity of inflorescence architectures. Specific
genetic regulatory networks control every stage and transition of
meristem activity, as described in several recent reviews (Tanaka
et al., 2013; Kyozuka et al., 2014).

Meristem activity, especially determinacy, fundamentally
affects inflorescence architecture. For example, in the raceme-
type inflorescence of Arabidopsis, the IM continues to initiate
FMs; by contrast, in the cyme-type inflorescence of tomato, the
IM forms a terminal flower immediately after developing a new
IM below it, which reiterates this pattern (Figures 1A,B). The
panicle-type inflorescence is initially indeterminate and initiates
BMs and FMs before it finally terminates in a FM in some species.
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FIGURE 1 | Schematic representation of common types of

inflorescences. (A) Simple raceme, which is indeterminate and
unbranched, (B) cyme, (C) dichasium, which are determinate and branched,
(D) panicle, which is determinate and branched, and (E) Transition of the
reproductive meristems in rice panicle.

At least two groups of genes, relatives of Arabidopsis LEAFY (LFY )
and TERMINAL FLOWER1 (TFL1), play a central role in meris-
tem determinacy. LFY promotes determinate FM identity and
termination of IMs, and TFL1 maintains the indeterminacy of
IMs to prevent termination (Prusinkiewicz et al., 2007).

Recent work has identified cytokinins as key regulators of inflo-
rescence architecture in plants with different inflorescence types,
through regulation of meristem activity, which is often also asso-
ciated with meristem identity. Cytokinins have profound effects
on plant development and growth, including meristem activity
(Kyozuka, 2007; Werner and Schmulling, 2009; Perilli et al., 2010).
Accumulating data point to a role for cytokinins in influencing
inflorescence complexity by fine-tuning IM and BM determinacy.
Also, recent work reveals that cytokinins can regulate the initiation
of meristems from floral organ axils (the junction where the floral
organ meets the stem), and thus convert a determinate flower
into an inflorescence (Han et al., 2014). Here we review these
two mechanisms through which cytokinins regulate inflorescence
architecture.

CYTOKININS PROMOTE IM ACTIVITY
Increasing cytokinin concentrations and signaling activity increase
meristem size and activity. Reduced meristem activity often leads
to conversion of an IM or a BM into a terminal flower, which
subsequently affects inflorescence architecture.

Work in rice and in Arabidopsis showed that cytokinin lev-
els affects meristem activity and inflorescence complexity. The
ATP/ADP isopentenyl transferases (IPTs) catalyze the first step of
cytokinin biosynthesis (Miyawaki et al., 2006). Arabidopsis atipt3
5 7 triple mutants and atipt1 3 5 7 quadruple mutants have lower
levels of cytokinins, which leads to reduced IM size, formation of
a terminal flower, and conversion of an indeterminate inflores-
cence to a determinate inflorescence (Miyawaki et al., 2006). Rice
LONELY GUY (LOG) encodes a cytokinin-activating enzyme cat-
alyzing the final step of cytokinin biosynthesis and LOG is strongly

expressed in BMs and FMs of developing panicles. The absence of
LOG results in early termination of IM and BMs, which reduces
branching complexity (Kurakawa et al., 2007). Arabidopsis has nine
LOG homologs and the triple log3 log4 log7 and septuple log1
log2 log3 log4 log5 log7 log8 mutants produce fewer FMs, sug-
gesting reduced IM activity (Kuroha et al., 2009; Tokunaga et al.,
2012).

In addition to cytokinin homeostasis, defects in cytokinin
signaling also leads to simplified inflorescence architecture.
Cytokinins are perceived by transmembrane histidine kinase
receptors, such as Arabidopsis HISTIDINE KINASE 2 (AHK2),
AHK3, and AHK4. The ahk triple mutants have a smaller IM that
terminates early, resulting in a simplified inflorescence with only
a few flowers (Nishimura et al., 2004).

Conversely, elevated cytokinin homeostasis results in increased
inflorescence complexity. Cytokinin oxidase/dehydrogenase
(CKX) plays a major role in the degradation of bioactive cytokinins
(Mok and Mok, 2001). Arabidopsis plants overexpressing CKX1 or
CKX3 have dramatically reduced cytokinins contents and IMs that
produce very few flowers (Werner et al., 2003). CKX overexpres-
sion in tobacco plants also leads to fewer flowers and conversion
of IMs from indeterminate to determinate (Werner et al., 2001).
Similarly, rice varieties with lower OsCKX2 expression have more
elaborated and larger panicles with more primary and secondary
branches and higher yield, and rice varieties with higher OsCKX2
activity have the opposite phenotype, with fewer branches and
lower yield (Ashikari et al., 2005; Li et al., 2013).

Cytokinins promote IM activity and affect inflorescence
architecture by promoting expression of the meristematic gene
WUSCHEL (WUS) and suppressing the meristem inhibitors
CLAVATA1 (CLV1) and CLV3. Plants ectopically treated with
cytokinins show a clv-like phenotype with larger IMs and more
floral organs (Venglat and Sawhney, 1996; Lindsay et al., 2006).
Cytokinins suppress the expression of CLV1; this suppression
results in upregulation of WUS expression (Brand et al., 2000;
Schoof et al., 2000; Lindsay et al., 2006; Gordon et al., 2009). In
addition, cytokinins directly induce WUS expression, indepen-
dent of CLV1, and WUS enhances cytokinin signaling, forming a
positive feedback loop (Leibfried et al., 2005; Gordon et al., 2009).
Computational modeling shows that a combination of the nega-
tive feedback between WUS and CLV, and the positive feedback of
WUS and cytokinin signaling determines the fine-scale position-
ing of the WUS-expressing stem cell niche domain (Gordon et al.,
2009; Chickarmane et al., 2012).

CYTOKININS PROMOTE LATERAL INDETERMINACY IN
DETERMINATE FMs
In indeterminate inflorescences, the periphery of the meristem
produces BMs (and also SPMs and SMs for grasses) or FMs. In
many determinate inflorescences, such as in wheat spikes, BM,
SM, and FM can also initiate from the IM before its termina-
tion in a FM. In contrast to this initiation pattern, FM and BM
can also initiate laterally from a terminal flower, either from the
axil of a leaf-like organ (such as petals) or can initiate without
subtending lateral organs. These types of inflorescence are termed
dichasium and pleiochasium (Figure 1C), depending on the num-
ber of lateral branches, and can be considered a specialized cyme.
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FIGURE 2 | Conversion of a terminate flower into a pleiochasium-like

inflorescence. Phenotype of Arabidopsis (A) Lansberg erecta wild-type,
(B) ap1-1 (C) ap1-1 cal-1 flowers, and (D) a cauliflower with a highly
elaborated inflorescence, similar to that seen in the Arabidopsis ap1-1 cal-1
mutant. Bars = 1 mm.

Common examples include cauliflower and broccoli, which have a
phenotype similar to that of the Arabidopsis apetala1-1 cauliflower-
1 (ap1-1 cal-1) double mutants (Figure 2). In the ap1-1 single
mutant (Figure 2B), secondary flowers laterally initiate from sepal
axils and from the pedicel. The ap1-1 cal-1 double mutants have
the same but more complicated inflorescence branching pattern.
This lateral inflorescence branching mechanism has many sim-
ilarities to vegetative stage lateral shoot branching. In contrast
to vegetative shoot branching, inflorescences like the raceme and
panicle develop iteratively, similar to frond development in ferns
(Sanders et al., 2011). Despite these differences, cytokinins also
regulate this type of lateral inflorescence branching.

Lateral inflorescence branching is controlled by AP1 and related
MADS-box transcription factor genes in Arabidopsis and other
Brassicaceae species. In the simple indeterminate inflorescence of
Arabidopsis, the IM gives rise to FMs and each FM differentiates
into four whorls of floral organs that occupy precise positions
(Figure 2A). In addition to promoting FM formation and outer

floral whorl specification of sepals and petals, AP1 inhibits sepal
axil meristem activity (Irish and Sussex, 1990; Mandel et al., 1992).
In ap1 mutants, secondary flowers initiate in the axils of sepals,
and tertiary flowers can initiate in the sepal axils of secondary
flowers, and so on (Figure 2B; Irish and Sussex, 1990; Man-
del et al., 1992). This forms a dichasium or pleiochasium-like
inflorescence (Figure 1C). The inflorescence phenotype in ap1 is
enhanced by cauliflower and fruitful mutants to form a cauliflower-
like, highly elaborated pleiochasium inflorescence (Figure 2C;
Ferrandiz et al., 2000). Indeed, cauliflower has lost a homolog of
AP1 (Figure 2D; Kempin et al., 1995), suggesting that AP1 func-
tion is required to inhibit conversion of a simple raceme to a
pleiochasium.

A recent study has shown that AP1 inhibits lateral inflores-
cence branching by reducing cytokinin levels. During vegetative
stages, leaf axil axillary meristem formation requires cytokinin
signaling (Wang et al., 2014) and during reproductive stages, lat-
eral FM formation similarly requires cytokinin signaling (Han
et al., 2014). The ap1 flowers have enhanced cytokinin signal-
ing, as shown by examination of cytokinin-responsive reporter
genes, and these flowers also have elevated levels of certain types of
cytokinins. In addition, cytokinin treatment or ectopic expression
of the cytokinin biosynthesis enzyme IPT8 in the AP1-expressing
domain phenocopies the sepal axil secondary flower phenotype
(Venglat and Sawhney, 1996; Han et al., 2014). This secondary
flower phenotype can be rescued by mutations of cytokinin recep-
tors. Further molecular dissection showed that AP1 suppresses
the cytokinin biosynthetic gene LOG1 and activates the cytokinin
degradation gene CKX3, through direct binding to the target gene
promoters, thus reducing cytokinins levels in the outer whorls
of developing flowers. Restoring the expression levels of either
LOG1 or CKX3 can partially rescue the ap1 secondary flower
phenotype. In addition to affecting cytokinin homeostasis, AP1
also directly downregulates a group of flowering time-related
MADS-box genes, including SHORT VEGETATIVE PHASE (SVP),
AGAMOUS-LIKE 24 (AGL24), and SUPPRESSOR OF OVEREX-
PRESSION OF CO1 (SOC1), to suppress secondary FM formation.
Similar to IPT8 overexpression, overexpression of SVP, AGL24, or
SOC1 leads to sepal axil secondary FM formation (Liu et al., 2007).
There appears to be crosstalk between cytokinin signaling and
these flowering time-related MADS-box genes in the regulation of
sepal axil secondary FM formation.

Taken together, the results described above show that cytokinins
promote inflorescence complexity in different ways, by promoting
meristem activity of IMs and BMs in inflorescences that branch
iteratively, and by promoting indeterminate lateral meristem
formation in inflorescences that branch laterally. Manipulating
cytokinin levels directly or indirectly in crops is expected to change
inflorescence complexity to increase yields (Kempin et al., 1995;
Ashikari et al., 2005; Kurakawa et al., 2007; Zhang et al., 2012; Li
et al., 2013).
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