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The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-
fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for
the movement of solutes between the symbionts that is under plant control. The primary
nutrient exchange across the SM is the transport of a carbon energy source from plant to
bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been
implicated in movement of fixed nitrogen across the SM and a uniporter that transports
monovalent dicarboxylate ions has been characterized that would transport fixed carbon.
The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the
other transporters have not been identified. Transport of several other solutes, including
calcium and potassium, have been demonstrated in isolated symbiosomes, and genes
encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules
have been identified. However, definitively matching transport activities with these genes
has proved difficult and many further transport processes are expected on the SM to
facilitate the movement of nutrients between the symbionts. Recently, work detailing the
SM proteome in soybean has been completed, contributing significantly to the database of
known SM proteins. This represents a valuable resource for the identification of transporter
protein candidates, some of which may correspond to transport processes previously
described, or to novel transport systems in the symbiosis. Putative transporters identified
from the proteome include homologs of transporters of sulfate, calcium, peptides, and
various metal ions. Here we review current knowledge of transport processes of the SM
and discuss the requirements for additional transport routes of other nutrients exchanged
in the symbiosis, with a focus on transport systems identified through the soybean SM
proteome.
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INTRODUCTION
Nitrogen is an essential macronutrient for plants and can be a
limiting factor in crop growth. Nitrogen fertilizer is often used to
supplement soils and produce high quality yields, but production
of commercial quantities of nitrogen fertilizer is energy-expensive
and the fertilizer can have negative effects on the environment,
causing pollution of ground water (Vance, 2001). A natural alter-
native to commercial fertilizers is symbiotic nitrogen fixation in
legumes, which can reduce the need for nitrogen fertilizer and can
boost nitrogen reserves in the soil.

Biological nitrogen fixation (BNF) by rhizobia in legume nod-
ules is responsible for the addition of approximately 40 million
tons of nitrogen to agricultural systems each year (Herridge
et al., 2008). As well as providing a protein-rich food source
for humans and animals, legume crops are used to enrich soil
nitrogen reserves, enabling growth of other crop species (Oldroyd
et al., 2011). BNF also has the added advantage of decreased envi-
ronmental impacts compared to synthetic nitrogen fertilizers, and
subsequent reduction in costs associated with crop production
(Udvardi and Poole, 2013).

Due to its importance, the legume:rhizobia symbiosis has
been the focus of much research, with the ultimate aim to
improve existing symbioses and potentially expand BNF into
other non-legume crop species, such as cereals (Beatty and Good,
2011).

BIOLOGICAL NITROGEN FIXATION
Biological nitrogen fixation occurs through activity of the enzyme
nitrogenase, which is found only in certain prokaryotes, includ-
ing those of the Rhizobiaceae family (or rhizobia). The enzyme
converts atmospheric nitrogen to ammonium, a plant-available
form of nitrogen, but requires large amounts of ATP to fuel
the conversion (Halbleib and Ludden, 2000). Legumes, such as
soybeans, are able to form an association with nitrogen-fixing
soil bacteria of the Rhizobiaceae family (termed rhizobia). In this
symbiotic relationship, atmospheric nitrogen is fixed by the bac-
teria and made available to the plant in exchange for organic acids
and other nutrients (Lodwig and Poole, 2003). This mutually
beneficial association occurs within specialized root structures
termed nodules.
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ROOT NODULE FORMATION
The relationship between rhizobia and their legume hosts begins
with the exchange of signals between the symbionts. Free-living
rhizobia are attracted to legume roots through the exudation of
phenolic flavonoid compounds (Hirsch, 1992). Flavonoid percep-
tion by rhizobia triggers the synthesis of Nod factors, symbiosis-
specific lipochitooligosaccharide compounds which activate nod-
ule organogenesis and induce cellular changes in the plant roots
to facilitate bacterial infection (Oldroyd and Downie, 2004). The
recognition of Nod factors leads to a series of morphological
changes in receptive plant root cells including root hair defor-
mation and the initiation of the infection thread through which
the rhizobia travel into the root cortical cells. In the Medicago
truncatula:Sinorhizobium meliloti symbiosis, two flotillins (lipid
raft markers) are essential for infection thread initiation, sug-
gesting this initiation process involves lipid rafts on the root
cell plasma membrane. Infection results in polarized root-hair
tip growth, invagination of the plant cell membrane and the
formation of the nodule meristem (Timmers et al., 1999; Esseling
et al., 2003). The formation of the nodule meristem in legumes
can give rise to two distinct patterns of nodule development,
determinate and indeterminate growth. Indeterminate nodules
are characterized by a tip-growing meristem as opposed to the
transient meristem present in determinate nodules (Oldroyd
et al., 2011).

Once inside the cortical cells, the rhizobia divide and multiply,
and these cells are now termed infected cells. As the infected
cells expand inside the growing nodule, the rhizobia are released
from the infection thread into vesicles termed symbiosomes (Roth
et al., 1988). This was initially thought to be an endocytotic
process, and indeed, the endosomal marker Rab7 is present on
mature symbiosomes (Limpens et al., 2009). More recent studies,
however, have demonstrated that exocytotic vesicle-associated
membrane proteins are required during the formation of the
symbiosis, suggesting rhizobial release into symbiosomes is an
exocytotic process (Ivanov et al., 2012).

The symbiosome is surrounded by a membrane of plant origin
known as the symbiosome membrane (SM) which is derived
from the infected cell plasma membrane, but becomes special-
ized in its role to contain the rhizobia (Whitehead and Day,
1997). Within the symbiosome in determinate nodules, rhizobia
continue to multiply before differentiating into bacteroids, the
symbiotic form of rhizobia in which symbiosis-related genes are
induced (Whitehead and Day, 1997). Mature symbiosomes result
from the coordinated division of bacteria and growth of the
surrounding SM.

THE SYMBIOSOME MEMBRANE
The SM surrounds one or more differentiated bacteroids, effec-
tively excluding them from the plant cytosol. The region between
the SM and the bacteroids is termed the symbiosome space
(SS). The SM is a selectively permeable physical barrier between
plant and bacteroid, representing a regulation point under
plant control for the movement of solutes between symbionts.
The SM is therefore proposed to contain an array of trans-
porters and channels to facilitate this (Whitehead and Day,
1997).

After its initial formation, the SM undergoes enormous pro-
liferation to enable it to accommodate the dividing bacteroids
(Roth and Stacey, 1989). It is estimated that the SM surface area
in an infected cell is up to one hundred times that of the plasma
membrane (Roth and Stacey, 1989). Protein trafficking and secre-
tion have important roles in the symbiosis, as the expanding SM
requires the synthesis of large amounts of lipids and proteins
to meet the increasing requirements for SM in the infected cell.
The SM composition varies throughout the existence of the
symbiosome to facilitate the different transport requirements of
the symbionts (Whitehead and Day, 1997).

Several proteins have been identified which possess an N-
terminal signal sequence directing them to the symbiosome (Liu
et al., 2006; Hohnjec et al., 2009; Meckfessel et al., 2012). For
example, the SS localized N-terminal region of M. truncatula
nodulin 25 (MtNOD25) contains a signal peptide that can drive
symbiosome targeting of heterologously expressed proteins, and
this signal sequence is conserved across several other symbio-
some proteins (Hohnjec et al., 2009). MtENOD8, a SS local-
ized protein (Coque et al., 2008), also contains a signal peptide
which directs subcellular targeting (Meckfessel et al., 2012) but
it also contains an internal sequence directing it into the sym-
biosome, without the requirement for the N-terminal signal
peptide (Meckfessel et al., 2012). However, an N-terminal signal
sequence is not present in all proteins targeted to the symbiosome,
suggesting additional trafficking pathways exist (Catalano et al.,
2004).

IDENTIFYING SYMBIOSOME MEMBRANE TRANSPORTERS
Analysis of rhizobia mutants for transport processes and their
N-fixation phenotype has been a useful method to identify the
compounds transported across the SM (Udvardi and Day, 1997;
Udvardi and Poole, 2013). SM transport proteins in soybean,
M. truncatula, Lotus japonicus and other legumes have been
identified using a range of biochemical and molecular approaches.
M. truncatula forms indeterminate nodules, while soybean and
L. japonicus both form determinate nodules. As well as differ-
ences in nodule meristem development, each species has distinct
advantages for particular applications. Both L. japonicus and M.
truncatula have small diploid genomes and a short life cycle well
suited to genetic analysis. While soybean has a larger, polyploid
genome, its larger and more numerous nodules allow easier
extraction and isolation of symbiosomes and their components.
Soybean is an agriculturally important legume and its genome has
been fully sequenced (Schmutz et al., 2010).

The publication of the soybean genome, together with advance
in sequencing technologies have enabled high-resolution tran-
scriptome studies to be undertaken. Two soybean transcriptome
atlases have been produced, detailing gene expression profiles in
different soybean tissues including roots and nodules (Libault
et al., 2010; Severin et al., 2010) and gene expression atlases are
available for L. japonicus (Verdier et al., 2013) and M. truncatula
(Benedito et al., 2008). These transcriptome databases provide
a comprehensive resource for the identification of tissue-specific
gene expression.

Recently, the combination of resources in soybean, together
with the relative ease of SM protein extraction, has allowed the
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generation of a proteome of the soybean SM from Bradyrhizo-
bium japonicum infected plants (Clarke et al., unpublished). This
provides a rich resource of novel candidate SM transport proteins
and here we discuss our current understanding of the transport
processes of the SM as well as the potential roles for these recently
identified proteins in the symbiosis.

TRANSPORT ACROSS THE SYMBIOSOME MEMBRANE
The SM is an interface that regulates the distribution of metabo-
lites between the host plant and nitrogen-fixing bacteroids. The
presence of transporters and channels on this membrane, whose
activity and specificity can be tightly regulated, allows for the con-
trolled distribution of metabolites and signaling molecules. Early
work using biochemical assays with isolated symbiosomes pro-
vided the groundwork on which molecular and genomic research
has expanded, although genes encoding many of these transport
processes have not yet been identified (Figure 1; Table 1).

TRANSPORT OF REDUCED CARBON
The primary nutrient exchange across the SM is the transport of
a carbon energy source from plant to bacteroid in exchange for
fixed nitrogen. BNF is an energy expensive process which requires
large amounts of ATP to fuel the reduction of N2 (Halbleib and
Ludden, 2000). The host plant provides this from photosynthetic
products that are oxidized in the bacteroids to generate ATP. This
carbon source is derived from sucrose that is transported from
source leaves through the phloem to the nodules (Udvardi and
Day, 1997). Dicarboxylates are then transported across the SM
to the bacteroids (Day et al., 1995). Assays with isolated soybean
symbiosomes identified a carrier for monovalent dicarboxylate
ions that had a higher affinity for malate than for succinate,

FIGURE 1 | Characterized transport processes of the symbiosome
membrane. Symbiosomes exist within infected plant cells, where they act
to partition nitrogen-fixing bacteroids from the cell cytosol. A range of
transport processes have been characterized on the symbiosome
membrane to facilitate movement of solutes between symbionts. These
include (1) transport processes supporting the primary needs of symbionts
(nitrogen, malate, and metal ions), (2) efflux processes (nitrogen), (3)
secondary transport processes (nitrate, sulfate, and IAA), and (4) regulatory
transport processes (H+-ATPase, calcium, and water flux).

suggesting that malate is the major form transported. The exis-
tence of this carrier was first demonstrated in soybean in 1988
(Udvardi et al., 1988; Udvardi and Day, 1997), but the protein
that transports dicarboxylates has yet to be identified on the SM
of any legume.

In the symbiosis-forming non-legume Alnus glutinosa, the
AtNPF6.3 homolog, AgDCAT1, was identified and shown to
transport dicarboxylates when expressed in E. coli, although
its closest homologs have been characterized as nitrate trans-
porters (Jeong et al., 2004). DCAT1 is a member of the nitrate
transporter/peptide transporter (NRT/PTR) family (NPF; Léran
et al., 2014). Members of this family are candidates for the
dicarboxylate transporter in legumes as transcriptome data from a
number of legume species has indicated that NPF encoding genes
are induced strongly in nodules (Colebatch et al., 2004; Benedito
et al., 2010; Libault et al., 2010; Severin et al., 2010). A number of
members of the family were also identified in the soybean SM pro-
teome (Clarke et al., unpublished). However, as this family also
includes proteins that transport a range of different compounds
including nitrate, auxin, glucosinolate, and peptides (see below),
experimental characterization of the substrates will need to be
performed before their role can be confirmed.

TRANSPORT OF AMMONIA AND AMMONIUM
The product of nitrogenase in bacteroids is ammonia, which
is thought to diffuse out of the bacteroids into the acidic SS,
where much of it is protonated to ammonium (Day et al.,
2001a). Reuptake of ammonium into the bacteroids is prevented
through repression of the bacteroid ammonium carrier during
differentiation of rhizobia to their symbiotic state (Howitt et al.,
1986). The SM is energized by an H+-ATPase that pumps H+

into the SS. Thus a concentration gradient is established that
promotes the efflux of NH3/NH +

4 into the plant cytosol, where
it is rapidly assimilated. In isolated symbiosomes, two avenues
have been identified for the transport of NH3/NH +

4 across the
SM, a channel for facilitated diffusion of ammonia (Niemietz and
Tyerman, 2000), and a voltage-gated monovalent cation channel
that transports NH +

4 as well as potassium and sodium ions
(Tyerman et al., 1995). The movement of NH +

4 is coordinated
by the generation of a membrane potential across the SM by the
H+-ATPase (Udvardi and Day, 1997, see below). The SM protein
encoding the monovalent cation channel has not been identified,
but nodulin 26 (NOD26), an aquaporin that transports water
(Fortin et al., 1987; Dean et al., 1999; Niemietz and Tyerman,
2000; Hwang et al., 2010), is the likely candidate for passage
of NH3. NOD26 was first identified as an integral membrane
protein of the soybean SM (Fortin et al., 1987) and is a member
of the major intrinsic protein/aquaporin (MIP/AQP) channel
family (Wudick et al., 2009). It is estimated to constitute 10%
of the protein content of the SM (Weaver et al., 1994; Rivers
et al., 1997), is exclusively localized to the SM, and due to its
prevalence is widely used as a marker for the membrane. NOD26
functions as a multifunctional aquaglyceroporin, with Xenopus
oocyte studies showing it can facilitate the movement of glycerol
and formamide (Rivers et al., 1997; Dean et al., 1999). Other
studies have shown that it can also facilitate ammonia transport
across the SM (Hwang et al., 2010) and it acts as a docking
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Table 1 | A summary of characterized transport processes of the legume symbiosome membrane indicating transported substrate,
corresponding gene (if identified), and related publication(s).

Compound
transported

Biochemical characterization Gene encoding transporter
(evidence)

Reference Direction

Malate Monovalent anion uptake assays Not identified Udvardi et al. (1988) Import
Fe2+

Ferrous iron uptake into symbiosomes
(radioactive assay); ferrous iron uptake
into yeast (equivalent to efflux from
symbiosome)

DMT1? (yeast
complementation)

Moreau et al. (1995, 1998),
Kaiser et al. (2003)

Bidirectional?

Fe3+
Ferric chelate uptake assay Not identified LeVier et al. (1996) Import

Zn2+
Zn uptake into symbiosomes and yeast
(radioactive assay)

ZIP1 (yeast complementation) Moreau et al. (2002) Bidirectional?

Homocitrate Inferred Not identified Hoover et al. (1989),
Hakoyama et al. (2009)

Import

IAA IAA uptake assay into symbiosomes Not identified Rosendahl and Jochimsen
(1995)

Import

SO 2−

4 No biochemical activity measured on
symbiosomes

SST1 (yeast
complementation)

Krusell et al. (2005) Import?

Nitrate Anion uptake assay N70 (expression in Xenopus
oocytes, voltage clamp)

Udvardi et al. (1991), Vincill
et al. (2005)

Bidirectional?

Molybdate Inferred Not identified Delgado et al. (2006) Import
Ca2+

ATP-dependent Ca2+ uptake Ca2+-ATPase (sequence
homology, localization)

Andreev et al. (1999), Krylova
et al. (2012), Clarke et al.
(unpublished)

Import

H+
Assays for P-type H+-ATPase H+-ATPase (sequence

homology, localization)
Blumwald et al. (1985),
Udvardi et al. (1991), Fedorova
et al. (1999), Wienkoop and
Saalbach (2003), Clarke et al.
(unpublished)

Import

Branched chain
amino acids

Inferred Not identified Prell et al. (2009) Import

Amino acids? GmAPC1 (sequence
homology, localization)

Clarke et al. (unpublished) ?

K+, Na+, NH +
4 Patch-clamp of voltage-gated monovalent

cation channel
Not identified Tyerman et al. (1995) Export

H2O, NH3? H2O, NH3 movement across the SM NOD26 (reconstitution into
proteoliposomes, expression
in Xenopus oocytes)

Fortin et al. (1987), Rivers
et al. (1997), Dean et al.
(1999), Niemietz and Tyerman
(2000), Hwang et al. (2010)

Export

Substrate not
known

GmNPF family members Clarke et al. (unpublished) ?

Substrate not
known

GmPCR1.1, 1.2 Clarke et al. (unpublished) ?

It should be noted that the orientation of the symbiosome is such that uptake into the symbiosome is equivalent to efflux across the plasma membrane. Uptake into

heterologous expression systems such as yeast or oocyte represents the reverse direction; that is, efflux from a symbiosome. Hence demonstration of uptake into

symbiosomes and yeast suggests that a transporter can operate bidirectionally.

station for cytosolic glutamine synthetase (Masalkar et al., 2010).
This localization of glutamine synthetase would promote rapid
assimilation of ammonia, thereby creating a strong sink for
further export. The detection of both glutamine synthetase and
NOD26 in the soybean SM proteome (Clarke et al., unpublished)
provides further support for their suggested roles in ammonia
release from the symbiosome (Hwang et al., 2010; Masalkar et al.,
2010).

ADDITIONAL TRANSPORT PROCESSES
Energization of the SM
The active pumping of H+ ions by an H+-ATPase generates a
proton gradient across the SM, which is thought to drive many
other transport processes (Blumwald et al., 1985; Udvardi and

Day, 1989; Andreev et al., 1999; Fedorova et al., 1999), as well as
the conversion of ammonia to ammonium. P-type H+-ATPases
are considered to have an important role in the development of
the symbiotic association through their acidification of the SS,
but they also energize the SM by establishing an electrochemical
gradient across the membrane that is necessary for the secondary
transport of other solutes (reviewed in Day et al., 2001a). Three
related P-type H+-ATPases were identified in the soybean SM
proteome (Clarke et al., unpublished), while a P-type H+-ATPase
has been immunolocalized on the SM of soybean (Fedorova
et al., 1999) and detected on the SM by proteomic analysis in
L. japonicus and M. truncatula (Wienkoop and Saalbach, 2003;
Catalano et al., 2004). Interestingly, the related V-type ATPases
have also been identified proteomically on the SM in pea and L.
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japonicus (Saalbach et al., 2002; Wienkoop and Saalbach, 2003),
but could not be detected by immunolocalization on the soybean
SM (Fedorova et al., 1999). The absence of V-type ATPases in the
soybean SM proteome, together with the results of Fedorova et al.
(1999), suggest that soybeans may differ from other legumes in
their SM ATPase requirements.

Calcium transport
It has been suggested that symbiosomes may behave as cal-
cium stores in infected cells (Andreev et al., 1999). Calcium
uptake is an active (ATP-driven) process and an ATP-driven
Ca2+-pump has been characterized on the SM (Andreev et al.,
1999; Krylova et al., 2012). Three Ca2+-ATPases were iden-
tified in the soybean SM proteome (Clarke et al., unpub-
lished). Both the P-type H+-ATPases and these Ca2+-ATPases
are expressed broadly across soybean tissues (Libault et al.,
2010; Severin et al., 2010), suggesting recruitment to a new
role and location as part of the symbiosis. Whether the sym-
biosome functions as a calcium store in vivo remains to be
seen. The presence of a calcium-dependent protein kinase on
the SM and its role in malate uptake into the symbiosome
(Ouyang et al., 1991; Weaver et al., 1991) certainly shows the
potential for calcium to be a key regulator of symbiosome
function.

Transport of other nitrogenous compounds
Transport of nitrogenous compounds is of general interest in
legumes, especially as nodule development is suppressed in the
presence of nitrate (Streeter and Wong, 1988). In all plants,
nitrogen plays an important regulatory role, which includes lateral
root formation and, in the case of legumes, nodulation.

A nitrate transporter, GmN70, has been identified on the
SM in soybean (Vincill et al., 2005). The L. japonicus ortholog,
LjN70, also transports nitrate and both proteins are members of
the major facilitator superfamily (MFS; Vincill et al., 2005). It is
postulated that these transporters may aid in the regulation of ion
and membrane potential through their transport of nitrate, which
is known to regulate the symbiosis (Udvardi and Day, 1989).
In isolated symbiosomes, rapid uptake of nitrate disperses the
membrane potential (Udvardi et al., 1991).

As mentioned earlier, the NPF family has members whose
expression is up-regulated during nodule development in a num-
ber of legumes. This large family has recently been divided into
eight sub-families, NPF1–8 (Léran et al., 2014). Members of the
NPF transport a range of nitrogen-based compounds (Williams
and Millar, 2001). AtNPF6.3 (AtNRT1.1, CHL1), one of 53 pro-
teins in the NPF of Arabidopsis, can transport nitrate (Tsay et al.,
2007) and auxin (Krouk et al., 2010), as can the M. truncat-
ula homolog MtNRT1.3 (Beeckman and Friml, 2010; Morere-
Le Paven et al., 2011). Uptake of the auxin, IAA, by isolated
pea symbiosomes has been reported (Rosendahl and Jochimsen,
1995). NPF proteins with dual transport functions are implicated
in nutrient sensing roles within the plant, in addition to high- and
low-affinity nitrate uptake (Krouk et al., 2010). Other members
of the NPF in Arabidopsis transport the defense compounds,
glucosinolates, in seeds (Nour-Eldin et al., 2012), abscisic acid,
peptides and dicarboxylates (see above).

Medicago truncatula MtNPF1.7 (previously called LATD/NIP),
a nitrate transporter, is essential for the development and mainte-
nance of lateral roots and release of rhizobia into the symbiosome
(Bright et al., 2005; Harris and Dickstein, 2010; Yendrek et al.,
2010). Complementation using Chl1 (NPF6.3) from Arabidopsis, a
dual nitrate/auxin carrier, was able to rescue the latd/nip1 pheno-
type in lateral root development, but not the phenotype observed
in nodules (Bagchi et al., 2012), suggesting it has other, uniden-
tified functions. A member of the same sub-family, GmNPF1.2,
is expressed specifically in nodules (Severin et al., 2010) and is
present on the SM (Clarke et al., unpublished).

Other proteins homologous to the Arabidopsis NRT/PTR Fam-
ily (NPF) have also been identified in the soybean SM proteome.
One of these is closely related to Arabidopsis plasma membrane
peptide transporters PTR1 and PTR5 (NPF8 sub-family), while
others are in the sub-family of PTR3 (NPF5), also identified as
a peptide transporter. The relevance of peptide transport on the
SM is not clear. However, all these proteins contain the FING
motif that is thought to be essential for peptide transport (Stacey
et al., 2002). The genes encoding these proteins are expressed
specifically in nodules in soybean (Severin et al., 2010) and
proteins homologous to GmNPF5.24 and GmNPF5.25 were iden-
tified in the L. japonicus SM proteome (Wienkoop and Saalbach,
2003).

If NPF members transport peptides into the symbiosome they
could be used to lift symbiotic auxotrophy for branched chain
amino acids that was recently identified by Prell et al. (2009) in
the pea: Rhizobium leguminasarum symbiosis (see below).

Amino acid transport
Isolated soybean symbiosomes are only weakly permeable to
amino acids (Whitehead et al., 1998) so it is not likely that they
are major contributors of carbon to bacteroids in soybean (Day
et al., 2001b). However, recent studies have demonstrated that
pea bacteroids are auxotrophs for branched chain amino acids
(Prell et al., 2009). As the enclosed bacteroids are effectively
organelles relying on the plant host to synthesize and provide
branched chain amino acids, an SM amino acid transporter could
act to facilitate this transport. A putative amino acid transporter
(GmAPC1) with homology to the acid-polyamine organocation
(APC) superfamily was identified in the soybean SM proteome
(Clarke et al., unpublished). This family includes members that
function as solute:cation symporters and solute:solute antiporters
(Wong et al., 2012).

Sulfur and molybdenum transport
Sulfur is a component of the metalloclusters of nitrogenase,
essential for the reduction of nitrogen, and must be actively
transported across membranes (Krusell et al., 2005). LjSST1 was
identified from a fix– mutant in L. japonicus and complemented
a yeast strain deficient in sulfate transport (Krusell et al., 2005).
Peptides matching this sulfate transporter have been identified
on the L. japonicus SM (Wienkoop and Saalbach, 2003) and
two homologs found on the soybean SM (Clarke et al., unpub-
lished). Krusell et al. (2005) reported that LjSST1 expression is
essential for symbiotic nitrogen fixation; knockout mutants grow
normally in non-symbiotic conditions but are unable to produce
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functioning nodules when inoculated with M. loti. Studies using
35SO −

4 and isolated soybean symbiosomes failed to detect sulfate
uptake (Day, unpublished data) and in this context, it should
be noted that some members of the SST family, though not
phylogenetically close to these candidates, can transport other
metabolites in addition to sulfate, including molybdate (Tomatsu
et al., 2007).

Molybdenum is an essential component of the nitrogenase
enzyme. A high affinity ABC transport system encoded by Mod-
ABC is involved in transport of molybdate in B. japonicum and
required for efficient nitrogen fixation (Delgado et al., 2006)
suggesting that there must be transport of molybdenum across
the SM. Analysis of the soybean:B. japonicum symbiosis in modA
or modB mutants suggested that in addition to ModABC, a com-
bined molybdate and sulfate transport system was also present on
the bacteroid membrane.

Homocitrate transport
Homocitrate is essential for nitrogen-fixation, as it is a component
of the iron-molybdenum (FeMo) cofactor of nitrogenase complex
(Hoover et al., 1989). Isolated rhizobia rely on the plant host to
supply homocitrate, as in most cases they are not able to syn-
thesis homocitrate endogenously (Zheng et al., 1997; Hakoyama
et al., 2009). Homocitrate synthase in the plant is encoded by
the FEN1 gene, and L. japonicus fen1 mutants have reduced
nitrogen fixation (Imaizumi-Anraku et al., 1997; Hakoyama et al.,
2009) suggesting it is provided to bacteroids by the plant and
that a transporter for homocitrate is likely to be present on
the SM.

Metal ion transport
Iron is essential to the symbiosis as it is an integral component
of proteins such as nitrogenase in the bacteroid and heme in the
plant. The uptake of both ferrous and ferric iron into isolated
symbiosomes has been demonstrated (Moreau et al., 1995, 1998;
LeVier et al., 1996) and in soybean, GmDMT1 (Divalent Metal
Transporter 1), a member of the NRAMP (Natural resistance-
associated macrophage protein) family of transporters, has been
identified as a ferrous iron transporter on the SM and like many
other NRAMP transporters has some specificity for other metal
ions including zinc, magnesium and copper (Kaiser et al., 2003).
However, it is not clear whether DMT1 would transport iron
into the symbiosome. Given the orientation of the symbiosome,
as deduced by its development from the plasma membrane, we
would expect the inside of the symbiosome to correlate with
the apoplast (outside the cell). Most members of the NRAMP
family transport metals into the cytoplasm and GmDMT1 was
characterized by its ability to transport iron into a yeast cell.
By analogy, in situ, GmDMT1 would transport iron out of the
symbiosome, suggesting a role in regulating iron availability
in the cytoplasm that is similar to Arabidopsis NRAMP3 and
4 (Lanquar et al., 2005) by remobilizing iron stored in the
symbiosome (Udvardi and Day, 1997). However, it is possi-
ble that this transporter could be bidirectional (Kaiser et al.,
2003).

Lotus japonicus SEN1 is a member of the Vacuolar Iron
transporter (VIT1) family and is expressed specifically in nodule

infected cells (Hakoyama et al., 2012). Arabidopsis VIT1 trans-
ports ferrous iron into the vacuole (Kim et al., 2006), analogous
to import into the symbiosome. Sen1 is essential for nitrogen
fixation in L. japonicus suggesting it may have a role as an iron
importer on the SM (Hakoyama et al., 2012). However, to date
the substrate transported by SEN1 and its localization in infected
cells has not been determined.

A zinc transporter, ZIP1 (Zinc regulated transporter/Iron reg-
ulated transporter-like Protein 1), has also been localized to the
symbiosome and the antibodies raised against ZIP1 were able to
inhibit uptake of zinc by isolated symbiosomes (Moreau et al.,
2002). There has been little work on copper and manganese trans-
port across the SM, though manganese transporters have been
identified on the bacteroid membrane of a number of rhizobia
and some of these result in fix– phenotypes (reviewed in Udvardi
and Poole, 2013).

Recently, proteins homologous to the PLAC8 superfamily,
which may include metal ion transporters, were identified in
the SM proteome (Clarke et al., unpublished). A subset of the
PLAC8 family, known as plant cadmium resistance (PCR) pro-
teins in plants, are a large conserved family found in fungi,
algae, higher plants and animals (Song et al., 2011). They are of
particular interest on the SM as two members of this family in
Arabidopsis have been reported to play a role in the transport
of heavy metals (Song et al., 2004, 2010). AtPCR1 and AtPCR2
are reported to extrude divalent cations such as cadmium and
zinc from Arabidopsis root cells (Song et al., 2004, 2010). This
would translate to an import of metal into the symbiosome and
the presence of homologous proteins on the SM suggests a role
in maintaining adequate nutrition for the isolated bacteroids
through import of a variety of metal cations. The identification
of this family as transport proteins, however, is controversial
as another member of the same sub-family, FW2.2, has been
shown to mediate fruit weight in tomato (Frary et al., 2000)
and a role for GmFWL1 (FW2.2-like 1) in controlling nuclear
size and chromatin condensation has been suggested (Libault and
Stacey, 2010). However, these effects could be indirectly related
to metal ion transport and compartmentalization. Clearly more
work needs to done in this area to elucidate the precise role of
these membrane proteins.

CONCLUSION
The SM is the critical interface between the symbiotic partners
and we still have a lot to learn about it. It is likely that a number
of as yet unidentified metabolites are exchanged between the
symbiotic partners in legumes. Processes that require transport
of metabolites across the SM can be predicted and many putative
transporters and novel integral membrane proteins have been
identified on the SM through proteomic (Wienkoop and Saal-
bach, 2003; Catalano et al., 2004; Clarke et al., unpublished)
and other approaches. Add to this the number of putative trans-
porters with nodule specific or enhanced expression identified by
studying legume transcriptomes (Benedito et al., 2010; Libault
et al., 2010; Severin et al., 2010; Verdier et al., 2013) and it is
clear that there is a long way to go to understand the associated
metabolism and the role of transporters both on the SM and
other cellular membranes in the nodule. With a more complete
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picture of the proteins on the SM, reverse genetic approaches can
be implemented to demonstrate the phenotypes associated with
disrupting particular proteins. By combining this with biochemi-
cal and biophysical assays of transport, which can now be revisited
based on new genetic and molecular data available, we should be
able to extend our knowledge of the transport processes required
for an efficient symbiosis and perhaps identify means by which we
could enhance the process and so the benefits of BNF.
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