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A wide range of RNA species interacting with microRNAs (miRNAs) form a complex gene
regulation network and play vital roles in diverse biological processes. In this study, we
performed a genome-wide identification of endogenous target mimics (eTMs) for miRNAs
and phased-siRNA-producing loci (PHAS) in soybean with a focus on those involved in lipid
metabolism. The results showed that a large number of eTMs and PHAS genes could
be found in soybean. Additionally, we found that lipid metabolism related genes were
potentially regulated by 28 miRNAs, and nine of them were potentially further regulated
by a number of eTMs with expression evidence. Thirty-three miRNAs were found to trigger
production of phasiRNAs from 49 PHAS genes, which were able to target lipid metabolism
related genes. Degradome data supported miRNA- and/or phasiRNA-mediated cleavage of
genes involved in lipid metabolism. Most eTMs for miRNAs involved in lipid metabolism
and phasiRNAs targeting lipid metabolism related genes showed a tissue-specific
expression pattern. Our bioinformatical evidences suggested that lipid metabolism in
soybean is potentially regulated by a complex non-coding network, including miRNAs,
eTMs, and phasiRNAs, and the results extended our knowledge on functions of
non-coding RNAs.
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INTRODUCTION
Soybean (Glycine max) is one of the most important crops in
the world. One of its main characteristics is its capacity to fix
atmospheric nitrogen through symbioses with microorganisms
(Schmutz et al., 2010). Soybean seeds contain abundant pro-
tein and oil that are crucial raw materials for food, feed, and
other industrial applications (Lardizabal et al., 2008). Many
microRNAs (miRNAs) with a potential role in stress responses
(Zeng et al., 2010, 2012; Kulcheski et al., 2011; Li et al., 2011),
nodulation (Subramanian et al., 2008; Wang et al., 2009; Li
et al., 2010; Turner et al., 2012), and development (Joshi et al.,
2010; Song et al., 2011; Wong et al., 2011; Shamimuzzaman and
Vodkin, 2012) have been identified in soybean. miRNAs have
also been implicated to play key roles in lipid metabolism of oil
crops. For example, some miRNAs (e.g., miR156 and miR6029)
from Brassica napus, another important edible oil crop, were
differentially expressed in cultivars with different seed oil content
or at different embryonic developmental stages (Zhao et al.,
2012). Several studies also identified differentially expressed
miRNAs in developing seeds of soybean, suggesting that these
miRNAs might be involved in lipid metabolism (Song et al.,
2011; Shamimuzzaman and Vodkin, 2012).

Small RNAs, including miRNA, repeat-associated small inter-
fering RNA (ra-siRNA), trans-acting siRNA (tasiRNA), and
natural antisense siRNA (nat-siRNA), play vital roles in plant

development as well as in adaption to biotic and abiotic stresses
(Jones-Rhoades et al., 2006; Rubio-Somoza and Weigel, 2011;
Khraiwesh et al., 2012). miRNA regulates gene expression by
mediating gene silencing at post-transcriptional level. miRNA is
processed from primary miRNA (pri-miRNA) generated by RNA
polymerase II. In plants, pri-miRNA is cleaved into miRNA pre-
cursor (pre-miRNA) containing a hairpin-like structure, which
is further cleaved to give rise to a miRNA/miRNA∗ duplex that
is methylated at the 3′ ends. miRNA∗ is generally degraded
and the mature miRNA molecule is incorporated into a RNA-
induced silencing complex to target complementary mRNAs
through either cleavage or translational inhibition (Mallory and
Vaucheret, 2006; Banks et al., 2012; Turner et al., 2012). In addi-
tion to silencing protein coding mRNAs, miRNAs are able to
target trans-acting siRNA transcripts (TAS) to trigger production
of phased tasiRNAs. On the other hand, the activity of miR-
NAs can be attenuated or abolished by endogenous target mimics
(eTMs), which are usually non-coding transcripts and are able
to sequester miRNAs in an uncleavable manner (Banks et al.,
2012).

The first eTM identified in plants is the non-protein coding
gene INDUCED BY PHOSPHATE STARVATION1 (IPS1) from
Arabidopsis thaliana (Franco-Zorrilla et al., 2007). IPS1 binds
to miR399, the phosphate starvation-induced miRNA. Because
of a small loop caused by a few base pairs of mismatches at
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the expected miRNA cleavage site, IPS1 RNA is not cleaved by
miR399 but instead serving as a decoy for miR399 to inter-
fere binding of miR399 to its canonical target, PHO2. Thus,
plants overexpressing IPS1 showed increased accumulation of the
expression of miR-399 target PHO2 and, concomitantly, reduced
shoot Pi content. This mechanism of inhibition of miRNA activity
is termed as target mimicry (Franco-Zorrilla et al., 2007). Several
artificial target mimics (TMs) designed for different miRNAs with
a similar paring pattern as that of IPS1 and miR399 have been
proven to affect the functions of their corresponding miRNAs
in transgenic plants (Todesco et al., 2010; Ivashuta et al., 2011;
Yan et al., 2012). Recently, eTMs of some conserved miRNAs
have been computationally identified from intergenic regions or
sequences with only short open reading frames in A. thaliana,
Oryza sativa, and other plants (Banks et al., 2012; Wu et al., 2013).
Additionally, A. thaliana transgenic plants overexpressing eTMs
of miR160 and miR166 showed altered plant development, sug-
gesting that these eTMs could be endogenously functional (Wu
et al., 2013).

Biogenesis of tasiRNAs is triggered by interaction of miRNA at
single or dual sites of the non-coding precursor TAS transcripts
(Allen et al., 2005). Generation of tasiRNAs from TAS transcripts
shows a phased pattern in which small RNAs are generated pre-
cisely in a head-to-tail arrangement starting from the miRNA
cleavage site (Fei et al., 2013). It was found that many miR-
NAs could trigger the production of tasiRNAs, such as miR390,
miR173, and miR828 in A. thaliana (Allen et al., 2005; Yoshikawa
et al., 2005; Axtell et al., 2006; Rajagopalan et al., 2006). miR390
targets TAS3 at two complementary sites to initiate production
of tasiRNAs. miR173 targets both TAS1 and TAS2, and miR828
directs tasiRNA biogenesis from TAS4. TAS3 has been identified
across a broad range of species (including moss, gymnosperms,
and angiosperms), while TAS1, TAS2, and TAS4 are found only in
Arabidopsis and its close relatives (Fei et al., 2013; Hu et al., 2013).
tasiRNAs mainly regulate the expression levels of their target tran-
scripts in trans, e.g., TAS3-derived tasiARF targets members of
the auxin response factor (ARF) family, including ARF2, ARF3,
and ARF4 (Williams et al., 2005). In addition to non-coding tran-
scripts, miRNAs have also been shown to trigger production of
phased siRNAs (phasiRNAs) from protein-coding loci, so called
phasiRNA producing loci or PHAS loci, such as genes encoding
pentatricopeptide repeat-containing proteins (PPRs), nucleotide-
binding and leucine-rich-repeat-containing proteins (NB-LRRs),
and MYB transcription factors in Arabidopsis, Medicago, Malus,
Prunus, and Nicotiana (Howell et al., 2007; Zhai et al., 2011; Zhu
et al., 2012; Xiao et al., 2014).

miRNAs interact with a diverse RNA species, such as pro-
tein coding target mRNAs and PHAS genes as well as eTMs,
suggesting the presence of a complex gene regulation network
involving miRNAs. In this study, we bioinformatically iden-
tified eTMs for miRNAs and PHAS genes targeted by miR-
NAs in soybean genome, and investigated their expression
profiles in a wide range of organs and tissues. Our results
suggest that a complex network including miRNAs, eTMs
for miRNAs and phasiRNAs exists in soybean and it play
important roles in diverse biological processes including lipid
metabolism.

MATERIALS AND METHODS
GENOMIC, TRANSCRIPTOMIC, AND DEGRADOMIC DATA SOURCES
Genome sequences of G. max (version 1.0) and other four oil
crops (or their progenitor species), Ricinus communis (v0.1),
Linum usitatissimum (v1.0), Brassica rapa (v1.2), and Gossypium
raimondii (v2.1), were obtained from Phytozome (http://www.

phytozome.net/; v9.1) (Goodstein et al., 2012). Intergenic
sequences of G. max were retrieved according to the information
provided in the GFF file (Schmutz et al., 2010). Transcriptomic
data (mRNA and small RNA) and degradomic data of G. max
were downloaded from NCBI with the accession numbers listed
in Supplementary Table S1 (Libault et al., 2010; Song et al., 2011,
2013; Shamimuzzaman and Vodkin, 2012; Collakova et al., 2013;
Hu et al., 2013). G. max miRNAs were downloaded from miR-
Base (Release 20; http://www.mirbase.org/), and those with =4
and >4 mismatches compared to miRNAs of other plants in miR-
Base were considered as conserved miRNAs and soybean-specific
miRNAs, respectively (Meyers et al., 2008).

IDENTIFICATION OF eTMs
Intergenic sequences of the G. max genome were collected as
the eTM prediction library. eTM identification was performed
using the bioinformatic pipeline previously described based on
the following rules: (1) bulges composed of three nucleotides are
only permitted at the positions corresponding to the 9th to 12th
nucleotides counting from the 5′ end of a miRNA sequence; (2)
perfect pairing is required from the 2nd to 8th positions at the 5′
end of a miRNA sequence; (3) the total number of mismatches
and G/U pairs within the eTM and miRNA pairing region
(excluding the central bulge) should be no more than three; and
(4) the distance between an eTM and its upstream/downstream
genes is longer than 200 nucleotides (Wu et al., 2013).

EXPRESSION AND CONSERVATION ANALYSIS OF eTMs
To investigate the expression profiles of the predicted eTMs,
publicly available RNA-Seq data generated from various tis-
sues and organs of soybean (Table S1) were mapped to eTM
sequences (including the miRNA binding sites and their 50-
bp flanking regions) using TopHat (http://tophat.cbcb.umd.edu/;
v2.0.9) with default settings. The abundance of RNA-seq reads
aligned (at least three reads) to an eTM sequence indicates the
expression level of the eTM. To investigate the conservation of
the soybean eTMs in other oil crops or their progenitor species,
including R. communis, L. usitatissimum, B. rapa, and G. rai-
mondii, miRNA pairing sites of the G. max eTMs were used
to Blast against the genomes of the four species (BlastN, 1e-1).
Alignment of eTMs from soybean and other species was achieved
using sequences including the miRNA pairing sites along with
their flanking regions of the predicted eTMs (100 bp in total).

IDENTIFICATION OF PUTATIVE PhasiRNA TRIGGERS
PhasiRNA-producing (PHAS) loci were identified in the inter-
genic regions of the G. max genome using the following algorithm
previously described by Howell et al. (2007).

P = In

[
(1 +

8∑
i=1

ki)
n−2

]
, P > 0
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(where n = number of phase cycle positions occupied by at least
one small RNA read within an eight-cycle window, and k =
total number of reads for all small RNAs falling into a given
phase within an eight-cycle window). In this study, all phasiRNA-
producing loci were considered as PHAS loci, although they were
located in the non-coding regions of the G. max genome. For a
miRNA to be considered as a putative phasiRNA trigger, (1) it has
to be able to bind to a PHAS locus within the regions generating
phased siRNAs or their flanking 200-nt regions; (2) the putative
miRNA cleavage site (corresponding to the position between the
10th and 11th nucleotides counting from the 5′ end of a miRNA)
should be at a position corresponding to a phase register. (Liu
et al., 2013) The expression level of a PHAS gene was measured
by the abundance of siRNA reads (RPM) aligned to all phases of
the PHAS locus.

ANALYSIS OF POTENTIAL GENES RELATED TO LIPID BIOSYNTHESIS IN
SOYBEAN
The lipid biosynthesis related genes in Arabidopsis were down-
loaded from http://aralip.plantbiology.msu.edu/ and were then
searched against the G. max genome to find their homolo-
gous soybean genes using BlastP with an E-value <1e-5 and
identity >50% (Li-Beisson et al., 2013; Wang et al., 2014).

TARGET PREDICTION AND VALIDATION BY DEGRADOMIC DATA
Targets of soybean miRNAs were predicted by search against
all annotated transcripts of G. max using psRNATarget (http://
plantgrn.noble.org/psRNATarget/) with the default settings
(maximum expectation: 3.0; length for complementary scoring:
20 bp; target accessibility-allowed maximum energy to unpair the
target site: 25.0; flanking length around target site for target acces-
sibility analysis: 17 bp in upstream and 13 bp in downstream;
range of central mismatch leading to translational inhibition: 9–
11 nt) (Dai and Zhao, 2011). These settings, except for maximum
expectation that was set as 1 to reduce the false positive predic-
tion rate, were also used in prediction of targets of phasiRNAs.
To make the miRNA target prediction more accurate, psRobot
was also used with the score of three (Wu et al., 2012). The same
results obtained from these two programs were adopted. The
soybean homologs of Arabidopsis genes related to lipid biosyn-
thesis that were predicted to be targets of miRNAs or phasiRNAs
were considered as candidates involved in lipid biosynthesis and
regulated by miRNAs or phasiRNAs in soybean. Publicly avail-
able degradome sequencing data (Table S1) were used to vali-
date the predicted targets. A predicted target was considered as
cleaved by a miRNA or phasiRNA if the predicted cleavage site
had degradome reads perfectly aligned to, i.e., the 5′ ends of
degradome reads were exactly aligned with the predicted cleavage
site of a miRNA or phasiRNA.

RESULTS
IDENTIFICATION OF ENDOGENOUS TARGET MIMICS
Intergenic non-coding sequences in the soybean genome
(Williams 82) were selected to predict putative eTMs for all 554
soybean miRNAs. Of the 554 soybean miRNAs, 334 (60.3%)
had eTMs predicted. In total, we predicted 10,410 eTMs for 144

conserved miRNAs and 32,555 for 190 soybean-specific miR-
NAs (Table S2). As an example, sequence alignment between
the soybean-specific gma-miR1522 and one of its eTMs, gma-
eTM1522-2, was shown in Figure 1A, which showed a typi-
cal pairing pattern between a miRNA and its eTM, i.e., three
unmatched nucleotides in the eTM at the region corresponding
to the 10th to 12th positions from the 5′ end of gma-miR1522
(Figure 1A). A number of eTMs were predicted for gma-miR1522
and 22 of them were expressed in at least one of the tissues
or organs examined in this study (Tables S1, S2). Sequence
alignment of these 22 expressed eTMs showed that they were con-
served only in the region corresponding to the predicted miRNA
binding sites (i.e., the target mimic sites) (Figure 1B). Sequences
containing a well conserved target mimic site for gma-miR1522
were also found in the four additional species (R. communis,
L. usitatissimum, B. rapa, and G. raimondii) examined in this
study. Similarly, only the target mimic sites but not their flank-
ing regions were conserved in these predicted eTMs (Figure 1C),
consistent with the observation previously reported (Wu et al.,
2013). Prediction of conserved eTMs for gma-miR1522 in all four
species examined in this study suggests that miR1522 could be
present, although it has not been reported, in these species.

Expression of the predicted eTMs is a prerequisite for them
to be functional. To examine whether the predicted eTMs are
expressed in soybean, we analyzed 20 published RNA-Seq datasets
generated from a wide range of organs or tissues, including vege-
tative and reproductive tissues as well as developing seeds (Table
S1). In total, 457 eTMs for 126 miRNAs (144 eTMs for 61 con-
served miRNAs and 313 for 65 soybean-specific miRNAs) were
found to be expressed in at least one of the examined tissues
(Table 1, Table S2). These 457 eTMs for miRNAs with high con-
fidence were used for our further investigation. Of these 457
expressed eTMs, 285 had their homologs found in at least one
of the other four species examined in this study. For exam-
ple, the homolog of eTM1522 could be found in the all four
species (Figure 1C). To rule out the possibility that the expressed
eTMs are potential miRNA targets, we analyzed seven pub-
lished degradome datasets and found that no degradome read
was assigned to the miRNA pairing regions of the 457 eTMs,
demonstrating no miRNA-mediated cleavage in these eTMs and
suggesting that they could function as mRNA decoys. To know
the potential functionality of these eTMs, we performed Gene
Ontology (GO) analysis for the predicted targets of the 126 miR-
NAs with expressed eTMs. As expected these miRNA targets were
found to be involved in a wide range of biological progresses
(Table S3); we thus expect that the expressed eTMs could also
play a role in the related biological progresses. Taken together, the
above results suggest that the functions of a number of miRNAs
were potentially regulated by eTMs in soybean.

eTMs FOR miRNAS TARGETING GENES RELATED TO LIPID
METABOLISM
To investigate a role of miRNAs and their eTMs in lipid
metabolism in soybean, we first identified soybean homologs
of Arabidopsis genes involved in lipid metabolism. This analy-
sis found 1507 genes with a potential role in lipid metabolism
in soybean. We then predicted potential targets of all soybean
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FIGURE 1 | Endogenous target mimics (eTMs) for gma-miR1522 in

soybean. (A) The predicted base-pairing pattern between gma-miR1522 and
one of its eTMs; (B) Sequence alignment of the 22 expressed eTMs for

gma-miR1522; (C) Sequence alignment of eTMs for miR1522 in G. max and
other four species (lus: L. usitatissimum; rco: R. communis; bra: B. rapa; and
gra: G. raimondii).

Table 1 | Number of miRNAs and their partners (eTMs and PHAS loci) in soybean.

Type of miRNAs Number of miRNAs (lipida) Number of expressed eTMs Number of PHAS loci with a miRNA

for miRNAs (lipidb) trigger identified (lipidc)

Conserved 281 (45) 144 (37) 157 (3)

Soybean-specific 273 (52) 313 (82) 827 (46)

Total 554 (97) 457 (119) 984 (49)

aNumber of miRNAs that were predicted to target lipid biosynthesis related genes.
bNumber of eTMs for miRNAs that were predicted to target lipid biosynthesis related genes.
cNumber of PHAS loci producing phasiRNAs that were predicted to target lipid biosynthesis related genes.

miRNAs (in total 554, including 281 conserved and 273
soybean-specific miRNAs) downloaded from miRBase (Release
20). Based on these two analyses, we found that 89 soybean
homologs of Arabidopsis genes involved in lipid biosynthesis
were predicted targets of 97 miRNAs (45 conserved and 52
soybean-specific miRNAs) (Table 1). Using the publicly avail-
able degradome data we found that 25 of these genes were
cleaved by miRNAs from 18 miRNA families (Table S4, Figure
S1). According to gene annotation, these genes are involved
in a diverse pathways related to lipid metabolism, such as

fatty acid synthesis, elongation and degradation as well as lipid
trafficking.

Of the 457 expressed eTMs, 119 were eTMs for 33 miRNAs
predicted to target genes involved in lipid metabolism, includ-
ing 37 eTMs for 14 conserved miRNAs and 82 eTMs for 19
soybean-specific miRNAs (Tables S5, S6). Some of these eTMs
were expressed in most of the tissues or organs examined whereas
the majority of these eTMs were specifically expressed in certain
tissue(s). For example, gma-eTM1522-17 seemed to be univer-
sally expressed while expression of 33, 16 and 10 eTMs was only
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found in cotyledon, seed coat and endosperm at the early stage of
seed maturation, respectively (Figure 2). Some miRNAs had mul-
tiple expressed eTMs that showed differential expression pattern
in different tissues. For instance, we identified 22 expressed eTMs
for gma-miR1522, which was predicted to target a gene encoding
ABC transporter (Glyma03g29150, homolog of At3g21090 that is
required for lipid transport; Pighin et al., 2004; Table S5). Four
of the 22 eTMs were expressed in four or more different sam-
ples shown in Figure 2, whereas 15 of the 22 eTMs were only
expressed in one of the samples (Figure 2). Differential expres-
sion of different eTM members for the same miRNA was also
observed for eTMs of other miRNAs, such as gma-miR1530 (10
eTMs) and gma-miR504 (9 eTMs), which were predicted to target
a phosphatidylinositol kinase gene (Glyma04g39150, homolog of
At5g64070 that is involved in phospholipid signaling; Li-Beisson
et al., 2013) and genes (Glyma04g06630 and Glyma06g06720)
related to triacylglycerol biosynthesis (Table S5), respectively.
Additionally, 65 of the 119 expressed eTMs for miRNAs predicted
to target genes involved in lipid metabolism had a homolog in at
least one of the other four species used in this study (Table S7;
eTMs for miR1522 as an example was shown in Figure 1C). The
conservation of eTMs further supported the potential functional-
ity of these eTMs in lipid metabolism.

IDENTIFICATION OF miRNA-MEDIATED PhasiRNA-PRODUCING LOCI
PhasiRNA-producing (PHAS) loci of the G. max (Williams 82)
genome were identified based on small RNA reads from eight
small RNA libraries (Table S1) and the algorithm described by
Howell et al. (2007). A large number of PHAS loci generating
21-nt or 24-nt phasiRNAs were detected in the G. max genome
(phase score >1.4). Even when using a stringent phase score
(phase score >20), 1573 of 21-nt and 4681 of 24-nt PHAS
loci could still be identified (Table S8). Of these PHAS loci,
984 (262 of 21-nt and 722 of 24-nt PHAS loci) had at least
a miRNA binding site predicted within the regions generating
phased siRNAs and/or their flanking 200-nt regions (Table S9).
Some of the identified phasiRNA triggers have been previously
identified in other studies, such as miR390, miR156, miR2118,
miR393, miR1508, miR1510, and miR1514 (Zhai et al., 2011;
Hu et al., 2013). Of the 984 PHAS loci, 157 and 827 were trig-
gered by conserved and soybean-specific miRNAs, respectively,
and phasiRNAs from 49 such PHAS loci were predicted to tar-
get genes related to lipid metabolism (Table 1, Tables S5, S9). For
example, gma-miR1520j was predicted to trigger production of
24-nt phasiRNAs from a locus (PHAS1520j-3) located in soybean
chromosome 17, and a phasiRNA from this locus was predicted to
target Glyma03g31570, which encodes an acylhydrolase involved
in oxylipin metabolism (Figure 3). Of these 49 PHAS genes, 12
were cleaved by their miRNA triggers according to degradome
data (Table S9).

The expression levels of the 49 PHAS genes producing phasiR-
NAs targeting genes related to lipid metabolism were investi-
gated based on published small RNA data (Figure 4, Tables S1,
S10). Of the 49 PHAS genes, nine seemed to be expressed in
two or more of the eight tissue samples shown in Figure 4,
although the expression levels were low in most samples. One
exception was the PHAS4388-5 gene, which was targeted by

FIGURE 2 | Expression patterns of the eTMs for miRNAs with a

potential role in lipid biosynthesis. Expression values were
log2-transformed.

gma-miR4388 to produce phasiRNA targeting Glyma12g28470
that encodes an acyltransferase. This PHAS gene was highly
expressed in seed but lowly expressed in leaf in cultivar
Heinong44 (Figure 4). Interestingly, none of the 49 PHAS genes
seemed to be expressed in stems of soybean although some of
these PHAS genes were relatively highly expressed in roots and/or
leaves.
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FIGURE 3 | A PHAS locus (Gm17:18214876. . . 18215211) targeted by

gma-miR1520j. (A) The siRNA abundance and phasing score of the phased
siRNAs generated from the PHAS locus PHAS1520j-3; (B) Sequence segment
of PHAS1520j-3. The gma-miR1520j binding site is aligned with gma-miR1520j

(predicted target location: Gm17:18214862. . . 18214885); (C) Sequence
alignment between a phasiRNA (Gm17: 18215043. . . 18215066) derived from
PHAS1520j-3 locus and its predicted target (Glyma03g31570, a gene encoding
acylhydrolase involved in oxylipin metabolism).

DISCUSSION
A LARGE NUMBER OF eTMs AND PHAS GENES IN SOYBEAN
It has become clear that numerous non-coding RNA transcripts
interact with miRNAs and are part of the network regulating
development and stress responses in both plants and animals
(Tay et al., 2014). Because of their ability to sequester miRNAs
away from their cleavable targets, RNA molecules with miRNA
binding sites but un-cleavable by miRNAs have been reported
with different terminology, such as “miRNA sponges/decoys,”
“endogenous target mimics” or “competing endogenous RNA”
(Banks et al., 2012; Wu et al., 2013). In this study, we found that
the functionalities of a large number of miRNAs could be poten-
tially regulated by eTMs in soybean. Our results together with
previously published results further suggest that eTMs could be
widespread regulators of miRNA functions in plants (Wu et al.,

2013). Among the 42,965 computationally predicted eTMs in the
soybean genome, only 457 eTMs were found to be expressed. It
was partly due to that the RNA-Seq data we used only included
samples from different tissues and developmental stages of soy-
bean. The functions of eTMs are related to their corresponding
miRNAs, many of which function in stress responses. Therefore,
RNA-Seq data from samples with stress treatment should pro-
vide expression evidence for more eTMs. However, the huge
discrepancy between computationally-predicted eTMs and those
with expression support also demonstrated the limitation of
the computational prediction for eTMs. The expression evi-
dence is thus important for the identification of authentic eTMs.
Another kind of interaction between miRNAs and non-coding
RNAs involves generating phasiRNAs from the miRNA-targeted
non-coding RNAs. The well-known phasiRNAs generated from
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FIGURE 4 | Expression patterns of the PHAS genes producing phasiRNAs that were predicted to target lipid biosynthesis related genes in soybean.
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miRNA-targeted non-coding RNAs are tasiRNAs. TAS gene has
been demonstrated to play a role in diverse biological processes,
such as development by targets auxin response factor (ARF) and
MYB protein family and disease resistance by nucleotide bind-
ing leucine-rich repeat NB-LRR (Williams et al., 2005; Zhai et al.,
2011). In addition to TAS genes, we showed here that numer-
ous intergenic regions in the soybean genome are targeted by
miRNAs to produce phasiRNAs, which are able to further tar-
get other mRNAs. This result suggested that miRNA-mediated
production of phasiRNAs may have a much more profound
effect on biological processes in soybean than we previously
thought.

More eTMs (32,555 vs. 10,410 eTMs based on computational
prediction; 313 vs. 144 eTMs with expression support) were
found for the 190 soybean-specific miRNAs than for the 144
conserved miRNAs. Similarly, we also found that soybean PHAS
genes are more likely to be targeted by soybean-specific miRNAs
than by conserved miRNAs (827 vs. 157 PHAS genes). This phe-
nomenon may suggest that eTMs and phasiRNAs are two types of
important regulators co-evolved with soybean-specific miRNAs
to regulate soybean-specific biological processes, and that the co-
evolution of the non-coding RNA network in soybean may be a
result of species-specific adaptations. In addition, we found that
some biological processes were significantly enriched in the pre-
dicted target genes of miRNAs that have eTMs with expression
evidence, suggesting a specified role of the interaction between
miRNAs and their eTMs in these biological processes (Table S3).
For example, the genes with GO categories related to biological
regulation were significantly enriched, indicating the role of eTMs
in gene regulation through the network involved miRNAs. Some
genes related to stress response and cell death were significantly
enriched, suggesting that eTMs might play key roles in these two
biological processes through interaction with miRNAs.

THE NON-CODING RNA NETWORK INVOLVED IN LIPID METABOLISM
IN SOYBEAN
At least 120 enzymatic reactions and more than 600 genes are
involved in the 24 pathways related to Acyl-lipid metabolism
in Arabidopsis (http://aralip.plantbiology.msu.edu/) (Li-Beisson
et al., 2013). Although the pathways and protein coding genes
associated with lipid biosynthesis in higher plants have been
largely uncovered, the roles of the non-coding RNAs in lipid
biosynthesis are still poorly understood. In this study, we investi-
gated the potential roles of the non-coding RNA network, includ-
ing miRNAs and their partners, i.e., eTMs and miRNA-triggered
PHAS genes, in lipid metabolism in soybean. Understanding the
functions of the miRNA network in regulating lipid metabolism
in soybean will be of great value for the cultivation of soybean cul-
tivars with increased oil content. Overall, our results revealed that
lipid metabolism related genes in soybean are potentially directly
regulated by 28 miRNAs with degradome data support, and that
nine of these 28 miRNAs are potentially further regulated by a
number of eTMs with 40 of them supported by expression data.
The lipid metabolism pathways regulated by the network involv-
ing these nine miRNAs and 40 eTMs includes fatty acid synthesis,
elongation, degradation, oxylipin metabolism, and phospholipid
signaling (Table S5). In addition, 33 miRNAs were found to

FIGURE 5 | A model for the non-coding RNA network involved in lipid

biosynthesis in soybean. The network contains 28 miRNAs directly
targeting lipid biosynthesis related genes with degradome data support and
33 miRNAs predicted to target 49 PHAS loci that produced phasiRNAs to
target 12 lipid biosynthesis related genes. Of the 28 miRNAs directly
targeting lipid biosynthesis related genes, nine have predicted eTMs
supported by expression data.

trigger production of phasiRNAs from 49 PHAS genes, which
were able to target lipid biosynthesis related genes (Figure 5). We
found that the lipid metabolism related genes potentially regu-
lated by miRNAs and their partners in soybean were Arabidopsis
homologs involved in 23 of the 24 pathways related to Acyl-lipid
metabolism (Table S5). These results provided bioinformatical
evidences for the hypothesis that lipid metabolism in soybean
is regulated by a complex non-coding RNA network including
miRNAs, eTMs and phasiRNAs.

This hypothesis was supported by several pieces of evidence.
Firstly, of the 97 miRNAs predicted to target lipid biosynthesis
related genes, 28 were confirmed to cleave their targets based on
the data from seven publicly available degradome libraries (Table
S4). Secondly, 119 eTMs for miRNAs predicted to target genes
related to lipid metabolism were found to be expressed and most
of them had a tissue-specific expression pattern (Figure 2); 55%
of them are evolutionarily conserved in their target mimic sites in
the other four species examined in this study. Thirdly, majority of
the 49 PHAS genes generating phasiRNAs that were predicted to
target lipid biosynthesis related genes also showed a tissue-specific
expression pattern (Figure 4), and miRNA-mediated cleavage
evidence was found for 12 of the 49 PHAS genes based on the pub-
licly available degradome data (Table S9). Fourthly, some of the
genes related to lipid metabolism might be regulated by only one
component of the network but some could be controlled by a cas-
cade of the network or even all three types of non-coding RNAs,
i.e., miRNA, eTM and phasiRNA. Of the 18 miRNA families tar-
geting lipid biosynthesis genes that were validated by degradome
data, at least three (gma-miR1520j, gma-miR4388 and gma-
miR4992) were also able to target PHAS genes to produce phasiR-
NAs that in turn to target genes involved in lipid metabolism
(Tables S4, S9). Furthermore, at least nine (gma-miR1508b,
gma-miR1520p, gma-miR1530, gma-miR2108b, gma-miR394a-
3p, gma-miR395b, gma-miR396b-5p, gma-miR5041, and gma-
miR5769) of the 18 miRNA families had expressed eTMs (Table
S2), suggesting that the functionality of these miRNAs could be
attenuated in certain tissues.
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In this study, our focus was on non-coding RNAs interact-
ing with miRNAs in soybean; however, in addition to non-coding
RNAs, our analyses also found that 120 protein-coding genes were
potentially targeted by miRNAs to generate phasiRNAs (Table
S9). Additionally, we only used intergenic regions in eTM predic-
tion in this study. In fact, protein-coding, intronic, and antisense
sequences all could function as eTMs (Ponting et al., 2009; Wu
et al., 2013). Furthermore, it is our further interest to know
whether plants contain other kinds of RNA molecules, such as
circular RNAs and pseudogene competing endogenous RNAs
reported in humans and animals (Tay et al., 2014), and whether
they interact with miRNAs to regulate biological processes in
plants.
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