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Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catechol oxidase
activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be
localized to plastids. As a class, they have broad substrate specificity and are associated
with browning of produce and other plant materials. Because PPOs are often induced
by wounding or pathogen attack, they are most generally believed to play important
roles in plant defense responses. However, a few well-characterized PPOs appear to
have very specific roles in the biosynthesis of specialized metabolites via both tyrosinase
(monophenol oxidase) and catechol oxidase activities. Here we detail a few examples of
these and explore the possibility that there may be many more “biosynthetic” PPOs.
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Polyphenol oxidases (PPOs) are copper containing enzymes that
are nearly ubiquitous among plants (Mayer, 2006). They have
catechol oxidase activity (oxidation of o-diphenols to their cor-
responding o-quinones, EC 1.10.3.1) and many also have the
ability to hydroxylate monophenols to o-diphenols (tyrosinase, EC
1.14.18.1; Marshall and Yoruk, 2003; Mayer, 2006). Throughout
this review, the term tyrosinase will refer to the enzyme activ-
ity that oxidizes monophenols to o-diphenols. In the literature,
the designation “PPO” sometimes includes laccases (EC 10.3.2).
These copper containing enzymes are capable of oxidizing a wide
range of aromatic compounds (including some utilized by PPO as
defined above) and in plants are thought to have roles in radical
coupling of monolignols to form lignin and flavanoid polymer-
ization in the cell wall [see Mayer and Staples (2002) and the
introduction of Turlapati et al. (2011) for reviews of laccase func-
tion in higher plants]. In the remainder of this review, laccases
are not considered in the discussion of PPOs in plant specialized
metabolism.

In plants, PPOs are perhaps best know for their role in post har-
vest browning: secondary reactions of PPO-generated o-quinones
with cellular nucleophiles lead to the familiar discoloration of
fresh produce and other plant materials (Vamos-Vigyazo, 1981).
In some cases, these quinone reactions may be useful: for
example in the so-called fermentation process in tea production
(Subramanian et al., 1999) or in helping to preserve protein in for-
age crops (Lee et al., 2004; Sullivan and Hatfield, 2006). Generally,
however, such browning reactions are thought of as a negative
in food processing. Consequently, much research on PPO has
been driven by this aspect of the enzyme. Because many PPOs are
induced by wounding or pathogen attack, it has long been sug-
gested that PPOs may play a role in defense responses. Indeed, it
has been shown that PPO plays such a role in tomato (Thipyapong
et al., 2004). Nonetheless, exactly what roles this nearly ubiquitous

enzyme plays in normal plant growth and development are largely
unknown. Because some PPOs have tyrosinase (hydroxylation of
a monophenol to an o-diphenol) activity, it had long been sug-
gested that PPO was responsible for the production of caffeic acid
from p-coumaric acid (see for example Vaughan and Butt, 1969). It
now seems likely that most plants actually use a cytochrome P450
enzyme for this conversion in vivo (Schoch et al., 2001; Franke
et al., 2002). Still, the enzymatic properties of PPOs are poten-
tially capable of providing important functions in plant specialized
metabolism. Here we present a few cases where tyrosinase and/or
catechol oxidase activities of specific PPOs have been proposed or
demonstrated to have a crucial role in some aspect of plant spe-
cialized metabolism. Are these cases exceptional, or the tip of the
iceberg?

BETALAIN BIOSYNTHESIS
There are several steps in betalain biosynthesis that might utilize
either the tyrosinase and catechol oxidase activities of PPO (see
Gandia-Herrero and Garcia-Carmona, 2013 for a detailed review).
The first step in betalain biosynthesis is conversion of tyrosine
to L-DOPA (L-3,4-dihydroxyphenylalanine; Figure 1A). The
resulting L-DOPA can be a substrate for DOPA 4,5-dioxygenase
(DODA) that cleaves DOPA’s aromatic ring to form 4,5-seco-
DOPA. The cleavage product spontaneously rearranges to form
betalamic acid, which can condense with amino acids or other
amine groups to form yellow betaxanthins. Condensation of
betalamic acid with cyclo-DOPA forms the red betacyanin pig-
ments. The catechol oxidase activity of PPO could be involved
in the oxidation of DOPA to DOPA quinone that can sponta-
neously rearrange to form the cyclo-DOPA moiety of the red
betacyanin betalains (see Gandia-Herrero and Garcia-Carmona,
2013 and references therein). However, recently a cytochrome
P450, CYP76AD1, has been identified in beet via a bioinformatic
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FIGURE 1 | Involvement of polyphenol oxidases (PPOs) in plant

specialized metabolism. Steps where PPO involvement has been
demonstrated or proposed are highlighted in red. For simplicity, not
all reactants, enzymes, or stereochemistry are shown. Steps that
occur spontaneously (not mediated by an enzyme) are indicated.
(A) Betalain synthesis as described by Hatlestad et al. (2012),
Gandia-Herrero and Garcia-Carmona (2013), and others. DODA, DOPA
4,5-dioxygenase; CYP76AD1, the cytochrome P450 described by

Hatlestad et al. (2012). The reaction mediated by CYP76AD1 likely
proceeds via a DOPA quinone intermediate (Gandia-Herrero and
Garcia-Carmona, 2013). (B) Proposed tyrosine metabolism in walnut
(Araji et al., 2014). Values in parentheses are fold change in
metabolite in walnut plants with PPO silenced via RNAi relative to
wild type control plants as reported by Araji et al. (2014). Tyrosine
levels did not change and L-DOPA itself was not detectable.

(Continued)
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FIGURE 1 | Continued

(C) 3,3′-Dihydroxylarreatricin biosynthesis in creosote bush as
proposed by Cho et al. (2003). L3′H, larreatricin 3′-hydroxylase.
(D) (i) Aureusidin biosynthesis in A. majus as proposed by
Nakayama et al. (2001). AS, aureusidin synthase (here, a vacuolar

PPO); THC, 2′,4′,6′,4-tetrahydroxychalcone; PHC, 2′,4′,6′,3,4-
pentahydroxychalcone. For simplicity, bracteatin formation from PHC
by AS is not shown. (ii) Sulfuretin biosynthesis in C. grandiflora
as proposed by Kaintz et al. (2014). AS, aurone synthase (here, a
plastidic PPO).
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approach that appears to carry out this reaction in vivo and can
compliment the R mutant (produces yellow, but not red pig-
ment) in beet and other species (Hatlestad et al., 2012). It has
been suggested that CYP76AD1 could also be responsible for
the initial tyrosine to L-DOPA oxidation as well. If this is the
case in beet, however, the activity would be redundant with
another, since silencing of CYP76AD1 results in loss of red,
but not yellow pigments whose formation do not require cyclo-
DOPA formation (Hatlestad et al., 2012). For the most part, the
tyrosinase activity of PPO has been presumed to be the enzyme
that mediates the initial tyrosine to L-DOPA conversion. Many
studies show a correlation between tyrosinase enzyme activity
and/or PPO gene expression and betalain pigment formation
(see Steiner et al., 1999; Chang-Quan et al., 2007; Gao et al., 2009,
for example). Further, a betaxanthin pathway can be recreated
in tobacco cells using fungal PPO to carry out the tyrosine to
L-DOPA step (Nakatsuka et al., 2013). However, transcriptome
analysis in beet did not find the abundance of PPO transcripts that
might be expected for high betalain production (Hatlestad et al.,
2012), nor to our knowledge have PPO gene silencing experiments
demonstrated a role for PPO in vivo. Thus, despite longstanding
speculation that PPO is involved in betalain biosynthesis, its role
in cyclo-DOPA formation seems unlikely, and definitive demon-
stration of a role in the initial conversion of tyrosine to L-DOPA
in vivo is lacking.

TYROSINE METABOLISM IN WALNUT
Although a role for PPO in L-DOPA formation in betalain biosyn-
thesis is far from clear, work by Araji et al. (2014) in walnut does
support PPO-mediated conversion of tyrosine to L-DOPA, at least
in some species. In walnut (Juglans regia), PPO is encoded by a
single gene and has been demonstrated to have both tyrosinase
and catechol oxidase activity (Escobar et al., 2008). To examine
the in vivo function of PPO in walnut, Araji et al. (2014) created
several RNAi transgenic lines that showed >95% reductions in cat-
echol oxidase activity relative to wild type controls. When placed
in soil, these plants had a striking phenotype: they developed
disease-like necrotic lesions. Despite the lesions, no pathogens
could be identified from the leaves. Levels of salicylic acid, H2O2,
or malondialdehyde (an indicator of oxidative damage), previ-
ously associated with other lesion-mimic mutants (Lorrain et al.,
2003), were not significantly different in the PPO-silenced leaves
compared to those of wild type leaves. Metabolomic analysis of
PPO-silenced and wild type leaves did reveal significant differences
in many metabolites, however, particularly phenylpropanoids.
Especially striking were changes in levels of compounds associated
with tyrosine metabolism (Figure 1B; Araji et al., 2014). Com-
pared to wild type leaves, those from PPO-silenced plants, had
massively increased levels of tyramine (nearly 10-fold), a primary
metabolite of tyrosine, and substantial increases in tocopherols
(∼twofold), secondary metabolites of tyrosine. Conversely, lev-
els of metabolites that would be expected to be derived from the
3-hydroxylation of tyrosine or tyramine (both good substrates
for the tyrosinase activity of walnut PPO in vitro) were markedly
reduced in PPO-silenced plants. Although L-DOPA was unde-
tectable in both PPO-silenced and wild type walnut plants, levels
of dopamine (derived from either L-DOPA or tyramine) and 5,6

dihydroxyindole (derived from L-DOPA) were reduced approx-
imately 6- and 100-fold, respectively, in PPO-silenced plants
relative to wild type controls (Figure 1B). Because the enzyme
involved in 3-hydroxylation of these compounds had not been
previously identified, the authors proposed that the simplest inter-
pretation of the metabolomic results is that walnut PPO is the
enzyme that mediates 3-hydroxylation of tyrosine and tyramine
(Araji et al., 2014). Thus, silencing of PPO would be expected
to result in increased accumulation of those tyrosine metabolites
that do not undergo 3-hydroxylation such as tyramine and the
tocopherols and decreased accumulation of metabolites derived
from L-DOPA or tyramine. Further, the authors were able to
demonstrate that the necrotic lesion phenotype of the PPO-
silenced plants was almost certainly due to the accumulation of
tyramine: incubation of petioles of detached wild type leaves in
tyramine solution could phenocopy the necrotic lesions (Araji
et al., 2014). Another metabolite that was dramatically decreased
in PPO-silenced plants was esculetin. Although biosynthesis of
this compound is not well understood, this observation is consis-
tent with previous suggestion of the involvement of a chloroplast
localized phenolase (Sato, 1967). More definitive demonstration
of a central role of walnut PPO in tyrosine metabolism and
esculetin biosynthesis in walnut might require approaches such
as radioactive pulse labeling. It will be interesting to see how
widespread this role of PPO in tyrosine metabolism is, especially
in species whose PPO enzymes have been shown to have tyrosinase
activity.

BIOSYNTHESIS OF 8-8’ LINKED LIGNANS IN CREOSOTE BUSH
Another likely case of the tyrosinase activity of a PPO being
involved in biosynthesis of a specialized metabolite is in the
formation of 8-8′ linked lignans in creosote bush (Larrea tri-
dentata). Many of these compounds from creosote bush, e.g.,
nordihydroguaiaretic acid (NDGA), have a number of bioac-
tive properties including antiviral (Craigo et al., 2000), anticancer
(McDonald et al., 2001) and allelopathtic properties (Elakovich
and Stevens, 1985). Cho et al. (2003) used a combination of
radiolabeled precursor experiments and metabolite identifica-
tion to investigate the pathway of formation of NDGA and
related compounds. Focusing on one of the steps, they postu-
lated aromatic ring hydroxylation of larreatricin to form 3′ or
3-dihydroxylarreatricin (Figure 1C). A protein preparation from
creosote bush was found to be capable of this activity, form-
ing the 3′- and 3-hydroxylarreatricin compounds in a ratio that
favored the 3′ compound by ∼seven fold. The larreatricin 3′-
hydroxylase activity was purified to apparent homogeneity and
showed enantiospecific hydroxylation, converting (+)-larreatricin
to the corresponding (+)-3′-hydroxylarreatricin, but not the
(−)-enatomer. Peptide sequencing of the purified hydroxylase
identified fragments with high homology to conserved domains
of PPOs from other plant species. The peptide sequence data
further allowed cloning and sequencing of a full length cDNA
corresponding to the L. tridentata PPO. Like most plant PPOs,
the L. tridentata PPO contains N-terminal sequences that would
predict its localization to the chloroplast thylakoid lumen sug-
gesting at least some of the steps of the synthesis of NDGA
and related compounds take place in plastids. Unfortunately, in
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this study, reverse genetics (e.g., a gene silencing experiment)
was not (or could not) be done nor was a recombinant protein
product (e.g., produced in Arabidopsis, which lacks an endoge-
nous PPO) characterized to more conclusively demonstrate the
L. tridentate PPO gene product acts as the (+)-larreatricin 3′-
hydroxylase in vivo. Nonetheless, the apparent homogeneity of
the (+)-larreatricin 3′-hydroxylase purified from L. tridentate and
its enantio-specificity for (+)-larreatricin are compelling. Unfor-
tunately, there appears to have been relatively little further work on
this pathway or characterization of the L. tridentate PPO. It would
be interesting to know, for example, whether this same PPO medi-
ates a second hydroxylation to form 3,3′-dihydroxylarreatricin
(Figure 1C), and if not, what enzyme carries out that reaction.
Does this PPO also form quinones from hydroxylarreatricins and
under what conditions? Would such activities have any biological
implications?

AURONE BIOSYNTHESIS
One of the most interesting and well-studied cases of PPO
having a role in biosynthesis of specialized metabolites is
the biosynthesis of the chalcone-derived yellow aurone pig-
ments in snapdragon (Antirrhinum majus) flowers. It had been
found that aurones (aureusidin and bracteatin) were formed
from 2′,4′,6′,4-tetrahydroxychalcone (THC) or 2′,4′,6′,3,4-
pentahydroxychalcone (PHC) upon incubation with extracts of
yellow snapdragon flowers (Sato et al., 2001). The enzyme respon-
sible, aureusidin (or aurone) synthase (AS), was purified to
homogeneity from yellow snapdragon buds (Nakayama et al.,
2000). Peptide sequencing of the purified enzyme allowed iso-
lation and characterization of a cDNA encoding the enzyme. The
predicted protein sequence showed high homology to other plant
PPO enzymes. Expression of the gene corresponded to aurone
accumulation (e.g., it was expressed in yellow flowers, but not in
white or red flowers, nor in leaves) and expression developmentally
coincided with levels of AS activity. Further, in vitro, tyrosinase
from Neurospora crassa could also convert THC to aureusidin,
indicating that the enzymatic activities of PPO are involved in
the biosynthetic conversion. Subsequent detailed studies of AS
substrate specificity allowed elucidation of a likely mechanism
of aurone formation from THC or PHC involving both tyrosi-
nase and catechol oxidase activities of the AS PPO (Figure 1Di;
Nakayama et al., 2001). Starting with THC, tyrosinase and catechol
oxidase activity result in 3-hydroxylation and formation of the
corresponding o-quinone. Whether AS PPO carries out the 3-
hydroxylation reaction in vivo, or whether a cytochrome P450
chalcone 3-hydroxylase (as described below for Coreopsis grandi-
flora) is also involved has not been definitively established. AS likely
forms the same quinone from PHC without the need for the 3-
hydroxylation step. The resulting quinone is predicted to undergo
a 2-step non-enzyme mediated rearrangement to form aureu-
sidin (Nakayama et al., 2001). Although the major product formed
from PHC by AS is the 3′,4′-hydroxylated aureusidin, smaller
amounts (approximately 1/6 as much) of the 3′,4′,5′-hydroxylated
bracteatin are also formed (not shown in Figure 1Di), suggest-
ing AS is capable of adding a 5-hydroxyl to the PHC substrate.
The 5′-hydroxylation of aureusidin by AS can be ruled out as the
mechanism of bracteatin formation since incubation of aureusidin

with AS failed to produce the product. AS was also unable to
oxidize aureusidin to its corresponding quinone, nor could it oxi-
dize several other mono and o-diphenolic compounds, such as
tyrosine, p-coumaric acid, L-DOPA, caffeic acid, or eriodictyol,
suggesting a relatively strict substrate specificity (Nakayama et al.,
2001). One of the most novel aspects of the A. majus AS PPO
is that it lacks the usual chloroplast targeting information that
is common to most characterized PPOs (Nakayama et al., 2000).
Subsequent studies using density gradient fractionation and GFP-
fusions with AS sequences demonstrated that AS is localized to
vacuoles, where 4′-glucosides of the chalcone substrates, which
may be the native substrates for AS, are also localized (Ono et al.,
2006b). Consistent with this, Ono et al. (2006a) were able to pro-
duce aurones in flowers normally lacking them by expressing
both the A. majus AS gene and a gene encoding chalcone 4′-
O-glucosyltransferase from A. majus. Both genes were required,
leading to the conclusion that chalcones are 4′-glycosylated in the
cytoplasm leading to their transport to the vacuole where they
can serve as substrates for A. majus AS. Recently, Kaintz et al.
(2014) identified a PPO from C. grandiflora whose expression
pattern is consistent with it being responsible for 4-deoxyaurone
formation in this species (Figure 1Dii). Interestingly, the C. gran-
diflora AS PPO has relatively low sequence identity with A. majus
AS PPO, is predicted to be plastid localized, and appears to lack
tyrosinase activity. Consistent with the lack of tyrosinase activ-
ity, the C. grandiflora AS cannot utilize 4-monophenolic chalcone
substrates and it seems likely that a cytochrome P450 chalcone
3-hydroxylase produces the 3,4-dihydroxy chalcones utilized by
this AS (Schlangen et al., 2010; Kaintz et al., 2014). The plas-
tidic versus vacuolar nature of the C. grandiflora and A. majus
AS enzymes, respectively, indicate differences in the cell biology
of aurone formation in these two systems, despite sharing some
underlying PPO-mediated-chemistry.

CONCLUDING REMARKS
The above examples could represent the tip of the iceberg with
respect to PPO enzymes that have specific roles in biosynthesis of
specialized metabolites. Much work on PPOs has focused on their
negative impact on food quality due to the browning reactions
they promote. It could be that most of these characterized “food
quality” PPOs are involved in general defense responses, leaving
the impression that most PPOs are not particularly specialized.
In two of the cases above, the specialized roles of the PPOs were
identified in the course of research focused on a particular aspect
of specialized metabolism. There, relatively laborious approaches
led to the identification of the PPOs involved. For example, for
both larreatricin 3′-hydroxylase (Cho et al., 2003) and A. majus
AS (Nakayama et al., 2000), multistep protein purifications utiliz-
ing large amounts of plant tissue identified these PPO enzymes
(for AS, 90 μg of enzyme was purified from 32 kg of snap-
dragon buds!). Bioinformatics approaches will almost certainly
facilitate identifying these specialized PPOs in the future. For
example, in an analysis of PPO gene families from land plants
whose genomes had been sequenced, Tran et al. (2012) identi-
fied 17 out of 83 PPO genes which lacked a chloroplast targeting
signal and instead had either secretory pathway or unknown
intracellular targeting. Although some of these could certainly
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be involved in defensive responses, such as seed defense (Ander-
son et al., 2010; Fuerst et al., 2014), it is intriguing to think that
some represent PPOs involved in very specific processes includ-
ing specialized metabolism, like the vacuolar targeted A. majus
AS (Ono et al., 2006b). As they are becoming more routine,
transcriptomic, metabolomic, and proteomic analyses could also
provide useful information related to PPO function as was the
case for walnut PPO discussed above. These types of analyses
can provide answers to questions such as whether expression of
a given PPO is tightly correlated with a phenotype of interest
or whether a particular PPO is present in the subcellular com-
partment where a specific biosynthetic reaction is thought to
occur. Thus genomics data, combined with other bioinformatic
approaches, will almost certainly facilitate better understanding
of PPO function in general, and the roles specific PPOs may play
in specialized metabolism.
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