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Ralstonia solanacearum is one of the most devastating bacterial plant pathogens due to its
large host range, worldwide geographic distribution and persistence in fields.This soilborne
pathogen is the causal agent of bacterial wilt and it can infect major agricultural crops
thereby reducing significantly their yield.To favor infection, the bacterium delivers, through
the type three secretion system, effectors that manipulate plant immunity. In this review,
the relative efficiency of control strategies and existing resistances to R. solanacearum will
be presented. Then, the genetic and molecular insights gained from the study of bacterial
wilt in model plants will be described. Finally, I will explore how the knowledge gathered
from unraveling avirulence and virulence mechanisms of R. solanacearum effectors could
help to develop more durable resistances in crop plants toward this destructive pathogen.
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INTRODUCTION
Ralstonia solanacearum, the causal agent of bacterial wilt, is one
of the most devastating plant pathogenic bacteria (Mansfield
et al., 2012) with a large host range encompassing more than
200 plant species which include major agricultural crops such as
tomato, potato and banana (Hayward, 1991; Elphinstone, 2005).
R. solanacearum is a soil-borne bacterium that enters plant roots,
invades xylem vessels and spreads rapidly to aerial parts of the plant
through the vascular system where its high level of multiplication
leads to wilting symptoms and, ultimately, plant death (Genin,
2010). In addition to its lethality, the ability of R. solanacearum to
survive in soils for many years and to form latent infections within
indigenous weeds contributes to the difficult eradication of the
bacterium (Hayward, 1991; Wenneker et al., 1999). The pathogen
is found worldwide, primarily in tropical and subtropical regions
(Hayward, 1991) but also in Europe and North America where
cold-tolerant strains were introduced in the 1990s (Janse et al.,
2004; Swanson et al., 2005). The dissemination of R. solanacearum
is a threat to crops and the pathogen is considered a quarantine
bacterium.

Ralstonia solanacearum strains present an extensive genetic
diversity and are divided in four phylotypes corresponding roughly
to the strains’ geographic origin: Asia (phylotype I), the Americas
(II), Africa (III), and Indonesia (IV). Phylotype II has two sub-
clusters: IIA and IIB (Fegan and Prior, 2005) and only strains
belonging to phylotype IIB are responsible for bacterial wilt of
potato in cold and temperate regions (Janse et al., 2004). Phy-
lotypes are not related with host preference as strains from all
phylotypes are able to cause disease on potato, tomato, pepper,
and eggplant (Cellier and Prior, 2010; Lebeau et al., 2011).

Among the virulence determinants of R. solanacearum, the type
three secretion system (TTSS), a molecular syringe whose struc-
tural and regulatory elements are encoded by hrp (hypersensitive
response and pathogenicity) genes, is essential for pathogenicity

(Vasse et al., 2000). TTSS injects effector proteins into plant cells
to favor the bacterial infection by subverting and exploiting the
host signaling pathways (Poueymiro and Genin, 2009). Effectors
could promote nutrient leakage but mostly they are predicted to
manipulate plant defenses (Goel et al., 2008; Deslandes and Rivas,
2012).

There are two levels in plant immunity (Jones and Dangl,
2006). The first one uses cell surface pattern recognition recep-
tors (PRRs) to detect pathogen-associated molecular patterns
(PAMPs) and initiate PAMP-triggered immunity (PTI). The sec-
ond involves nucleotide-binding leucine-rich repeat (NB-LRR)
proteins, encoded by resistance (R) genes, which sense pathogen
effectors and elicit a potent immune response called effector-
triggered immunity (ETI). ETI is faster, longer and stronger than
PTI and usually leads to a local cell death, the hypersensitive
response (HR), which stops the spread of the pathogen (Jones and
Dangl, 2006). Some effectors that enable the pathogen to overcome
PTI are recognized by R proteins and the effector is thus termed
an avirulence (Avr) protein (Jones and Dangl, 2006). Disease (sus-
ceptibility) results when one or both R/Avr partners are absent.
Conversely, resistance ensues when R and cognate Avr effector are
both present. The activation of plant defenses by an R protein
is termed qualitative resistance and provides a complete disease
resistant phenotype. An incomplete resistance (tolerance), leading
to the reduction rather than the eradication of the disease, is called
quantitative (Young, 1996). Quantitative disease resistance (QDR)
molecular characterization is still in its infancy. R genes (Roux
et al., 2010, 2014; Van der Linden et al., 2013) can contribute to
QDR as well as components such as kinases or transporters (St
Clair, 2010; Roux et al., 2014).

Continuous increase in food production is needed to face the
world’s population growth. One way to achieve this goal is by sus-
tainably reducing crop losses to pathogens like R. solanacearum.
This review provides a summary on current control strategies
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of bacterial wilt and highlights the difficulties of breeding for
resistance to R. solanacearum. In addition, knowledge gained from
studies in model plants on resistance to bacterial wilt will be dis-
cussed. Finally, the use of R. solanacearum effectors to decipher
the molecular mechanisms of plant immunity and identify new
sources of resistance will be explored.

STRATEGIES FOR CONTROL OF R. solanacearum
Integrated strategies for control of R. solanacearum are complex
because the bacterium is able to infect crops as a soil-borne, water-
borne, or seed/tuber-borne organism. Therefore, to avoid the
dissemination of R. solanacearum, it is recommended to plant
healthy seeds in pathogen free soil combined with irrigation water
known to be free of R. solanacearum (French, 1994). In infested
soils, crop rotation (2–5 years), control of weed hosts and sur-
vey of water for irrigation can reduce the bacterial load (Lopez
and Biosca, 2005). Chemical control, in addition to being poten-
tially harmful to the environment, was not proved to be efficient
to eradicate R. solanacearum (Saddler, 2005; Denny, 2006). This
can be explained by the bacterium localization in the deeper soil
layers or sheltered in xylem vessels of infected plants and weeds
(Wenneker et al., 1999). In addition, a soil dependent effect has
been observed and therefore soil disinfection is not universally
applicable (Saddler, 2005). An alternative control strategy was to
use biological control agent such as antagonistic bacteria or aviru-
lent mutants of R. solanacearum but the promising results obtained
under controlled conditions were not confirmed in the field (Sad-
dler, 2005). The most extensively studied avirulent mutants of R.
solanacearum are hrp− mutant strains that no longer possess a
functional TTSS (Frey et al., 1994). hrp− mutant strains are still
able to multiply, and, likely control bacterial wilt through com-
petition with wild type strains for space and nutrients. Assays of
protection by hrp− mutants have been conducted on tomato and
potato plants but, thus far, they did not help to reduce bacterial
wilt in fields (Saddler, 2005; Denny, 2006). In the absence of effi-
cient strategies to eradicate R. solanacearum from infected soils
and water, the use of resistant cultivars appears to be the best
disease control strategy.

BREEDING FOR RESISTANCE TO R. solanacearum
Resistance breeding to R. solanacearum in solanaceous crops
appears to be regional or linked to climatic conditions (Hayward,
1991) and this limited success is due to all the constraints resis-
tant cultivars must outsmart. First, the breeding must combine
durable resistance with desirable agronomic traits. Second, resis-
tant cultivars must be able to face the diversity of agro-ecological
zones where the bacteria proliferates and the high genetic variabil-
ity of R. solanacearum strains. Third, breeding for highly resistant
cultivars must be prioritized to avoid further R. solanacearum dis-
semination due to tolerant plants that shelter virulent bacteria
without showing disease symptoms. Finally, the available sources
of resistance were found to be polygenic and, despite the identi-
fication of QTLs (quantitative trait loci) controlling resistance to
bacterial wilt in tomato (Mangin et al., 1999; Wang et al., 2000,
2013; Carmeille et al., 2006), tobacco (Qian et al., 2013) and egg-
plant (Lebeau et al., 2013), the development of resistant crops is

impeded by the difficulty in transferring into cultivars a high num-
ber of genes that, in addition, can be linked to undesirable traits
(Denny, 2006).

In potato, high level resistance to bacterial wilt has been iden-
tified in Solanum phureja species (Sequeira and Rowe, 1969),
however, the resistance was unstable across locations and its break-
down was triggered by high temperature and decrease in light
intensity (French and De Lindo, 1982). In tomato, the polygenic
resistance to bacterial wilt in the resistant cultivar Hawaii 7996
(Grimault et al., 1995) was suggested to be strain specific (Wang
et al., 2000) and, more recently, it was hypothesized that QTLs in
Hawaii 7996 may deploy a phylotype-specific resistance (Carmeille
et al., 2006). These results exemplify the difficulty of obtaining a
worldwide resistance to R. solanacearum.

GENETIC BASIS OF RESISTANCES IN MODEL PLANTS
To date, studies on resistance to bacterial wilt in model plants were
mainly conducted in Arabidopsis thaliana and Medicago truncat-
ula. As R. solanacearum infects a large number of leguminous
plants, such as peanut and common bean, a model pathosystem
for the study of R. solanacearum-legume interactions was devel-
oped with M. truncatula (Vailleau et al., 2007). A genetic analysis
of recombinant inbred lines identify three QTLs involved in dis-
ease resistance and fine mapping showed that the major QTL
include a cluster of seven putative R genes (Vailleau et al., 2007;
Ben et al., 2013). Future functional characterization is required to
depict the molecular mechanisms underlying M. truncatula resis-
tance to bacterial wilt and to appraise their potential application
in breeding.

Several R. solanacearum strains are able to cause the wilting of
A. thaliana plants (Deslandes et al., 1998) and insightful knowl-
edge on the molecular basis of resistance to bacterial wilt was
uncovered in this pathosystem. In A. thaliana accession Col-0,
a polygenic mechanism encompassing three QTLs governs resis-
tance to R. solanacearum strain 14.25 (Godiard et al., 2003). In
these loci, the LRR receptor-like kinase ERECTA involved in devel-
opment of aerial organs was identified thus suggesting a cross-talk
between resistance and developmental pathways (Godiard et al.,
2003). Other studies established that resistance in A. thaliana to R.
solanacearum could also be monogenic and identified dominant
and recessive loci (Deslandes et al., 1998; Ho and Yang, 1999).
Further analysis determined that the recessive RRS1-R (Resistance
to Ralstonia Solanacearum 1) gene encodes an atypical R protein
harboring a C-terminal WRKY DNA-binding domain (Deslandes
et al., 2002) hypothesized to act as a negative transcriptional regu-
lator of plant defenses (Noutoshi et al., 2005). It’s the recognition
by RRS1-R of the bacterial effector PopP2 that triggers resistance
in A. thaliana accession Nd-1 inoculated with R. solanacearum
GMI1000 strain (Deslandes et al., 2003). RRS1-R physically asso-
ciates with another R protein, RPS4 (Resistant to Pseudomonas
Syringae 4), to cooperatively trigger immunity (Narusaka et al.,
2009; Williams et al., 2014). The transfer of the RRS1/RPS4 pair
of R genes from A. thaliana into tomato was able to confer
immunity to R. solanacearum (Narusaka et al., 2013). This study
demonstrates that interfamily transfer of R genes can provide a
new strategy to develop pathogen-resistant crops (Narusaka et al.,
2013). Surprisingly, PopP2 perception by RRS1 can also lead to
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A. thaliana tolerance to bacterial wilt (Van der Linden et al., 2013).
In the accession Kil-0, after inoculation with R. solanacearum
strain BCCF402, the plants showed no wilting symptoms despite
high bacterial numbers (Van der Linden et al., 2013). This work is
one of few examples describing that tolerance is not always a poly-
genic trait and that an R gene can be common for both A. thaliana
resistance and tolerance (Roux et al., 2010; Van der Linden et al.,
2013). Van der Linden and co-workers pointed out the risk of R.
solanacearum persistence in the field after deployment of RRS1 in
transgenic crops. Thus, despite a promising interfamily transfer
of RRS1/RPS4 in crops (Narusaka et al., 2013), the use of RRS1
as a source of resistance to bacterial wilt may not be a relevant
choice.

EFFECTOR ASSISTED IDENTIFICATION OF RESISTANCES TO
R. solanacearum
Unraveling the molecular functions of effectors is insightful
for a mechanistic understanding of the processes underlying
plant immune responses (Deslandes and Rivas, 2012). Despite
the fact that R. solanacearum is one of the most destructive
phytopathogens, few of its effectors have been functionally char-
acterized and the nature of their plant targets remains largely
unknown [for reviews see (Peeters et al., 2013b; Deslandes and
Genin, 2014)]. Some R. solanacearum effectors have been shown
to trigger an HR-like response in petunia (Arlat et al., 1994), A.
thaliana (Solé et al., 2012; Williams et al., 2014), tobacco (Arlat
et al., 1994; Poueymiro et al., 2009; Solé et al., 2012) and egg-
plant (Nahar et al., 2014). Besides, some R. solanacearum effectors
have been found to be under a strong diversifying positive selec-
tion, to contribute to the pathogenicity of the bacteria and to
dampen plant defense responses (Peeters et al., 2013b; Deslandes
and Genin, 2014). Collectively these data demonstrate that fur-
ther functional characterization of R. solanacearum effectors will
help to identify pivotal components of plant immunity that are
manipulated by, or able to perceive, effectors. In order to gather
useful knowledge to transfer in breeding programs, future work on
characterizing molecular interactions between effectors and plant
components should take place in agronomical relevant plants. For
example, research could be conducted on tomato and potato, two
major crops, whose genome availability should facilitate functional
studies.

The availability of genome sequences from eleven R.
solanacearum strains, belonging to the four phylotypes, allowed
to establish the core effector repertoire of the bacterium (Peeters
et al., 2013a). Core effectors presumably represent ancestral effec-
tors and can be considered as crucial for the interaction between
R. solanacearum and its hosts (Peeters et al., 2013a). “Effec-
toromics” refers to a new high-throughput approach that uses
effectors for probing plant germplasm to detect R genes and
to improve their deployment in the field (Vleeshouwers et al.,
2011; Vleeshouwers and Oliver, 2014). This useful technique
could be applied to identify R. solanacearum effectors with avir-
ulent function and hasten the discovery of their cognate R genes.
Besides, by performing plant germplasm screening with core effec-
tors, the chances to identify an R gene displaying a broad and
durable spectrum of resistance should be increased. Further-
more, effector-assisted breeding also allows us to determine the

potential of a new R gene for durable resistance after deploy-
ment in the field by checking its expanded recognition specificity
toward various effector alleles found in the pathogen popula-
tion (Vleeshouwers and Oliver, 2014). As R. solanacearum strains
present an extensive genetic diversity, the efficiency of an effec-
toromics approach could be increased by focusing on bacterial
strains/plant germplasms systems that have co-evolved jointly in a
same geographic area.

PERSPECTIVES
Thus far, resistances to bacterial wilt available in solanaceous crops
behave differently under changing environmental conditions. In
addition, R. solanacearum strains exhibit an extensive genetic
diversity worldwide. It thus seems like a chimera to look for univer-
sal resistances to bacterial wilt. A more realistic approach would be
to seek for sources of resistance adapted only to a given ecosystem.
Moreover, an ecological approach of bacterial wilt would enable to
establish, in natural ecosystems, the pathogen population profile
and monitor its changes. This could potentially lead to the identifi-
cation of new biological control agents, naturally occurring in the
soil microflora in fields, which would be more efficient to compete
with R. solanacearum (Saddler, 2005). Also, a precise knowledge
of the endemic R. solanacearum strains encountered in cultivation
areas would guide the deployment of the most relevant resistant
cultivars.

The identification of new resistance sources could be accel-
erated by exploiting R. solanacearum effectors through an effec-
toromics approach (Vleeshouwers and Oliver, 2014), as well as
through the molecular characterization of their virulence and
avirulence functions. Once identified, monogenic over polygenic
resistances should be prioritized to facilitate their transfer into
crops and provide a higher level of resistance more likely to favor
the eradication of R. solanacearum.

After identifying new resistance sources, to increase the chance
of success in achieving durable resistance to bacterial wilt, R-gene
stacking in fields should be applied (Dangl et al., 2013). Moreover,
to reduce the bacterial pressure and decrease resistance breakdown,
deployment of resistant cultivars should be backed up with an
integrated management strategy to decrease the bacteria survival
in soil, water and in the rhizosphere of weedy and native non-host
plants (Lopez and Biosca, 2005).

In conclusion, only the elaboration of a complex strategy for
resistance and control of R. solanacearum will be able to fight off
this multifaceted pathogen.
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