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Modern flammable ecosystems include tropical and subtropical savannas, steppe grass-
lands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery
nature of much contemporary vegetation, terrestrial fossil evidence would suggest we
live in a time of low fire activity relative to the deep past. The inertinite content of coal,
fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified
mesofossils have been reported for the Cenozoic. Marine cores have been analyzed
for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south
China sea. These tell a different story with the oldest records indicating low levels of fire
activity from the Eocene but a surge of fire from the late Miocene (∼7 Ma). Phylogenetic
studies of woody plants adapted to frequent savanna fires show them beginning to appear
from the Late Miocene with peak origins in the late Pliocene in both South American
and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades
characteristic of flammable sclerophyll vegetation from Australia and the Cape region of
South Africa. However, as for savannas, there was a surge of speciation from the Late
Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic
spread of increased fire activity in the last few million years suggests a global cause.
However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel
flammable growth forms) provides an adequate explanation as yet. The global patterns
and processes of fire and flammable vegetation in the Cenozoic, especially since the Late
Miocene, deserve much more attention to better understand fire in the earth system.
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Fire shapes the dominant growth forms in a large proportion of
the world’s ecosystems. In the tropics and subtropics, savannas
occur over vast areas accounting for more than half the world’s
annual burnt area (van der Werf et al., 2010). At high latitudes,
boreal forests cover nearly a fifth of the vegetative land surface
of the world and burn regularly. Flammable shrublands are most
apparent in Mediterranean climate regions but also occur else-
where especially where the climate is unsuitable for C4 grasses.
The southern two thirds of Australia, for example, are dominated
by flammable shrublands often with emergent eucalypt trees. In all
these regions closed forests that resist burning occur in a bi-stable
state with the shrublands suggesting that climate alone does not
explain vegetation structure. The dawning recognition that fire is
a major factor shaping global biome distribution has emerged in
little over a decade from diverse studies (e.g., Bond et al., 2005;
Bowman et al., 2009; Krawchuk et al., 2009).

The world was not always this fiery. Fire activity has waxed
and waned throughout the long history of terrestrial vegetation
(Scott, 2000; Pausas and Keeley, 2009; Glasspool and Scott, 2010;
Belcher et al., 2013). Fossil evidence indicates that fires were partic-
ularly common in the Carboniferous and Permian (Falcon-Lang,
2000; Uhl and Kerp, 2003; Jasper et al., 2013). In the Cretaceous,
fires were again common and may have promoted the spread of
angiosperms at the expense of ancient gymnosperms (Bond and

Scott, 2010; Brown et al., 2012; He et al., 2012). These periods
of high fire activity have been linked to above ambient con-
centrations of oxygen in the atmosphere (Scott and Glasspool,
2006; Belcher and McElwain, 2008; Belcher et al., 2010). Yet
there is a fundamental conundrum in the geological record of
fire. Although high fire activity in the Cretaceous continued into
the Paleocene (Collinson et al., 2007; Belcher et al., 2013) fos-
sil evidence for fire activity over the last 50+ million years (Ma)
from the Eocene through to the present day, is scant (Scott, 2000).
Indeed the record of inertinite, the charcoal content of coal and
a major proxy for ancient fire activity, shows the lowest fire
activity in almost the entire geological record in Cenozoic coals
(Figure 1).

The conundrum is that we live in what seems to be a very
flammable world where fire is influential in structuring global veg-
etation. Yet the inertinite record suggests we are living in a world of
very low fire activity. Is the current extent of pyrophytic vegetation
the norm for the last 50+ million years implying that, relative to
the Cretaceous or Permian, we are living in a low fire world? Would
we have a different picture from using different proxies for past
fires? Was there a late Cenozoic surge in fire activity that produced
our modern pyrophytic biomes? If fires did increase, worldwide, in
the late Cenozoic what caused this increase? And finally, what are
the implications of Cenozoic fire history for interpreting ancient
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FIGURE 1 | Inertinite abundance from the Late Cretaceous through the

Cenozoic (65 to 0 Ma). Inertinite is the fossil charcoal content of coal. Data
from Glasspool and Scott (2010), Supplementary Table S2. The median
(squares) and upper and lower quartile values for each age bin are shown.

fires in the Mesozoic and Paleozoic? In this paper, I review evidence
for fire in the Cenozoic (the last 65 Ma) focusing particularly on
the Neogene (23–2.6 Ma) when modern ecosystems emerged.

TYPES OF EVIDENCE FOR PALEOFIRES
FOSSILS
Scott (2010) has reviewed proxies for fire activity in the fossil
record. One of the most useful proxies is the inertinite content
of coal since there is a near continuous record in coal deposits
from ∼420 Ma (Diessel, 2010; Glasspool and Scott, 2010). The
Cenozoic record of inertinite (Figure 1) indicates high fire activ-
ity in the Paleocene (65–55 Ma), a steep decline in the Eocene
(55–34 Ma) and low activity right through to the present (Diessel,
2010; Glasspool and Scott, 2010). Shearer et al. (1995) suggested
that coal properties, including inertinite, changed fundamentally
in the Cenozoic as a result of the switch from gymnosperm to
angiosperm dominance in ecosystems with the former having a
much higher lignin content preserved in coal. The rise of the
angiosperms and increasing herbaceous material from the Meso-
zoic to the Cenozoic therefore suggests one possible explanation
for the poor fossil record of fire in the latter. Charcoalified flowers
in the Cretaceous are a rich source of data on early angiosperm evo-
lution (Friis and Skarby, 1981; Friis et al., 2011) and also a marker
for higher fire activity from the mid-Cretaceous coincident with
angiosperm spread (Bond and Scott, 2010; Brown et al., 2012).
Charcoalified plant organs have not been reported for the Ceno-
zoic (Scott et al., 2013). However, charcoalified plant organs are
meso-fossils requiring special methods of preparation (Schönen-
berger, 2005) and may simply have been overlooked in Cenozoic
studies.

Charcoal is the most widely used proxy for fire activity in Qua-
ternary studies but there are many problems in inferring ancient
fire activity from charcoal (see e.g., Keeley et al., 2012; Belcher
et al., 2013). These include intrinsic taphonomic biases against
finding flammable ecosystems. For example, Keeley et al. (2012)
noted the absence of Adenostoma fasciculatum, the most common

shrub in Californian chaparral, in the fossil record. Fire-resistant
gallery forests, common in fire-prone grassy systems, filtered the
charcoal record entering a lake from adjacent frequently burn-
ing African savannas (Aleman et al., 2013). Inertinite develops
in peatlands which are uncommon in seasonally arid savannas
and Mediterranean shrublands such as chaparral (Keeley et al.,
2012). Woody vegetation produces more charcoal in larger frag-
ments than grasslands so that charcoal evidence for the spread
of tree-less grasslands is likely to be grossly underestimated. Fur-
thermore, the deep weathering characteristic of oxisols on ancient
peneplains in tropical landscapes biases against fossil formation
in humid tropical climates. Thus savanna fossils are likely to be
biased to more arid areas where low plant productivity would
limit fires.

Marine charcoal observed in cores from ocean drilling avoids
some of these problems. Grass cuticles have been recovered from
such cores presumably lofted into the ocean from smoke plumes
(Herring, 1985; Morley and Richards, 1993). However, it is diffi-
cult to discern the source of the charcoal and the extent to which
paleowinds have redistributed it. Interpretation of the vegetation
source of the charcoal is also confounded by uncertainty over flu-
vial or aeolian origins of black carbon. Fossil sites are also rare in
many parts of the world and there is an understandable tendency
for paleoecologists to extrapolate over large geographic regions
from rare point samples.

PHYLOGENIES
Phylogenetic methods have recently been applied as additional
tools to explore the history of pyrophytic vegetation (e.g., Simon
et al., 2009; Bytebier et al., 2011; He et al., 2011, 2012). Dating
is based on molecular clock assumptions calibrated with fossils
of known age. The many difficulties in developing dated phylo-
genies have been met with increasingly sophisticated analytical
models and, at least among systematists, there is growing con-
fidence in the accuracy of molecular dating (Smith et al., 2010).
Disagreement between molecular dating and fossil evidence is par-
ticularly glaring for groups with a well-known fossil record such
as mammals (e.g., Foote et al., 1999) but even for the mammals
fossil and molecular clock dates are beginning to converge with
more refined phylogenetic and dating methods (e.g., Bibi, 2013).
But there are additional problems in using phylogenetic meth-
ods for exploring ecological questions. A key question for this
paper is when novel growth forms, such as C4 grasses, assembled
into ecosystems that began to alter their environment by burn-
ing on a regular basis. Phylogenies are based on origination and
diversification and it is not clear how diversification processes
relate to increased ecological extent or importance of an evolu-
tionary innovation. Sometimes the evolution of a new growth
form may produce a novel biotic habitat which may then ini-
tiate novel radiations of species dependent on that habitat. For
example, epiphytic ferns began to diversify in the early Ceno-
zoic when, presumably, more trees became available as substrates.
Phylogenetic dating places their diversification in the Eocene
(from 55 Ma) consistent with fossil evidence for widespread
emergence of angiosperm-dominated forests (Schuettpelz and
Pryer, 2009). But the opposite pattern is also possible. Diversi-
fication rates may decline as ecological dominance of a lineage
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increases. An evolutionary innovation which generates new habi-
tat would initially be distributed in small isolated patches. If
the innovation is successful, fragmented habitats may coalesce
resulting in a reduction in speciation rates as barriers to gene
flow fall away. Bouchenak-Khelladi et al. (2014), for example,
found no phylogenetic signal coincident with the rise of the
savanna biome in a large grass phylogeny. Linder (2008) has
provided a thoughtful discussion of phylogenetic signals asso-
ciated with diversification. Exposure to new climates and soil
types, such as might occur if flammable grasslands rolled back
fire-sensitive forests, would be expected to generate speciation.
But where such forests occurred in similar climates and soils,
the expansion of flammable communities may merely lead to a
re-shuffling of existing taxa rather than speciation (e.g., Ackerly,
2004).

Here I explore both fossil and phylogenetic evidence for fire
activity linked to the development of pyrophytic biomes. I first
consider savannas and related biomes of the tropics and subtropics
where coincident increased fire activity has been linked to the
enigmatic late Miocene (11.5–5.3 Ma) appearance of this major
biome (Bond et al., 2003a; Keeley and Rundel, 2005; Osborne,
2008, 2011). I then consider evidence for fire activity in pyrophytic
woody vegetation, focusing on Mediterranean type shrublands
and open woody vegetation of Australia and the Cape region of
South Africa. Finally I consider possible causes of a global increase
in fire activity which might explain the rise of pyrophytic biomes
in the last ∼10 Ma.

The review is restricted to savannas and temperate flammable
shrublands and associated woodlands since they have been
the focus of much recent research on the evolution and his-
tory of flammable ecosystems, especially those dominated by
angiosperms. I have not considered the sparse literature on the
Cenozoic history of flammable boreal ecosystems complicated by
glaciation in the Pleistocene. The role of fire in the emergence of
steppe grasslands, dominated by C3 grasses, would be an interest-
ing contrast to savannas but I was unable to find studies on the
subject.

FIRE IN THE TROPICS AND SUBTROPICS: THE RISE OF
SAVANNAS
FOSSIL CHARCOAL
There has been intense interest in the origin of grasslands generally
and of C4 grass dominated savannas in particular (Cerling et al.,
1997; Jacobs et al., 1999; Keeley and Rundel, 2005; Osborne, 2008;
Edwards et al., 2010; Strömberg, 2011). Osborne (2008) reviewed
the multiple hypotheses proposed for the spread of the savanna
biome. The most widely cited evidence for an association between
the rise of the savanna biome and fire comes from charcoal records
from the Deep Sea Drilling Project in the North Pacific (Herring,
1985; Bond et al., 2003a; Keeley and Rundel, 2005; Beerling and
Osborne, 2006; Osborne, 2008). Herring (1985) analyzed char-
coal from eleven cores spanning a latitudinal range from near the
equator to 53◦N and a temporal range from Late Cretaceous to
the Quaternary. The older sediments showed low, but measurable,
charcoal fluxes (mass of charcoal per unit area per unit time) for
the early Cenozoic (from ∼65 Ma in some cores) with generally
low charcoal fluxes from then until the late Miocene. There was a

FIGURE 2 | Cenozoic charcoal flux from ocean cores in the North

Pacific. Data from Herring (1985). The legend numbers refer to localities.
Latitudes N, 65 4◦, 310 36◦, 305 32◦, 192 53◦, and 183 52◦. Values are
relativized to the maximum charcoal recorded at each site.

sharp increase in charcoal between 10 and 1 Ma (Figure 2). Low
latitude cores show a surge in charcoal fluxes from the late Miocene
(∼7 Ma) or younger coinciding with the expansion of C4 savan-
nas as recorded in the carbon isotopic record (Cerling et al., 1997).
Though Herring reported the presence of charred grass cuticles, it
was generally not possible to identify the biological source of the
charcoal.

On the other side of the world in the Atlantic Ocean,
Morley and Richards (1993) reported changing fire activity asso-
ciated with changing grass abundance in the Niger Delta off West
Africa. Charcoal in the form of charred grass cuticles increased
from the late Miocene (∼7 Ma) and was associated with a sharp
increase in grass pollen indicating the presence of fire-prone savan-
nas (Figure 3A). A second site in the south Atlantic was studied
by Hoetzel et al. (2013). They explored the role of fire in savanna
expansion by studying an ocean core off the Namibian coast. They
reported an increase in fire activity from ∼7 MA associated with an
increase in grass pollen and an increase in carbon derived from C4
carbon sources (Figure 3B). The later part of the record shows a
decline in fire activity as conditions became too arid to support fuel
for fires indicated by increasing pollen from arid-adapted plants
characteristic of the dry climate that prevails in the Namib desert
of the present day. This interpretation is consistent with present-
day fire occurrence with savanna fires common where there is
sufficient rainfall to produce continuous fuels but rare or absent
in arid regions (e.g., Archibald et al., 2009).

Finally, on the far side of the world, Jia et al. (2003) reported
black carbon fluxes for an ocean drilling site in the South China
Sea. The core covers most of the Neogene (from 30 Ma). The
earliest part of the record showed significant fire activity followed
by a decline with low fire activity until a large increase in black
carbon from the Pliocene (∼5 Ma; Figure 4).

All these marine charcoal records, from widely separated
geographic regions, indicate low but significant fire activity
throughout the Cenozoic until the late Miocene or Pliocene (5.3–
2.6 Ma) when all show a marked increase in fire activity. In several
instances charred grass cuticles were recovered from the cores and
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FIGURE 3 | Neogene charcoal from Atlantic ocean cores. (A) Niger delta
off West Africa (redrawn from Morley and Richards, 1993) (B) off the
Namibian coast, south–west Africa (redrawn from Hoetzel et al., 2013). The
reduction in fire in the Namibian core is attributed to increasing aridity.
Values are relativized to the maximum record of the charcoal proxy.

FIGURE 4 | Cenozoic charcoal records from ocean cores in the South

China sea (e.g., Jia et al., 2003) and terrestrial charcoal from the

Murray Basin, Australia (e.g., Kershaw et al., 2002). The time scale is the
same as Figure 2 for comparison of the different locations. Values are
relativized to the maximum record of the charcoal proxy.

the Namibian study also showed changes in the carbon isotopic sig-
nal consistent with an increase in C4 grasses (Hoetzel et al., 2013).
The geographic source of the charcoal is generally uncertain and
cores nearer land may include both fluvial and aeolian sources.
Nevertheless, the coincidence of fire activity in these widely sepa-
rated geographic regions matches well with the rise of the savanna
biome from the Late Miocene, as recorded in fossil carbon pale-
osols and animal teeth (Ségalen et al., 2007 for Africa; Singh et al.,

2013 for South Asia; Cerling et al., 1993, 1997; Fox and Koch,
2003 for North America; Figure 5). Thus there is general support
from charcoal in ocean cores for the hypothesis that increased fire
activity was implicated in the spread of the savanna biome in the
Neogene (Keeley and Rundel, 2005; Beerling and Osborne, 2006;
Osborne, 2008, 2011; Scheiter et al., 2012).

In contrast to the marine record, there seems to be very lit-
tle fossil evidence for fire in terrestrial studies of the origin and
spread of grassy biomes (Strömberg, 2005, 2011). In Eurasia, the
initial retreat of forests and their replacement by grasslands has
been attributed to increasing aridity from the Miocene (Ström-
berg, 2011). A well supported example comes from an analysis of
numerous Cenozoic pollen cores from central Europe to China
(Tang and Ding, 2013). These authors related pollen types to
climate, especially precipitation. They showed that temperate
deciduous forests were initially widespread in the Eocene but
progressively shrank through time and were replaced by arid
adapted plants, including C3 grasses forming steppe grasslands,
by the late Miocene. The important implication is that the

FIGURE 5 | Examples of the shifts in d13C associated with the rise of

savannas from the Late Miocene derived from palaeosols (A) Quade

and Cerling (1995), (B) Fox and Koch (2003), and (C) tooth enamel

(Cerling et al., 1997). Figure from Osborne (2008; with author’s
permission).
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introduction of a novel grass-fuelled fire regime was not the
only route for grassland expansion in the Neogene. Aridity in
some regions was the major factor in the retreat of Paleogene
forests.

PHYLOGENETIC EVIDENCE
The first phylogenetic study tracing the geological history of pyro-
phytic vegetation was that of Simon et al. (2009) for Brazilian
cerrado. This study used dated phylogenies of legume clades to
explore the origin of woody species in these high rainfall savan-
nas. The savanna species were all derived from ancestors occurring
in closed tropical forests. They diverged from forest ancestors in
traits such as thick bark, underground storage organs, and clonal
spread considered to be adaptations for frequent grass-fuelled sur-
face fire regimes (Hoffmann et al., 2003; Simon and Pennington,
2012). Molecular dating of the phylogenies indicates that savanna
species split from their forest ancestors from ∼9 Ma with most lin-
eages diversifying from 4 Ma or less with a median age of 2.3 Ma.
This recent origin has been supported by additional studies on
clades for which dated phylogenies are known with most cerrado
lineages diversifying from 5 Ma or less (Simon and Pennington,
2012; Figure 6). Thus fire is directly implicated in the origin of
savannas in Brazil and dates of origin are consistent with isotopic
evidence for the general rise of savannas (Cerling et al., 1997) and
the marine charcoal record of increasing fire activity from other
parts of the world.

Recently Maurin et al. (2014) reported a phylogenetic analysis
designed to test the dates of origin of fire-dependent savannas
in Africa. They focused on “underground trees,” midget trees
(<1 m) with close relatives that are tall trees. The underground
trees (=geoxyles in the scientific literature) only occur in savan-
nas in seasonally wet regions with frequent fires. The climatic
conditions are suitable for forests and, indeed, forest patches are
common as alternative biome states in African savanna landscapes
(Hirota et al., 2011; Staver et al., 2011). Thus underground trees

FIGURE 6 | Frequency distribution of estimated ages from phylogenies

of fire adapted woody clades in African (black) and South American

(clear) savannas. The African data is for the age of splits of geoxyles
(underground trees) from their sister tree species (from Maurin et al., 2014;
n = 36). The South American data is for 15 legume lineages in cerrado
(from Simon et al., 2009).

are indicators of fire dependent savannas occurring in climates
that can support forests. Plants with the same geoxylic lifeform
are common in Brazilian cerrado but have evolved from differ-
ent clades indicating convergent evolution in response to similar
fire regimes and growing conditions (Maurin et al., 2014). Maurin
et al. (2014) used a molecular phylogeny to date divergence times
of underground trees from their tall tree relatives as a conservative
means of dating the origins of fire dependent savannas. Geoxyles
had a median divergence time of 2.28 Ma but with the origins of
many taxa dated to within the last 2 Ma indicating a recent expan-
sion into savanna (Figure 6). There was a latitudinal gradient in
maximum estimated divergence times with oldest dates (Miocene)
at low latitudes near the equator and youngest maximum ages in
southern subtropical latitudes (Maurin et al., 2014, their Figure 6).
Thus phylogenetic evidence from both South America and Africa
supports fire as a mechanism promoting savanna expansion at the
expense of closed forests from the late Miocene continuing into
the Plio-Pleistocene. As yet, no terrestrial fossil records have been
reported which can test the origin of these savannas and their link
to frequent grass-fuelled fires. Indeed well preserved fossils are
unlikely in the deeply weathered landscapes characteristic of these
high rainfall tropical savannas.

TEMPERATE FLAMMABLE ECOSYSTEMS
FOSSIL CHARCOAL
The most intensively studied temperate flammable ecosystems
are shrublands in Mediterranean type climates (reviewed by
Keeley et al., 2012) and the shrublands and eucalypt wood-
lands of the southern two thirds of Australia (reviewed by
Crisp and Cook, 2013). Herring’s (1985) analysis of ocean drilling
cores in the North Pacific included sites close to the Californian
coast and therefore adjacent to chaparral. Charcoal fluxes at this
site show a similar pattern to those of lower latitudes with low
charcoal flux for most of the Cenozoic but a rapid increase from
∼5 Ma, somewhat later than tropical cores (Figure 2). There
seem to have been no comparable studies exploring fire activ-
ity from charcoal in Neogene marine sediments in the southern
hemisphere. Kershaw et al. (2002) summarized the results of two
terrestrial cores in southern Australia which sampled mid-to late
Cenozoic material. In the Murray Basin site, no charcoal was
recorded in the Eocene and charcoal remained negligible until
the late Miocene (Figure 4). The Latrobe valley site also showed
negligible charcoal deposits in older deposits but charcoal began
increasing from the mid-Miocene with high charcoal content
from the late Miocene (Kershaw et al., 2002). In south-western
Australia, varved lake sediments from the Pliocene (∼3 Ma)
have revealed recurrent fires at high frequencies in a mosaic of
heathlands and forests (Nothofagus, Araucaria; Atahan et al., 2004;
Dodson et al., 2005). The rainforest elements no longer exist in
Western Australia. They are fire-sensitive and largely restricted
to fire refugia in eastern and northern Australia (Bowman,
2000).

In the Cape region of south–west Africa, no continuous records
of Cenozoic deposits have been analyzed for charcoal. Burnt logs
of Podocarpus, typically a forest tree, and charcoal rich layers have
been reported from the West Coast in sediments thought to be
of mid-Miocene age (Roberts et al., 2013). Evidence of fire has
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also been reported for Pliocene (5 Ma) deposits of Langebaan-
weg. The data have not been critically examined for evidence of
repeated fires (a fire regime) versus rare catastrophic fires. The
vegetation at Langebaanweg was a mosaic of woodland, C3 grass-
land and some fynbos elements and supported a rich megafauna
including giraffids, equids, suids (pigs), bovids, rhinocerotids, hip-
popotamids, and elephantids (Franz-Odendaal et al., 2002). This
Pliocene ecosystem contrasts strikingly with the present-day low
pyrophytic fynbos shrublands supporting a sparse modern fauna
of small-bodied antelope (Klein et al., 2007). The implication is a
massive faunal and vegetation turnover in the last 5 Ma on these
coastal lowlands.

PHYLOGENETIC EVIDENCE
In contrast to the above fossil evidence for a mid to late Miocene
rise in fire activity, the phylogenetic evidence for Cape and
Australian pyrophytic shrublands and woodlands suggests con-
tinued fire activity for the entire Cenozoic (Keeley et al., 2012;
Crisp and Cook, 2013). Lineages that are restricted to pyro-
phytic ecosystems and which possess fire adaptations such as
serotiny and fire-stimulated flowering, were diversifying in the
Paleogene and later. Phylogenetic studies of clades that cur-
rently occur in temperate pyrophytic woody ecosystems have
revealed the considerable antiquity of fire adaptive traits. He et al.
(2011) traced the origin of Banksia, a genus characteristic of
Australian flammable shrublands today, to the mid-Cretaceous.
Serotiny is a fire-adaptive trait in which seeds are retained in
insulated cones or follicles until released en masse after fire. The
Banksia phylogeny indicated that serotiny was present from the
first appearance of the genus at ∼60.8 Ma. Lamont and He
(2012) explored the origins of pyrophytic vs. rainforest Pro-
teaceae, including both Australian and African clades, and traced
the origin of the pyrophytes to the mid-Cretaceous. Crisp et al.
(2011) explored the origins of the distinctive epicormic strands
in eucalypts as a marker of a fire adaptation unique to the
clade and found Paleocene (60 Ma) origins based on a dated
phylogenies. In the Cape region, Bytebier et al. (2011) reported
phylogenetic evidence for the origin of fire stimulated flowering
in fynbos orchids from the mid-Miocene (∼15 Ma). Crisp and
Cook (2013) reviewed the phylogenetic evidence for the evolu-
tion of Australian biomes including the continental dominance of
contemporary pyrophytic vegetation. They concluded that there
was a long history of fire adapted woody species from at least
the Paleocene with a major expansion of flammable pyrophytic
vegetation (=sclerophyll vegetation) at the expense of closed
forests from the Miocene. This is consistent with the analysis
of Keeley et al. (2012) in indicating significant fire activity in
flammable woody vegetation more or less continuously through-
out the Cenozoic. This view contrasts with the apparent lack of
fossil evidence for fire activity from the Eocene until the mid-
Miocene (e.g., Kershaw et al., 2002). Keeley et al. (2012) discuss
possible reasons for the poor match between fossils and phy-
logenies and note that much of the burning may have taken
place in drier upland vegetation with low probabilities of fossil
formation.

In pyrophytic woody vegetation of both the Cape region of
Africa and Australia, there are ancient lineages that occur in fire

prone vegetation dating to the early Cenozoic or even the Creta-
ceous (reviewed in Linder, 2005,Verboom et al., 2009 for the Cape;
Crisp and Cook, 2013 for Australia). However, in both regions
there is also evidence for lineages in flammable shrublands that
radiated from the late Miocene. An early origin of some flammable
lineages is to be expected if, as suggested by Bond and Scott (2010),
the spread of Cretaceous angiosperms was promoted by fire. Pale-
ocene fires from fossil charcoal studies have been reported as
common and essentially unchanged from the fiery world of the
Cretaceous (Collinson et al., 2007; Belcher et al., 2013). This all
changed from the Eocene (55 Ma) according to the general fossil
record with the development of very extensive closed forests which
would have shaded out fire-adapted flammable plants (Willis and
McElwain, 2002). Nevertheless, fossil evidence for open, non-
forested ecosystems, though rare, does exist in the fossil record
of the Eocene (Keeley et al., 2012).

EDAPHIC GHETTOS
One of the puzzling features of C4 grass evolution is the long
time lag between their origins in the Oligocene (30 Ma+; Christin
et al., 2008; or earlier; Urban et al., 2010) and their much later
Miocene–Pliocene assembly and spread as the savanna biome (7–
8 Ma; Cerling et al., 1997). Where were they in the 20+ million
years before savannas become visible in the fossil record? A similar
question can be asked for flammable shrublands and related woody
vegetation which had fiery beginnings in the Cretaceous through
to the Paleocene but then all but disappeared for 40+ million years
until their renaissance in the last 10 Ma.

Fire is not the only factor accounting for low open ecosys-
tems in climates that also support closed forests. Extreme soils,
‘edaphic ghettos’ where trees do not grow, provide habitat for
open ecosystems. Noss (2012) has reviewed the diverse nature
of soil types hostile for tree growth in the south-eastern USA
where edaphic grasslands contribute to the very high diversity
of the region. Grassland refugia include soils too shallow to sup-
port trees or with claypan layers or that are seasonally waterlogged
thus restricting root growth. In shallow rocky soils, such as those
of the mountains in the Southwest Cape of South Africa, tree
growth is also restricted by shallow rooting depth. Heavy clay
soils (vertisols) exclude trees, for example in parts of the southern
USA (Noss, 2012) and Northern Australia (but less so in Africa).
Forests also tend to occur on more nutrient rich soils than open
flammable ecosystems and nutrient constraints on tree growth
are often cited to explain the presence of non-forested ecosystems
in wet, warm climates. However, an analysis of nutrient stocks
required to build a forest (Bond, 2010) found no evidence for
absolute nutrient constraints on forest formation except on very
shallow soils where physical constraints on rooting depth would
also limit forest development through both nutrient limitation
and soil aridity. Edaphic ghettoes may have been key habitats sup-
porting shade-intolerant pyrophytic plants when environmental
conditions generally favored closed forests. In the Cape region, for
example, it has been suggested that fynbos shrublands persisted in
otherwise forested landscapes throughout the Cenozoic on shal-
low, rocky, nutrient-poor soils of the Cape mountains (Linder,
2003; Verboom et al., 2009; Hoffmann et al., in press). However, as
Keeley et al. (2012) have argued, pyrophytic vegetation may also
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have been invisible in the fossil record because of taphonomic
biases against fossil formation in drier uplands where fires were
most likely to burn.

If fire activity showed a widespread increase in the late Neo-
gene, as suggested by the charcoal record (Figures 2–4), then
there should be phylogenetic markers indicating the expansion
of flammable shrublands into habitats previously occupied by
closed fire-resistant forests. As discussed earlier, phylogenetic sig-
nals of changing biome extent are subtle and harder to detect
than the origin of a new biome. If habitats opened up by fire
exposed plants to the same climate and soil conditions as in their
ancestral refugium, there would be little selection pressure for
diversification. Indeed speciation rates might decline as previ-
ously fragmented patches coalesce promoting gene flow (Linder,
2008; Bouchenak-Khelladi et al., 2014). If, however, new habitats
were opened up as forests retreated, with different soils and cli-
mate conditions, then speciation would be expected to increase
so that the newly exposed habitat would support more recently
derived lineages. This kind of reasoning has been applied to the
Cape flora. Fossil evidence suggests lowland vegetation along the
coastal regions was forest and woodland or at least a mosaic of
forest and fynbos until the mid-Miocene (Coetzee and Rogers,
1982; Coetzee and Muller, 1984; Carr et al., 2010; Roberts et al.,
2011, 2013). The lowland forests retreated and were replaced
by flammable shrublands though dates are uncertain (see e.g.,
Carr et al., 2010; Roberts et al., 2013). The change from lowland
forests and woodlands to pyrophytic fynbos shrublands is usu-
ally attributed to climate change and especially the appearance of
winter-wet/summer-dry Mediterranean climate (e.g., Goldblatt
and Manning, 2002). Another suggestion is that new geological
substrates were exposed linked to Late Cenozoic geomorphologi-
cal changes (Cowling et al., 2009). However, if fires became more
frequent and more severe as a result of a more predictable, intense
dry season, then forests would be likely to retreat exposing new
land surfaces for fynbos colonization.

Hoffmann et al. (in press) analyzed speciation in 11 Cape clades
in relation to climate (aridity, seasonality) and geological substrate.
They found that the upland flora on oligotrophic quartzites was
ancient and generally associated with aseasonal mesic climates.
However, the lowland flora shows evidence for rapid radiation
of clades in response to the development of seasonal climates
(and not aridity per se) and exposure of new soil types dating
from the Late Miocene (∼7–8 Ma). This pattern is consistent with
increased fire activity from the Late Miocene promoting the spread
of flammable shrublands from their mountain refugia into the
Cape lowlands replacing lowland forests and woodlands. The rel-
ative importance of direct effects of rainfall seasonality on trees
versus the indirect effects of fire on forest distribution is poorly
understood.

SUMMARY OF FIRE IN THE CENOZOIC
Contrary to the terrestrial fossil record, fires continued to burn
throughout the Cenozoic based on phylogenetic evidence from
Mediterranean shrublands and sclerophyll ecosystems in Australia.
Fires probably also burnt patches of edaphically maintained grass-
lands, including those with a significant C4 component. Both
the marine charcoal data and the phylogenetic evidence indicate

increasing fire activity from the middle and especially the late
Miocene. This is especially true for savannas of the tropics and
subtropics as emphasized by Keeley and Rundel (2005). The late
Cenozoic increase in fire activity occurred in widely separated
geographic regions. It occurred in savannas with grassy fuels but
also in shrublands and woodlands with woody fuels. The appar-
ent synchrony of increased fire activity in low latitudes with the
appearance of traits adaptive to frequent surface fire regimes is
consistent with hypotheses invoking fire as a key driver of savanna
expansion (Keeley and Rundel, 2005; Beerling and Osborne, 2006;
Scheiter et al., 2012). Our world is not a low fire world as suggested
by the inertinite record and scarcity of terrestrial charcoal over
much of the Cenozoic. Fires became much more frequent from
∼10 Ma. Contemporary flammable biomes of the world began
to spread from this time. In the case of savannas, and related C4
dominated grasslands, this process continued with new areas being
converted as recently as the last 2–3 Ma.

CAUSES OF INCREASED FIRE ACTIVITY
There has been intense interest in the causes of the rapid rise of
the savanna biome from ∼8 Ma (Ehleringer et al., 1997; Keeley and
Rundel, 2005; Osborne, 2008, 2011; Edwards et al., 2010; Scheiter
et al., 2012). This review of fossil and phylogenetic data supports
the hypothesis that increased fire activity was a major factor pro-
moting the spread of C4 grasslands at the expense of forests. To
the savannas, we can also add southern flammable shrublands and
associated Australian woodlands. The problem, now, is how to
explain the surge of fire activity from the late Miocene in so many
different geographic regions.

Several studies have attributed variation in fire activity in dif-
ferent geological periods to changes in atmospheric oxygen. There
are no widely accepted direct proxies for ancient oxygen so that
its changing contribution to the atmosphere has to be estimated
from geochemical models (Berner, 2006, 2009; Bergman et al.,
2004; Lenton, 2013). These models vary in their reconstruction
of atmospheric oxygen in the Cenozoic but two of the most widely
cited studies simulate declining oxygen from high levels in the Cre-
taceous to present atmospheric levels of 20.9% (Bergman et al.,
2004; Berner, 2009). Thus, if the models are to be believed, the
late Neogene increase in fire activity is not linked to increasing
oxygen.

Climate change is by far the most common explanation for
vegetation change in the past. For example, the expansion of Cape
fynbos at the expense of forests has been attributed to the onset
of Mediterranean climates with their wet winters and summer
droughts (Goldblatt and Manning, 2002). So can increased fire
activity from the late Miocene be attributed to changing climates?
The general increase in aridity through the Neogene associated
with cooling (Pagani et al., 1999; Zachos et al., 2001) would not
promote fires if the vegetation became too sparse to support fires
(see e.g., Krawchuk and Moritz, 2011; Hoetzel et al., 2013). Keeley
and Rundel (2005) argued that the development of monsoonal
climates with wet summers and dry winters promoted frequent
fires which triggered the expansion of savannas. A reliable wet
season promotes rapid plant growth (fuel) while a long dry season
creates dry fuels conducive to burning. A long dry season emerged
as a major climate predictor, after annual rainfall, in an analysis of
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determinants of savanna distribution on the southern continents
(Lehmann et al., 2011). The wet–dry climate is not essential for
savannas – some, such as the pine savannas of the south-eastern
USA, occur in non-seasonal rainfall regions (Noss, 2012).

Keeley and Rundel (2005) cited the emergence of the Asian
monsoon in the Late Miocene as evidence for a change towards
the wet/dry cycle needed to promote savannas. However, diverse
lines of evidence suggest that the Asian monsoon began to develop
earlier in the Miocene (Sun and Wang, 2005; Osborne, 2011). The
monsoonal climate hypothesis would also require near simultane-
ous onset of seasonality in diverse geographic regions in different
climatic settings. There is, indeed, growing evidence for a global
monsoon with teleconnections across continents that would influ-
ence rainfall seasonality in widely divergent areas (Trenberth et al.,
2000; Wang et al., 2012). The paleo-history of this global climate
phenomenon is a subject of current research (Huber and Goldner,
2012) but the phenomenon is still too poorly known to link to the
emergence of high fire activity from the late Miocene. The mon-
soon is traditionally viewed as a low latitude phenomenon while
the evidence reported here indicates that the surge of fire activity
in the late Neogene also occurred at mid-latitudes. In the Cape
region of South Africa, the onset of Mediterranean-type climates
is usually attributed to the development of the cold Benguela cur-
rent (e.g., Dupont et al., 2011; Hoffmann et al., in press). Thus
the seasonality hypothesis is a reasonable one from our current
knowledge of controls on fire regimes (e.g., Krawchuk and Moritz,
2011) but our understanding of changes in global climates that
might have caused a global change in fire regimes is still too
rudimentary to provide a strong case for climate as the main
cause.

Beerling and Osborne (2006) suggested that savanna fires
would trigger positive feedbacks on the atmosphere causing cli-
mates to change in ways that would further promote the spread of
savannas. An analogy would be a room full of explosive gases just
waiting for a match. The problem with the hypothesis is explain-
ing the apparent synchrony of increased fire in diverse geographic
regions some of which are isolated from each other by ocean bar-
riers (e.g., Figure 6 for African and South American savannas).
The analogy would be arsonists carefully distributed in all suitable
regions and all striking their matches at the same time.

Changing atmospheric CO2 has emerged as a potential global
driver of vegetation change. CO2 is well mixed in the atmosphere
so that changes in CO2 are experienced globally. Ehleringer et al.
(1997) argued that C4 grasses would have gained a photosynthetic
advantage over their C3 predecessors when atmospheric CO2 fell
below 500 ppm, beginning in the tropics in the late Miocene.
Subsequent studies of paleo-atmospheres have shown that CO2

first fell below this threshold in the Oligocene 20+ millions of
years before the spread of savannas (Pagani et al., 1999; Beerling
and Royer, 2011; Zhang et al., 2013) leading to the rejection of
the CO2 hypothesis for savanna spread. However, a recent study
using novel marine algal proxies indicates a steep decline in CO2

from ∼7 Ma (Bolton and Stoll, 2013) consistent with the origi-
nal idea. The photosynthetic mechanism proposed by Ehleringer
et al. (1997) would matter most for plants with the same growth
form such as C3 versus C4 grasses. However changing CO2 can
also alter the balance between herbaceous and woody plants as

a result of their divergent responses to fire (Bond and Midgley,
2000; Bond et al., 2003b). Under low CO2 conditions, grasses can
recover from a fire with enough biomass to burn again much more
rapidly than woody plants can recover sufficient above and below
ground biomass to resist a follow-up fire (Bond et al., 2003b).
The consequence is that trees damaged by fire will recover more
slowly, and forest saplings colonizing flammable communities will
grow more slowly leading to a retreat of forest boundaries. Woody
plant growth rates are a key feature of current conceptual mod-
els for the stability of forest/savanna boundaries (Hoffmann et al.,
2012) but CO2 effects have yet to be quantified. Both simulation
studies and experiments have shown strong CO2 effects on tree
populations with elimination of trees in savannas at CO2 levels
characteristic of the last glacial if fires continued to burn (Bond
et al., 2003b; Kgope et al., 2010; Bond and Midgley, 2012 and see
Quirk et al., 2013 for CO2 /drought interactions). The minimum
threshold at which a CO2 effect on trees would be expressed as a
retreat of the forest boundary is not yet known. The few exper-
imental studies suggest it is lower than the 500 ppm threshold
for C4 versus C3 photosynthetic advantage (Kgope et al., 2010;
Quirk et al., 2013). An exploration of woody plant response to
low CO2 as the key to fire-driven savanna expansion might be
warranted, especially if CO2 concentrations showed a declining
trend (below 500 ppm) from the late Miocene. Uncertainties over
the accuracy of CO2 proxies limit paleoecological tests (Bolton
and Stoll, 2013; Zhang et al., 2013). Inverse modeling of CO2

over the last 20 Ma based on isotopic records of ocean temper-
atures calculated CO2 trending below 400 ppm from ∼12 Ma,
below 350 ppm from ∼8 Ma and below 300 ppm from ∼3 Ma
(van de Wal et al., 2011).

CONCLUSION
This review of fossil and phylogenetic evidence of fire in the Ceno-
zoic points to a long period of relatively low fire activity from
the Eocene (starting 55 Ma) followed by a surge of fire activity
within the last 10 million years. There is a puzzling degree of
synchrony in the late onset of fire activity in different flammable
ecosystems and in widely separated geographic regions. Terres-
trial fossil records suitable for exploring Cenozoic fires are few
and far between. Marine charcoal records are likely to be particu-
larly useful in filling in the large gaps in the Cenozoic fire record.
Phylogenetic analyzes have emerged as a very useful supplement
tracing the history of pyrophytic lineages and at this stage suggest
a disconnect between terrestrial records of fire and the origin and
proliferation of fire traits. However, ecological interpretation can
be difficult for both fossil and phylogenetic data. For the latter
more thought needs to be given for how diversification patterns in
phylogenies can be linked to changes in the extent of the habitat
which generates the novel selective environments. Explanations
for the changing importance of fire in the Cenozoic expose our
limited understanding of the causes of fire in deep time. None of
the usual suspects (evolution of new plants and new fuels, chang-
ing oxygen, changing climate) seem plausible. The plants that built
new fire-dependent biomes were present many millions of years
before they began to expand under increased fire activity. Fire
activity increased when models predict that oxygen was declin-
ing. Regional climate change is not a sufficient explanation for the
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expansion of fire-dependent ecosystems when the phenomenon
appears to be global. I hope the omissions and commissions of this
review will help stimulate further work on the intriguing history
of fire and pyrophytic vegetation in the Cenozoic.
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