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The small phenolic compound salicylic acid (SA) plays a critical role in plant defense against
broad-spectrum of pathogens. The phosphate transporter gene PHT4;1 was previously
shown to affect SA-mediated defense and its expression is regulated by the circadian
clock. To further understand how PHT4;1 affects SA accumulation, here we analyzed the
genetic interactions between the gain-of-function mutant pht4;1-1 and several known
SA mutants, including sid2-1, ald1-1, eds5-3, and pad4-1. The genetic analysis was
conducted in the acd6-1 background since the change of acd6-1 dwarfism can be used as
a convenient readout for the change of defense levels caused by impairments in some SA
genes.We found that compared with the corresponding double mutants, the triple mutants
acd6-1pht4;1-1ald1-1, acd6-1pht4;1-1eds5-3, and acd6-1pht4;1-1pad4-1 accumulated lower
levels of SA and PR1 transcripts, suggesting that PHT4;1 contributes to acd6-1-conferred
defense phenotypes independently of these known SA regulators. Although some triple
mutants had wild type (wt)-like levels of SA and PR1 transcripts, these plants were smaller
than wt and displayed minor cell death, suggesting that additional regulatory pathways
contribute to acd6-1-conferred dwarfism and cell death. Our data further showed that
circadian expression of PHT4;1 was dependent on CIRCADIAN CLOCK ASSOCIATED 1
(CCA1), a central oscillator component of Arabidopsis circadian clock. Recombinant CCA1
protein was demonstrated to bind to the PHT4;1 promoter in electrophoretic mobility shift
assays, suggesting a direct transcriptional regulation of PHT4;1 by CCA1. Together these
results indicate that PHT4;1 is a SA regulator acting independently of several known SA
genes and they also implicate a role of the circadian clock mediated by CCA1 in regulating
phosphate transport and/or innate immunity in Arabidopsis.
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INTRODUCTION
Successful defense against pathogen attacks is critical to plant
growth and development. In addition to pre-formed physical and
chemical barriers, plants can monitor the presence of pathogens
and subsequently activate defense responses to restrict further
proliferation and spreading of pathogens. However, it remains
challenging to identify genes that control plant defense, under-
stand their mechanisms of action, and determine how they interact
to form complex defense networks to orchestrate resistance to
invaders.

The small phenolic compound salicylic acid (SA) plays a cen-
tral role in plant defense signaling (Hammond-Kosack and Jones,
1996; Ryals et al., 1996; Tsuda et al., 2008). Genes that positively
regulate SA-mediated defense have been identified in Arabidop-
sis. These genes can be grouped into three types based on their
potential biochemical and molecular functions (Lu, 2009; Lu
et al., 2009a). The type I SA genes encode enzymes directly
involved in SA biosynthesis, which is proposed to take place
in the chloroplast and cytoplasm of a cell, involving multiple
pathways (Chen et al., 2009; Dempsey et al., 2011). The type I
SA gene ISOCHORISMATE SYNTHASE 1 (ICS1), also called SA

Induction-Deficient 2 (SID2) and ENHANCED DISEASE SUSCEP-
TIBILITY 16 (EDS16), contributes to the bulk SA biosynthesis
(Nawrath and Metraux, 1999; Wildermuth et al., 2001; Ng et al.,
2011). ICS1/SID2/EDS16 protein was shown to be chloroplast-
localized (Strawn et al., 2007), indicating that the major SA
biosynthetic pathway likely occurs in the chloroplast. To support
this notion, the bacterial gene nahG that encodes SA hydroxylase
to convert SA to the breakdown product catechol (Friedrich et al.,
1995), when expressed in the chloroplast, abolishes SA accumu-
lation in the transgenic plants challenged with pathogens or UV
light (Fragniere et al., 2011).

Protein products of type II SA genes may not be directly
involved in SA biosynthesis. But like SA biosynthetic enzymes
(type I), they can influence SA accumulation, possibly through
indirect ways, for instance, chemically modifying SA precursors,
affecting availability of SA precursors and/or products, influenc-
ing expression of type I SA genes, and/or changing activities of SA
biosynthetic enzymes. One example of the type II SA regulators
is SID1/EDS5, which was localized to the chloroplast membrane
and was proposed to transport SA from the chloroplast to the
cytoplasm in a cell (Nawrath et al., 2002; Serrano et al., 2013;
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Yamasaki et al., 2013). The lack of such a SA-transport activ-
ity in the eds5 mutants likely leads to SA accumulation in the
chloroplast that feedback-inhibits SA biosynthesis under defense
conditions. Indeed, like sid2 mutants, eds5 mutants accumulate
much reduced SA levels under defense conditions (Nawrath et al.,
2002; Ng et al., 2011). Thus these observations further support the
idea that the chloroplast is the major site for SA biosynthesis. Addi-
tional examples of type II SA regulators include Accelerated Cell
Death (ACD6), AGD2-LIKE DEFENSE 1 (ALD1), EDS1, and PHY-
TOALEXIN DEFICIENT 4 (PAD4) (Falk et al., 1999; Jirage et al.,
1999; Lu et al., 2003; Song et al., 2004). Loss of function mutations
in these SA regulators often lead to EDS and partially reduced SA
accumulation upon pathogen insults, compared to wild type (wt)
plants. However, the mechanisms by which many of the type II SA
regulators act have not been well understood.

Activation of SA signaling often leads to enhanced disease resis-
tance in plants. The type III SA genes act downstream of SA,
including SA receptors and signaling transducers. Non-expressor
of PR GENES 1 (NPR1) is an example of type III SA genes that
has been elegantly studied for its mechanism of action (Dong,
2004; Fu and Dong, 2013). The NPR1 protein has been shown
as a key component for SA signaling, overexpression of which
confers enhanced disease resistance to a range of pathogens in Ara-
bidopsis and some crop plants (Chern et al., 2001; Ekengren et al.,
2003; Fitzgerald et al., 2004; Lin et al., 2004; Makandar et al., 2006;
Malnoy et al., 2007; Yuan et al., 2007; Quilis et al., 2008; Sandhu
et al., 2009; Zhang et al., 2010). Two close homologs of NPR1,
NPR3 and NPR4 were recently shown to be SA receptors with
different binding affinities to SA (Fu et al., 2012; Fu and Dong,
2013). However, whether or not NPR1 itself is also an SA receptor
remains controversial (Wu et al., 2012; Yan and Dong, 2014).

Recent studies showed that two members of a phosphate trans-
porter family, the PHT4 family, were involved in SA regulation.
The PHT4 family has six members, five of which (PHT4;1-4;5) are
plastid-localized, and one (PHT4;6) is Golgi-localized (Roth et al.,
2004; Guo et al., 2008a; Pavon et al., 2008; Cubero et al., 2009).
Recombinant proteins of PHT4 family members were demon-
strated to have phosphate transport activities (Guo et al., 2008a;
Pavon et al., 2008; Cubero et al., 2009). However, only a loss of
function mutation in the PHT4;6 gene but not in other five genes
confers enhanced disease resistance to Pseudomonas syringae infec-
tion and high levels of SA besides reduced salt tolerance (Cubero
et al., 2009; Hassler et al., 2012). These results suggest that PHT4;6
is a negative regulator of SA-mediated defense and is also involved
in salt stress response.

The lack of defense and salt tolerance phenotypes in loss of
function mutants of other five PHT4 members is possibly due to
functional redundancy among these members. To further support
roles of the PHT4 family members in defense control, we iden-
tified a gain of function mutant of the PHT4;1 gene, pht4;1-1,
in a genetic screen for acd6-1 suppressors with a goal to uncover
new defense genes (Wang et al., 2011b). ACD6 encodes an ankyrin
repeat protein with transmembrane domain and has been shown
as a major determinant of fitness in Arabidopsis ecotypes (Lu et al.,
2003; Todesco et al., 2010, 2014). acd6-1 is a small gain-of-function
mutant that displays extreme dwarfism, constitutive defense, and
spontaneous cell death phenotypes (Rate et al., 1999; Lu et al.,

2003). The small size of acd6-1 is largely in an inverse correla-
tion with the defense level of the plant. This characteristics of
acd6-1 has proven useful in genetic screens to identify novel genes
critical for plant defense (Lu et al., 2009a) and in genetic analyses
to interrogate interactions between known defense genes (Song
et al., 2004; Ng et al., 2011; Wang et al., 2011a). The pht4;1-1
mutation suppressed high SA accumulation in acd6-1 and con-
ferred EDS to P. syringae infection in the absence of acd6-1, which
could be rescued by exogenous SA treatment (Wang et al., 2011b).
This mutation was caused by a T-DNA insertion that resulted
in expression of truncated PHT4;1 transcripts. Since increasing
PHT4;1 expression by introducing extra copies of PHT4;1 trans-
gene into wt also conferred EDS (Wang et al., 2011b), we conclude
that pht4;1-1 is a gain of function allele and both PHT4;1 and
PHT4;1-1 proteins act similarly as negative regulators of Ara-
bidopsis defense. Genetic analysis further indicated that pht4;1-1
possibly contributed to both SID2-dependent and – independent
pathways in regulating acd6-1-conferred dwarfism and cell death
phenotypes. In addition, PHT4;1 expression was shown to be regu-
lated by the circadian clock (Guo et al., 2008a; Wang et al., 2011b).
Thus we propose that PHT4;1 is a type II SA regulator, the function
of which implicates the circadian clock.

In this report, we further investigated the role of PHT4;1 in SA
regulation and the mechanism of circadian regulation of PHT4;1.
We examined genetic interactions between pht4;1-1 and several
type II mutants, ald1-1, eds5-3, and pad4-1, besides the type I
SA mutant sid2-1. The genetic analysis was done in the acd6-1
background because the change of acd6-1 size can be used as a
convenient visual readout of functional interactions between the
mutants. Our results show that pht4;1-1 acts additively with sid2-1,
ald1-1, eds5-3, and pad4-1 to regulate acd6-1 dwarfism, cell death,
and/or defense responses, suggesting that PHT4;1 has distinct
function from these other SA regulators. To elucidate the mecha-
nism by which PHT4;1 is circadian clock-regulated, we tested the
hypothesis that PHT4;1 is a direct target of the core component of
Arabidopsis circadian clock CIRCADIAN CLOCK ASSOCIATED
1 (CCA1). Our data support the hypothesis and underscore a
possible role of the circadian clock mediated by CCA1 in regulat-
ing the function of PHT4;1 in phosphate transport and/or innate
immunity control in Arabidopsis.

MATERIALS AND METHODS
PLANT MATERIALS
All Arabidopsis plants used in this report are in Columbia-0 back-
ground. Plants were grown in growth chambers with a 12 h
light/12 h dark cycle, light intensity at 200 μmol m−2 s−1,
60% humidity, and 22◦C. The triple mutant acd6-1pht4;1-1sid2-1
was previously described (Wang et al., 2011b). Additional triple
mutants were made by crossing acd6-1pht4;1-1 with acd6-1ald1-1,
acd6-1eds5-3, or acd6-1pad4-1 and selected for homozygotes by
polymerase chain reaction (PCR) with appropriate primers (Ng
et al., 2011).

RNA ANALYSIS
Whole plants of each genotype at 25-day old were harvested at
ZT1 (1 h after lights on) for RNA extraction. For circadian clock-
regulated gene expression, plants grown in 12 h L/12 h D were
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transferred to constant light (LL) and harvested starting at ZT1
at a 4 h interval for 48 h. RNA extraction and northern blot-
ting were performed as described (Ng et al., 2011). Radioactive
probes were made by PCR with antisense primers specific to indi-
vidual gene fragments in the presence of [32P] dCTP. Primers
used for making the PR1 probe are PR1_sense 5′ GTAGGT-
GCTCTTGTTCTTCCC 3′ and PR1_antisense 5′ CACATAATTC-
CCACGAGGATC 3′ and for making the PHT4;1 probe are
PHT4;1_sense 5′ ATGAACGCGAGAGCTCTTCTTTGCTC 3′ and
PHT4;1_antisense 5′ AATCGATTATCTTCTCTCCGGTTG 3′.

SA MEASUREMENT
SA was extracted from 25-day old plants and quantified by a
high-performance liquid chromatography (HPLC) instrument as
previously described (Ng et al., 2011; Wang et al., 2011a).

CELL DEATH STAINING
The sixth or seventh leaves of 25-day old plants were harvested
for trypan blue staining as described (Ng et al., 2011). Stained
leaves were washed with 50% ethanol and mounted on glass slides
with cover slips for photographing with a complementary metal–
oxide–semiconductor (CMOS) camera connected to a dissecting
microscope (Leica M205 FA, Leica Microsystems, Germany).

PURIFICATION OF CCA1-GST RECOMBINANT PROTEIN FROM
Escherichia coli
The pGEX-CCA1 construct containing CCA1-GST in the pGEX-
3X vector was a kind gift from Steve Kay at University of South
California. pGEX-CCA1 was transformed into the Escherichia
coli strain BL21(DE3)-pLysS to express the recombinant pro-
tein. A single colony was picked for overnight culture in 5 ml
LB media, which was subsequently added into 500 ml LB media
for further culture. At OD600 = 0.5, the culture was treated
with 0.4 mM isopropyl β-D-1-thiogalactopyranoside for 3 h fol-
lowed by harvesting by centrifugation at 8000 g for 10 min at
4◦C. The pellet was resuspended in 25 ml ice–cold 1 X PBS
containing 1% Triton X-100 and 2x protease inhibitor (Roche,
LOT# 14549800) and lysed by sonication on ice. The soni-
cation condition was 30 s on followed by 30 s off at 30%
amplitude for 20 cycles, using Virsonic Cell Disruptor (Model
16-850, The Virtis Co., New York). Cell lysates were collected
by centrifugation at 8000 g for 10 min at 4◦C. The super-
natant was loaded onto a 2 ml glutathione spin column (Pierce,
Product # 16107), incubated at 4◦C for 30 min on a rocking
platform. The column was washed with 10x bed volumes of
equilibration/wash buffer (125 mM Tris, 150 mM NaCl, pH 8.0).
The CCA1-GST recombinant proteins were eluted with elution
buffer (10 mM glutathione, 125 mM Tris, 150 mM NaCl, pH
8.0), according to manufacturer’s instruction (Pierce, Product #
16107). Purified CCA1-GST protein was verified on a 6% SDS-
PAGE gel and aliquoted into 30 μl per microcentrifuge tube for
storage at −80◦C.

ELECTROPHORETIC MOBILITY SHIFT ASSAYS
Three DNA fragments (probes) from the PHT4;1 promoter were
generated by PCR amplification, purified, and used for CCA1-
GST binding assays. Probe 1 (396 bp) covers from −348 to

+48 bp relative to the ATG start site of the PHT4;1 promoter
(primers 5′ TTGTTATTGGTATTGCCGTATTATTGTA 3′, and
5′ GTAGAGAGAGTGAATATTTGAAGA 3′). Probe 2 (118 bp)
covers from −348 to −230 bp relative to the ATG start site
of the PHT4;1 promoter (primers 5′ TTGTTATTGGTATTGC-
CGTATTATTGTA 3′, and 5′ GTTAGCTTACGAGCATAAATTGC
3′). Probe 3 (117 bp) covers from −69 to +48 bp relative to
the ATG start site of the PHT4;1 promoter (primers 5′ AAT-
CAATTCCTCTCTCTTAAAACAAA 3′, and 5′ GTAGAGAGAGT-
GAATATTTGAAGA 3′). The negative probe PHT4;1-NC (without
CCA1 binding site) was generated by PCR amplification of the
region from +134 to +668 of the PHT4;1 gene (primers 5′ CTAC-
CCGCGAAATAGGTCCAGTG 3′, and 5′ ATCAACAAACCACT-
GATTCAACTACACTT 3′). Probes (60 ng each) were end-labeled
with γ-[32P]-dATP, using T4 polynucleotide kinase (Thermo Sci-
entific, product # EK0031) in the following reaction: 2 pmol DNA
fragment, 2 μl 10x forward reaction buffer, 4 pmol γ-[32P]-dATP,
1 μl T4 PNK, in a total volume of 20 μl. The reaction was carried
out at 37◦C for 30 min, then added 1 μl of 0.5 M EDTA (pH
8.0) and incubated at 75◦C for 10 min to terminate the reaction.
Labeled DNA probes were purified by using a PCR purification kit
(Qiagen, cat#28104) and eluted with 30 μl sterile water. Binding
reactions were carried out as following: 2 μl 5X electrophoretic
mobility shift assays (EMSA) buffer [125 mM HEPES-KOH (pH
7.5), 12.5 mM DTT, 5 mM PMSF, 250 mM KCl], 2 μl 50% glyc-
erol, 1 μl 1 μg/ul poly-dIdC, 30–90 ng CCA1-GST recombinant
protein, 1 μl labeled probe, in a total volume of 10 μl. For a com-
petition assay, excessive amount of a corresponding cold probe or
the negative probe PHT4;1-NC at the indicated concentrations was
added to a binding reaction. Both binding and competition reac-
tions were incubated on ice for 20 min before being immediately
loaded onto a 6% non-denaturing polyacrylamide gel, prepared
in 0.5X TBE buffer [40 mM Tris-Cl (pH 8.3), 45 mM boric acid,
1 mM EDTA]. Electrophoresis was conducted at 100 V for ∼1 h
at room temperature to separate free probes from DNA-protein
complexes. The gels were dried on a gel dryer (Hoefer, model
SE1160) at 80◦C for 1 h followed by exposure to X-ray film for
2–4 days.

RESULTS
PHT4;1 INTERACTS ADDITIVELY WITH MULTIPLE SA REGULATORS TO
AFFECT ACD6-1 DWARFISM
Our previous data suggest that the PHT4;1 gene acts upstream
of SA to regulate SA accumulation (Wang et al., 2011b). To fur-
ther investigate the role of PHT4;1 in SA regulation, we sought to
examine genetic interactions between the gain of function mutant
pht4;1-1 and mutants disrupting type II SA genes, ADL1, EDS5,
and PAD4 (Jirage et al., 1999; Nawrath et al., 2002; Song et al.,
2004). We crossed pht4;1-1 to these mutants in the acd6-1 back-
ground because the small size of acd6-1 is sensitized to the change
of defense levels and thus acd6-1 can be conveniently used to
dissect the functional relationship among SA genes (Song et al.,
2004; Ng et al., 2011). A previous similar experiment showed
that pht4;1-1 acts additively with the type I SA mutant sid2-
1 in affecting acd6-1 dwarfism (Wang et al., 2011b). We found
here that similar to acd6-1pht4;1-1sid2-1, the triple mutants acd6-
1pht4;1-1ald1-1, acd6-1pht4;1-1eds5-3, and acd6-1pht4;1-1pad4-1
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were significantly larger than their corresponding double mutants
(Figures 1A,B), suggesting that PHT4;1 acts additively with
multiple SA regulators in influencing acd6-1 dwarfism.

PHT4;1 INTERACTS ADDITIVELY WITH MULTIPLE SA REGULATORS TO
AFFECT DEFENSE PHENOTYPES AND CELL DEATH IN ACD6-1
Since previous studies showed that the dwarfism of acd6-1 is
grossly in reverse correlation with the defense level of the plant
(Song et al., 2004; Lu et al., 2009a; Ng et al., 2011; Wang et al.,
2011a), the increased size of the triple mutants shown in Figure 1
suggests reduced defense of the plants. To further test this, we
measured SA levels and expression of the defense marker gene
PR1 in these plants. Indeed we found that acd6-1pht4;1-1ald1-1
and acd6-1pht4;1-1eds5-3 accumulated near wt-level of SA and
PR1 transcripts (Figures 2A,B). acd6-1pht4;1-1pad4-1, on the
other hand, had much reduced SA level than the two parental
double mutants but this level was still significantly higher than
that seen in wt. Expression of PR1 was only slightly reduced in
acd6-1pht4;1-1pad4-1, compared with the corresponding double

FIGURE 1 | pht4;1-1 acts additively with SA mutants to suppress

acd6-1 dwarfism. (A) Pictures of 25-day old plants. The single mutants
pht4;1-1, ald1-1, eds5-3, pad4-1, and sid2-1 are morphologically similar to
Col-0 (not shown). The scale bar represents 1 cm and applies to all panels.
(B) Plant size measurement. Plants shown in (A) were measured for their
rosette diameters. Statistical analysis was performed with Student’s t -test
(StatView 5.0.1). Different letters indicate significant difference among the
samples (P < 0.05; n = 10).

FIGURE 2 | pht4;1-1 acts additively with SA mutants to suppress SA

accumulation and PR1 expression in acd6-1. Twenty five-day old plants
were harvested for SA extraction followed by HPLC analysis and RNA
preparation followed by northern blotting. (A) SA quantitation. Statistical
analysis was performed with Student’s t -test (StatView 5.0.1). Different
letters indicate significant difference among the samples (P < 0.05; n = 3).
(B) PR1 expression. rRNA was shown as a loading control.

mutants (Figure 2B). These results indicate that PHT4;1 has
distinct function from these type II SA genes in regulating SA
accumulation and PR1 expression. Consistent with a major role
of SID2 in SA biosynthesis (Wildermuth et al., 2001; Ng et al.,
2011), we found that SA accumulation and PR1 expression in
acd6-1pht4;1-1sid2-1 were comparable to those of acd6-1sid2-1
and wt. We also noticed that the near-wt level of SA in some
triple mutants (acd6-1pht4;1-1ald1-1, acd6-1pht4;1-1eds5-3, and
acd6-1pht4;1-1sid2-1) was not correlated with a complete suppres-
sion of acd6-1 dwarfism, suggesting there are additional pathways
independent of SA contributing to plant size regulation in acd6-1.

Besides dwarfism and enhanced defense phenotypes, the acd6-1
mutant displays severe cell death, even in the absence of pathogen
challenge. Suppression of acd6-1-conferred dwarfism and defense
phenotypes is usually associated with reduced cell death (Song
et al., 2004; Lu et al., 2009a; Ng et al., 2011; Wang et al., 2011a).
Consistent with this previous observation, we found that triple
mutants acd6-1pht4;1-1ald1-1, acd6-1pht4;1-1eds5-3, and acd6-
1pht4;1-1sid2-1 had substantially reduced but not abolished cell
death on their leaves when the plants were stained with trypan blue
to visualize cell death (Figure 3). Since these mutants accumu-
lated wt-level SA, like plant-size regulation, cell death formation
in these plants could be influenced by additional SA-independent
pathway(s). Interestingly acd6-1pht4;1-1pad4-1 displayed similar
cell death as acd6-1pht4;1-1. This could be due to the relatively
high level of SA presented in the triple mutant. Alternatively
PHT4;1 and PAD4 could act in the same pathway to affect cell
death of acd6-1.

CIRCADIAN EXPRESSION OF PHT4;1 IS CCA1-DEPENDENT
Expression of PHT4;1 was previously shown to be regulated
by the circadian clock (Guo et al., 2008a; Wang et al., 2011b).
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Such a circadian expression pattern persisted in pht4;1-1 and
acd6-1 mutants and in the presence of P. syringae challenge
(Wang et al., 2011b). Consistent with being regulated by the cir-
cadian clock, the PHT4;1 promoter has two cis-elements (the
CBS motifs), starting at −17 and −281 bp positions, respec-
tively, that are putative binding sites for the core clock component
CCA1 (Alabadi et al., 2002; Green and Tobin, 2002; Michael
and McClung, 2002). Thus we hypothesized that CCA1 directly
targets PHT4;1 promoter for expression regulation. To test this
hypothesis, we first examined PHT4;1 expression in CCA1 overex-
pressing (CCA1ox) plants, which display arrhythmic clock activity
in both constant light (LL) and light/dark (LD) conditions (Wang
and Tobin, 1998; Zhang et al., 2013). We found that when the
plants were transferred from LD to LL, PHT4;1 demonstrated
a circadian expression pattern in wt Col-0. However, CCA1ox
disrupted this expression pattern of PHT4;1 (Figure 4). This
result indicates a role of CCA1 in controlling PHT4;1 expres-
sion but could not pinpoint whether such an effect is direct or
indirect.

To further test if CCA1 directly binds to the PHT4;1 promoter,
we conducted EMSA with CCA1-GST recombinant protein and
PHT4;1 promoter fragments. The probe 1 is a PHT4;1 fragment
containing two CBS motifs (Figure 5A). We found that probe 1
was bound by recombinant CCA1-GST protein, resulting in slower
moving bands containing protein-DNA complexes (Figure 5B,
lane 2–4). Unlabeled probe 1 could compete with isotope-labeled
probe 1 for CCA1-GST binding in a dose-dependent manner
(Figure 5B, lane 5–7). However, excess amount of a negative frag-
ment (PHT4;1-negative) from PHT4;1 without a CBS motif did
not compete with isotope-labeled probe 1 in CCA1-GST binding
(Figure 5B, lane 8–10). These results suggest that the binding
between probe 1 and CCA1-GST protein is specific. We also
noticed that there were two shifted bands in most lanes from
probe 1 and CCA1-GST binding reactions (Figure 5B, lane 3–
5 and 8–10). We speculated that both CBS motifs in probe 1 can
be bound by CCA1-GST when the protein is present in abun-
dance. To test this, we incubated two shorter PHT4;1 promoter
fragments (probe 2 and probe 3), containing only one CBS motif
each, with CCA1-GST (Figure 5C). Indeed, both probe 2 and 3
were bound by CCA1-GST, forming a single DNA-protein com-
plex that separated from the free probes. Thus these in vitro
binding assays support our hypothesis that PHT4;1 is a direct
target of CCA1.

DISCUSSION
In this study, we took biochemical, genetic, and molecular
approaches to further investigate the function of the phosphate
transporter gene PHT4;1. Our results show that PHT4;1 genet-
ically interacts with several SA genes, including SID2, ALD1,
EDS5, and PAD4, in regulating defense responses. In addition,
we show that circadian expression of PHT4;1 is dependent on
the circadian clock protein CCA1, which could directly bind
to the PHT4;1 promoter. These results corroborate the role
of PHT4;1 in defense regulation and also suggest that the cir-
cadian clock gene CCA1 regulates phosphate transport and/or
defense responses, possibly through influencing PHT4;1-mediated
pathway.

Our previous study indicated that PHT4;1 is a negative defense
regulator acting upstream of SA (Wang et al., 2011b). Genetic anal-
ysis conducted here further showed that pht4;1-1 acts additively
with SA mutants ald1-1, eds5-3, and pad4-1 to suppress high levels
of SA accumulation and PR1 expression in acd6-1 (Figure 2). Thus
PHT4;1 likely functions in a separate pathway from ALD1, EDS5,
and PAD4 in regulating these defense outputs. Consistent with
this notion, expression of ACD6, ALD1, and PAD4 are inducible
by SA treatment, suggesting that these genes are involved in signal
amplification loops with SA (Nawrath et al., 2002; Lu et al., 2003;
Song et al., 2004). However, expression of PHT4;1 is not affected
by SA treatment (data not shown), suggesting that unlike ACD6,
ALD1, and PAD4, PHT4;1 is not part of SA-signal amplification
loop. Together these results further support a previous notion
that there are multiple pathways affecting SA-mediated defense in
Arabidopsis (Song et al., 2004; Ng et al., 2011; Wang et al., 2011a).
Interestingly although some triple mutants show wt-like levels of
SA and PR1 expression, none of these triple mutants revert to wt-
like phenotypes in terms of plant size and cell death (Figures 1
and 3). These results suggest that the regulation of plant size
and cell death can be uncoupled from that of some defense phe-
notypes in acd6-1. Additional SA-independent pathway(s) could
contribute to the regulation of plant size and cell death formation
in acd6-1.

While the gain of function mutant pht4;1-1 displayed compro-
mised defense phenotypes, the loss of function alleles of PHT4;1
did not show altered defense responses (Wang et al., 2011b). This
can be explained by possible functional redundancy among some
PHT4 family members. Indeed, PHT4;1 and four other members
in the family share high levels of homology and are all plastid-
localized. Functional redundancy among these members could
prevent manifestation of defense phenotypes in single loss of func-
tion mutants. So far only one disrupted member, PHT4;2, showed
small effects on plant growth (Irigoyen et al., 2011). Besides
pht4;1 loss of function mutants, available single loss of function
mutants of PHT4;4 and PHT4;5 are indistinguishable from wt in
morphology and defense responses (data not shown).

While five plastid-localized PHT4 family members could share
redundant function, the sixth member of the family, PHT4;6,
might be functionally divergent from other members in the family.
PHT4.6 is localized to the Golgi and was shown to have Pi trans-
port activity in the Golgi (Guo et al., 2008a; Cubero et al., 2009).
A single loss of function mutation in PHT4;6 results in enhanced
disease resistance to P. syringae infection, dwarfism, and reduced
salt tolerance (Cubero et al., 2009; Hassler et al., 2012). The pht4;6
mutant also accumulates modestly higher levels of SA than wt.
Thus like PHT4;1, PHT4;6 is also a negative regulator of plant
defense.

The involvement of two members of the PHT4 family in
defense suggests a possibility that phosphate transport is criti-
cal for host-pathogen interactions. Phosphorus (P) is essential for
plant growth and development. However, plants do not produce P
but take up inorganic phosphate ion (Pi) from the soil to the root,
reallocate Pi to different tissue and cell types, and redistribute
Pi to different organelles within a cell in order to fulfill the Pi
requirement for cellular functions. These processes are mediated
by phosphate transporters to maintain phosphate homeostasis and
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FIGURE 3 | pht4;1-1 acts additively with SA mutants to suppress cell

death in acd6-1. The sixth or seventh leaves of 25-day old plants were
harvested for trypan blue staining as described (Ng et al., 2011). Stained
leaves were photographed with a CMOS camera connected to a
dissecting microscope (Leica M205 FA, Leica Microsystems, Germany).

Cell death is shown in the dark stained spots or patches on a leaf
(arrows). At least four leaves of each genotype were stained and
examined for cell death. No cell death was detected in ald1-1, eds5-3,
pad4-1, sid2-1, and pht4;1-1 (data not shown). The scale bar represents
0.5 mm and applies to all panels.

FIGURE 4 | Circadian expression of PHT4;1 is CCA1-dependent.

Twenty five-day-old Col-0 and CCA1ox plants grown in a chamber
with a 12 h light/12 h dark cycle and 22◦C were transferred to
LL at 22◦C. Starting at ZT1, plants were harvested at every 4 h
for 48 h for RNA extraction followed by northern blotting. White
boxes indicate subjective light periods and gray boxes indicate
subjective dark periods in LL. rRNA was shown as a loading
control.

the normal function of cells. At least five phosphate transporter
families, PHT1, PHT2, PHT3, PHT4, and pPT, have been reported
in Arabidopsis (Poirier and Bucher, 2002; Guo et al., 2008b).

Among these phosphate transporter families, only mutations in
some PHT1 genes and one PHT2 gene resulted in alterations
in Pi concentration in planta (Versaw and Harrison, 2002; Shin
et al., 2004; Gonzalez et al., 2005). The PHT1 genes encode plasma
membrane-localized high affinity Pi/H+ symporters and are
expressed abundantly in the root (Karthikeyan et al., 2002; Mudge
et al., 2002). The PHT2 gene encodes a chloroplast-localized phos-
phate transporter and is highly expressed in the green tissue
(Versaw and Harrison, 2002). Based on these tissue- and cell-
specific expression patterns, PHT1 was proposed to acquire Pi
from the root whereas PHT2 was proposed to influence the real-
location of phosphate within different tissues of a plant. PHT4
and other phosphate transporter families have not been reported
to have a major effect on phosphate concentration at the whole
plant level. Except two members of the PHT4 family (PHT4;1
and PHT4;6), none of the other phosphate transporter genes have
been demonstrated a role in defense regulation. Therefore it is cur-
rently unknown whether perturbation of phosphate concentration
in planta could result in altered defense responses. However, there
is evidence to support a connection between altered phosphate
signaling and defense control. One example is the SIZ1 gene
encoding a SUMO E3 ligase that targets PHR1, a MYB tran-
scriptional activator critical for phosphate response. A siz1 mutant
demonstrated reduced phosphate response and enhanced disease
resistance (Rubio et al., 2001; Miura et al., 2005; Lee et al., 2007;
Jin et al., 2008).
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FIGURE 5 | CCA1 binds to the PHT4;1 promoter in EMSA. (A) Positions
of the PHT4;1 promoter fragments (probes) and the CBS motifs (asterisks).
Positions are relative to the translation start site (ATG). (B) EMSA with
probe 1. (C) EMSA with probe 2 and probe 3. The probes were end-labeled
with γ-32P and incubated with purified recombinant CCA1-GST protein.
For competition assays in (B), unlabeled fragments (probe 1 or PHT4;1-
negative) at the indicated folds more than the input (isotope-labeled probe
1) were added to the binding reactions. The reactions were resolved on 6%
native PAGE gels followed by gel drying and exposure to X-ray film.

Since PHT4;1 is not known to perturb phosphate concentration
at the whole plant level, the defense phenotypes observed in the
pht4;1-1 mutant could be caused by altered PHT4;1 transport
activity at the subcellular level. PHT4;1 is mainly expressed in the
shoot tissue (Guo et al., 2008a,b). Pavon et al. (2008) showed that
the PHT4;1 protein was localized to the thylakoid member of the
chloroplast and thus proposed that PHT4;1 transports Pi across
thylakoid lumen and stroma in the chloroplast, using its Na+
and/or H+- dependent phosphate transporter activity (Guo et al.,
2008b). In another study, Roth et al. (2004) localized PHT4;1 to the
inner membrane of the plastid. Although the precise localization
of PHT4;1 remains to be determined, these studies pointed to the
connection of PHT4;1 with the chloroplast, the central organelle
for photosynthesis and many secondary and primary metabolisms,
including SA biosynthesis. It is conceivable that Pi transported by

PHT4;1 could directly or indirectly affect SA biosynthetic pathways
or proteins/processes that affect SA accumulation. Such function
of PHT4;1 could be shared by other four plastid-localized PHT4
family members (PHT4;2-4;5). However, Golgi-localized PHT4;6
may influence SA accumulation and SA-mediated defense through
a different mechanism from that used by PHT4;1.

The observation of circadian clock regulated PHT4;1 expres-
sion has prompted us to elucidate the role of the circadian clock
in defense control (Guo et al., 2008a; Wang et al., 2011b; Zhang
et al., 2013). The circadian clock is an internal time measur-
ing machinery important for development and fitness of plants
(Green et al., 2002; Michael et al., 2003; Dodd et al., 2005; Ni et al.,
2009; Graf et al., 2010; Dong et al., 2011). Increasing evidence
supports a role of the circadian clock in defense regulation. First,
like PHT4;1, expression of some defense genes were reported to
be under the circadian clock control (Wang et al., 2001, 2011b;
Sauerbrunn and Schlaich, 2004; Weyman et al., 2006; Roden and
Ingle, 2009). Second, wt Arabidopsis shows temporal variations in
a day in its susceptibility to P. syringae infection and such varia-
tions can be disrupted by overexpression of CCA1 (Bhardwaj et al.,
2011). Third, misexpression of several core clock genes, includ-
ing CCA1, its close homolog LATE ELONGATED HYPOCOTYL
(LHY ) (Alabadi et al., 2002; Mizoguchi et al., 2002; Lu et al.,
2009b), and TIME FOR COFFEE (Hall et al., 2003; Ding et al.,
2007), leads to compromised resistance to the bacterial pathogen P.
syringae and/or to the oomycete pathogen Hyaloperonospora ara-
bidopsidis (Hpa) (Bhardwaj et al., 2011; Wang et al., 2011c; Shin
et al., 2012; Zhang et al., 2013). Data from our study further indi-
cate that defense activation can reciprocally regulate clock activity,
suggesting crosstalk between the circadian clock and plant innate
immunity (Zhang et al., 2013).

Both experimental studies and in silico analysis of circadian
clock-regulated gene expression indicate that PHT4;1 is the only
member in the PHT4 family that demonstrates a robust circadian
expression pattern (Mockler et al., 2007; Guo et al., 2008a, and data
not shown). We presented here evidence to further demonstrate
that PHT4;1 could be a direct transcriptional target of the circa-
dian clock protein CCA1 (Figures 4 and 5). Interestingly, while we
show here that PHT4;1 is an SA regulator that acts independently
of several known SA genes, our previous study indicated that the
clock genes CCA1 and LHY acted in a SA-independent manner
in defense regulation (Zhang et al., 2013). The cca1-1lhy-20 dou-
ble mutations suppressed acd6-1-conferred constitutive defense
but not its dwarfism and high SA accumulation. Such a discrep-
ancy in terms of SA regulation by PHT4;1 and CCA1 suggest
that CCA1-regulation of PHT4;1 might be important for phos-
phate transport activity of PHT4;1 but may not be directly related
to the role of PHT4;1 in SA regulation. It is also possible that
there are additional factor(s) affecting circadian expression of the
PHT4;1 gene and/or phosphate transport activity of the PHT4;1
protein. Alternatively, CCA1 and its close homolog LHY could
regulate expression of multiple defense genes, including both pos-
itive and negative SA regulators. Thus in the CCA1 and LHY loss
of function background, the effect on SA accumulation could
be negated by the changes of these two opposing groups of SA
genes. Additional biochemical, genetic, and molecular studies are
required to further elucidate the biological relevance of CCA1
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binding on the PHT4;1 promoter in terms of phosphate transport
and defense regulation.
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