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Does elevated CO2 alter silica uptake in trees?
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Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact,
atmospheric concentrations of carbon dioxide (CO2) have increased 40% over the last
century and the amount of N cycling in the biosphere has more than doubled. In an
effort to understand how plants will respond to continued global CO2 fertilization, long-
term free-air CO2 enrichment experiments have been conducted at sites around the globe.
Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake
of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda
(loblolly pine), and five hardwood species. Specifically, we measured foliar biogenic silica
concentrations in five deciduous and one coniferous species across three treatments: CO2
enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends
in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2
and N fertilization. However, two-thirds of the tree species studied here have Si foliar
concentrations greater than well-known Si accumulators, such as grasses. Based on net
primary production values and aboveground Si concentrations in these trees, we calculated
forest Si uptake rates under control and elevated CO2 concentrations. Due largely to
increased primary production, elevated CO2 enhanced the magnitude of Si uptake between
20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has
important implications for Si export from terrestrial systems, with the potential to impact
C sequestration and higher trophic levels in downstream ecosystems.
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INTRODUCTION
We are currently conducting a global experiment by exposing
Earth’s biosphere to atmospheric carbon dioxide (CO2) concen-
trations unseen since the early Miocene, some 23 million years ago
(Pearson and Palmer, 2000). From the start of the Industrial Rev-
olution we have increased CO2 concentrations by approximately
40% (Pearson and Palmer, 2000) and in the spring of 2014 CO2

levels officially exceeded 400 ppm at the Mauna Loa Observatory
(NOAA, 2014). This grand experiment will continue for the fore-
seeable future, as over the next century CO2 concentrations are
expected to increase further (IPCC, 2013).

The impact of increased CO2 concentrations on the terres-
trial biosphere has received much research attention over the last
several decades. In particular, recent research has focused on how
plants have and will respond to rapid CO2 concentration increases
in combination with other regional and global climate changes,
including warming air temperature and increased N availability
(Norby and Luo, 2004; Ainsworth and Long, 2005; Bernhardt et al.,
2006; Finzi et al., 2006). Among numerous other impacts, CO2

enrichment can also alter plant stoichiometry (Loladze, 2002).
Exposure to elevated CO2 concentrations can cause declines in
leaf nutrients, such as N and phosphorus, as well as trace element
concentrations (Taub et al., 2008). The mechanism driving this
decline is unclear but it has been attributed to nutrient limitation,
increased non-structural carbohydrates, lower transpiration rates,
or changes in nutrient allocation patterns (Roberntz and Linder,

1999). A compilation of studies on herbaceous and woody plants
found that elevated CO2 concentrations decreased foliar element
concentrations by up to 15% (Loladze, 2002). Research on rice, a
key global crop, found similar declines in essential elements such
as N, magnesium, and iron. Such declines in plant elemental con-
centrations could have serious repercussions for higher trophic
levels, including exacerbation of human malnutrition (Loladze,
2002). A meta-analysis by Cotrufo et al. (1998a) found that above-
ground N content declined on average by 14% under high CO2

concentrations. Changes in the N content of litter have also been
shown to alter rates of decomposition and thus nutrient cycling
within terrestrial ecosystems (Cotrufo et al., 1998b). However,
changes in foliar elemental composition could also have large-
scale impacts on the cycling and transport of nutrients from land
to the sea.

Silicon (Si) is the seventh-most-abundant element in the uni-
verse and the second-most abundant element in soils, the mineral
substrate for most of terrestrial plant life (Epstein, 1994; Tréguer
and De La Rocha, 2013). In the ocean, Si is a key nutrient
required for diatoms and is used by many species of sponges,
radiolarians, silicoflagellates, choanoflagellates, and even pico-
cyanobacteria (Baines et al., 2012). Of particular importance are
diatoms, as they form the base of many productive marine food
webs and they sequester significant amounts of C to the deep
ocean. In fact, a recent modeling effort contributes 50% of global
ocean productivity to diatoms (Rousseaux and Gregg, 2013). The
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primary source of Si to the ocean is the transport of dissolved
and biogenic silica (BSi; SiO2) via rivers, which together account
for 78% of the net annual Si oceanic inputs (Tréguer and De La
Rocha, 2013). The Si transported by rivers ultimately comes from
the weathering of the lithosphere, which is dependent on com-
plex interactions between climate, geology, and biology (Bluth
and Kump, 1994; Conley, 2002; Derry et al., 2005). Recently there
has been emphasis on the role of biology in altering the timing and
magnitude of Si export, specifically in terms of biological uptake
by terrestrial vegetation (Conley, 2002; Fulweiler and Nixon, 2005;
Gérard et al., 2008; Carey and Fulweiler, 2013b) and the role of
human activities in directly altering watershed Si export (Clymans
et al., 2011; Carey and Fulweiler, 2012a, 2013b; Vandevenne et al.,
2012).

Plants readily absorb dissolved silica (DSi), also known as silicic
acid (H4SiO4), the dominant form of Si in soil solutions (Epstein,
1994). DSi is taken up with water and carried in the transpi-
ration stream where, with the evaporation of water, it becomes
supersaturated and precipitated as BSi or phytoliths (Raven, 2003).
Si provides numerous benefits to vegetation including increased
resistance to bacteria, fungi, and grazers, as well protection from
desiccation and metal toxicity (Hodson and Evans, 1995; Epstein,
1999; Wieczorek et al., 2014). Si is found throughout plants, from
their roots to their shoots, but peak concentrations are gen-
erally observed at the transpiration termini (Canny, 1990). In
fact, Si can compose 10% or more of the dry weight, exceed-
ing those concentrations of well-known macronutrients (i.e., N
and potassium; Epstein, 1994). In turn, the accumulation of Si
by terrestrial vegetation over the seasonal cycle has the capac-
ity to regulate the watershed export of Si to coastal ecosystems
as plants grow and senesce (Fulweiler and Nixon, 2005; Carey
and Fulweiler, 2013b). Alternatively, because BSi is 7–20 times
more soluble than mineral silicates (Cornelis et al., 2010a), plants
may also provide an important source of Si on biological times
scales.

Within this context we wanted to determine if trees exposed
to elevated CO2 concentrations would exhibit a decline in foliar
Si content like those observed for other elements. To do this, we
analyzed BSi concentrations of leaf samples from coniferous and
deciduous trees from the Duke free-air CO2 enrichment (FACE)
experiments in North Carolina. Additionally, we examined Si con-
tent under nitrogen (N) enrichment, as well as under the combined
impact of CO2 and N enrichment. This is the first study to specif-
ically examine the role of CO2 and N enrichment on Si content in
trees.

MATERIALS AND METHODS
The Duke Face experiment is located in a Pinus taeda L. (P.
taeda, loblolly pine) plantation at Duke University in North Car-
olina (35◦58′N, 79◦06′W). This plantation was established in 1983
and is characterized as having moderately low-fertility and acidic
clay loam (McCarthy et al., 2010). In addition to the dominant
pine, deciduous species present include Acer rubrum (A. rubrum,
red maple), Cercis canadensis (C. Canadensis, red bud), Cornus
florida (C. florida, dogwood), Liquidambar styraciflua (L. styraci-
flua, sweet gum), and Ulmus alata (U. alata, winged Elm). Mean
annual precipitation is 1145 mm.

This study was conducted on leaves collected from CO2 and N
enrichment experiments that took place between 1996 and 2006.
The technical details of these studies have been published previ-
ously (e.g., Andrews et al., 2000; Luo et al., 2003; Finzi et al., 2007;
McCarthy et al., 2010). Briefly, triplicate 30 m diameter treatment
plots were exposed to current +200 ppm of CO2 above ambi-
ent during daylight hours in the growing season. Control plots
(n = 3) were treated in a similar manner but with the addition
of ambient air instead of CO2 (McCarthy et al., 2010). In 1998,
two of these plots were divided in half and N fertilization began
(11.2 g N m−2 y−1 as urea). For more detailed information on the
experimental design see http://face.env.duke.edu.

For this analysis we used dried green leaf samples from P. taeda
and the five broadleaf species listed above, collected in 2002–2003
and 2006, respectively. P. taeda samples (n = 31) were separated
and ground into a powder using a mortar and pestle. The pre-
milled deciduous samples (n = 98) each contained composites of
several individuals.

Biogenic Si concentrations were determined using a wet alka-
line chemical extraction in a 1% Na2CO3 solution (Demaster,
1981; Conley and Schelske, 2001). Duplicate samples were weighed
to approximately 30 mg (between 28 and 34 mg) and digested in
flat bottomed polyethylene bottles in a shaker bath at 85◦C and
100 rpm for four hours. We used a Seal AA3 flow injection auto-
analyzer to colorimetrically determine DSi from the BSi aliquots
using the molybdenum blue colorimetric method (Strickland
and Parsons, 1972). Standards made of sodium hexafluorosili-
cate (Na2SiF6) as well as external standards were used throughout
the analysis to check accuracy and were always within 4% of the
expected value. We report all BSi values as %Si by dry weight.

All statistical analyses were completed using JMP Pro 10.0
and significance was judged with an alpha of 0.05. BSi concen-
trations across species and treatments exhibited equal variances
according to several commonly used unequal variance tests
(O’Brien = 0.6385, Brown-Forsythe = 0.3196, Levene = 0.1978).
To explore potential drivers of BSi concentrations we used a linear
mixed effects model to address if the BSi concentrations were dif-
ferent across species and treatment alone and combined. In this
model we treated station as a random effect to assess the poten-
tial random station effects of the block design used at the Duke
FACE experiment. We used an ANOVA to further explore differ-
ences in BSi concentrations across species and followed it by a post
hoc means comparison with Tukey’s test for honestly significant
differences (HSD).

RESULTS
Across all sample types and treatments BSi values ranged from 0.05
to 3.01 %Si dry wt., with a median of 0.82 %Si dry wt. and mean
of 0.98 %Si dry wt. C. florida exhibited the lowest and least vari-
able BSi concentrations, while U. alata had the highest (Table 1;
Figure 1). While some species did exhibit a decline in foliar BSi
concentrations under elevated CO2, we found no statistically sig-
nificant effect of treatment on foliar BSi concentrations (Table 1).
In fact, our least squared model showed no effect of treatments,
station, or treatment by species.

Because of the lack of statistical difference in plant BSi
concentrations across all experimental treatments, we averaged
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Table 1 |The mean foliar biogenic silica (BSi) concentrations (%Si by dry wt. ± SE) under the three treatment types and the control for five

deciduous and one coniferous species at the Duke FACE experimental forest.

Treatment

Species Control CO2 enrichment N enrichment N and CO2 enrichment

(%BSi as Si dry wt.)

Cornus florida (dogwood) 0.07 (±0.01) 0.07 (±0.01) 0.07 (±0.01) 0.08 (±0.01)

Pinus taeda (loblolly pine) 0.97 (±0.07) 0.90 (±0.36) nm nm

Cercis canadensis (red bud) 0.27 (±0.02) 0.19 (±0.00) 0.16 (±0.02) 0.50 (±0.21)

Acer rubrum (red maple) 1.06 (±0.12) 0.91 (±0.08) 0.98 (±0.19) 0.94 (±0.06)

Liquidambar styraciflua (sweet gum) 1.08 (±0.16) 0.95 (±0.05) 0.72 (±0.03) 0.92 (±0.11)

Ulmus alata (winged elm) 2.36 (±0.16) 2.57 (±0.23) 2.17 (±0.11) 1.90 (±0.35)

nm = not measured.

FIGURE 1 | Mean BSi concentrations (as %Si by dry wt.) in ascending

order for the species analyzed in this study. The most simplistic
definition of active Si accumulation in plants is defined as above ground
%Si > 0.46 which is shown here with the dashed line.

BSi concentrations by species. Clear species differences exist
(Figure 1), as the majority of species are statistically different
from one another (p < 0.0001). The exceptions are that P. taeda,
A. rubrum, and L. styraciflua are not statistically different from
each other, but they are statistically different from C. florida,
C. canadensis, and U. alata. U. alata exhibited BSi concentra-
tions statistically higher than all other species (p < 0.0001). In
all cases, except for C. and C. canadensis, the mean Si foliar
content suggests active accumulation (i.e., %Si above 0.46%;
Figure 1).

DISCUSSION
In this study we examined foliar BSi concentrations in five decid-
uous and one coniferous species across three treatments: CO2

enrichment, N enrichment, and N and CO2 enrichment. We
expected to see a decrease in Si content as CO2 increased, com-
pared to the control group, as this phenomenon has been observed
for a range of other elements such as N, phosphorus, iron, and zinc

(Loladze, 2002). In four species (P. taeda, C. canadensis, A. rubrum,
L. styraciflua) we did observe a decline in BSi concentrations
under elevated CO2 but none of them were statistically signifi-
cant (Table 1). The largest decrease of 35% was observed in C.
canadensis while the others ranged from 7 to 15%. These declines
are on par with those reported for essential elements in other plant
species and thus, the lack of significance may simply be due to a
limited sample number. In one species, U. alata, we observed a
small, non-significant increase in BSi concentrations under CO2

enrichment (Table 1). We know of only one other study that exam-
ined the impact of elevated CO2 on plant BSi concentrations. In
that study of cotton (Gossypium hirsutum L.cv. Deltapine 77), the
Si concentrations increased by 26%, although the results were also
not significant (Huluka et al., 1994).

We observed a decline in BSi concentrations in N enriched
trees compared to the control ranging from 8 to 50%, but none
were statistically significant (Table 1). Similarly, no significant
differences between BSi concentration in CO2 enriched vs. N
enriched were found for any of the species. The combined impact
of N and CO2 enrichment again exhibited mixed results. For
three species (A. rubrum, L. styraciflua, U. alata) we observed
BSi declines from 12 to 21% and in one species (C. canaden-
sis) we observed an increase of 60% (Table 1). Previous work
at this same site found no significant differences in leaf N, phos-
phorus, C, lignin, or total non-structural carbohydrates under
elevated CO2 (Finzi et al., 2001). This is in contrast to other stud-
ies that found decreases in N and increases in C concentrations
in other tree species (quaking aspen, Populus tremuloides and
paper birch, Betula papyrifera; Lindroth et al., 2001). Elevated CO2

concentrations also decreased concentrations of N, potassium,
phosphorus, and sulfur in Norway spruce (Picea abies L. Karst;
Roberntz and Linder, 1999). From these and many other stud-
ies, foliar chemistry response to elevated CO2 and N appears to be
site-specific. Additionally, although we did not observe statistically
significant effects, the trends we document may be ecologically
important. For example, Si provides defense against herbivory and
the 15% decline we observed in A. rubrum could impact feeding
preferences of vertebrate and invertebrate consumers. The lack
of significance may be in part driven by our sample numbers
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and thus, a larger study with more data may produce different
results.

Silicon uptake by plants is divided into three broad cate-
gories (active, passive, or rejective). In active accumulation, plants
acquire more Si than they would through water uptake alone. In
rejective accumulation, also known as excluder accumulation, Si
is taken up at a slower rate than water. Finally, in passive accu-
mulation, water and Si have similar uptake rates (Raven, 1983; Ma
et al., 2001b). Plants are assigned one of these categories according
to various definitions, a thorough discussion of which is beyond
the scope of this paper, but see Carey and Fulweiler (2014) in this
Special Issue for a full description. Briefly, previous definitions
have been based on Si concentrations in aboveground tissues,
on the ratio of Si to calcium, and on the relationship between
porewater Si concentration and aboveground tissue Si concen-
trations (e.g., Jones and Handreck, 1967; Takahashi et al., 1990;
Ma et al., 2001a, respectively). More recent work has focused on
the presence/absence of Si transporter genes in roots (Lsi1 and
Lsi2) and shoots (Lsi6) of rice (Ma et al., 2008; Yamaji et al., 2008).
Research on accumulation modes in trees is surprisingly lacking.
Cornelis et al. (2010b) observed both passive and rejective Si accu-
mulation growth in coniferous tree saplings grown hydroponically.
And a decrease in Si concentration with depth was observed in a
temperate coniferous forest and designated as active accumula-
tion (Gérard et al., 2008). Adult trees likely rely more heavily on
groundwater and thus, in order to precisely determine the mode of
Si accumulation, measurements of Si concentrations in ground-
water, porewater, and within the tree are needed. Unfortunately,
this is beyond the scope of this paper. Therefore, we apply the sim-
plest definition that describes accumulation status as a function
of Si concentration in the aboveground tissue alone: active accu-
mulators as >0.46% Si by wt., passive accumulators as between
0.25 and 0.46% Si by wt., and excluders as <0.25% Si by wt. (Ma
et al., 2001b; Street-Perrott and Barker, 2008). We acknowledge the
limitations of this definition, as aboveground BSi tissue concen-
trations can be impacted by numerous factors, such as porewater
DSi availability and external stressors. However, given our dataset,
it is the one most appropriate for us to use. Defining Si accumu-
lation status in trees by linking Si concentrations in aboveground
vegetation to changes in porewater and groundwater, and locat-
ing Si transporter genes within trees are important areas of future
research.

We observed a wide range in foliar BSi concentrations (Table 1).
The low Si concentrations found in C. florida may indicate that
these trees excluded H4SiO4. Overall however, the BSi concentra-
tions observed in the Duke forest are 40 to 150% higher than those
previously reported for similar species (Hodson et al., 2005). One
reason for higher concentrations found in the Duke Forest could
be the different soil and climate in North Carolina compared to
the majority of studies reported in Hodson et al. (2005), which
were dominated by northern temperate field sites. Our samples
could also have higher BSi concentrations because of the land use
legacy at the Duke Face site. In 1983, just 13 years before these
experiments started, the forest was cut, trunks were removed, and
the remaining material was burned (Finzi et al., 2001). The impact
of land use change and disturbance on Si cycling is an emerging
topic. From what we currently know, greater DSi losses have been

observed following deforestation (Likens et al., 1970; Conley et al.,
2008).

The median and mean BSi concentration (0.81 and 0.98 %Si
dry wt., respectively) of the species we studied here is higher
than many well-known actively Si accumulating groups, includ-
ing those found in grasses (Poaceae) and sedges (Cyperaceae;
Jones and Handreck, 1967; Raven, 1983; Ma and Takahashi, 2002).
Uptake by forest trees has been hypothesized as a mechanism
responsible for both the clear seasonal cycle of Si concentrations
in stream water (Fulweiler and Nixon, 2005) and the observation
of forested watersheds exporting significantly less Si than water-
sheds dominated by urban-land uses (Carey and Fulweiler, 2012a,
2013b). Given these data, and the known limitations of Si accu-
mulation definitions, we can only hypothesize that this forest is
actively accumulating Si. Regardless, the high Si concentrations
we observed support the idea that forests are a critical component
in regulating the flux of Si from land to the sea.

DUKE FACE SI UPTAKE
The impact of elevated CO2, N, and combined elevated CO2 and N
led to an approximately 28% increase in net primary production
(NPP) at the Duke Face site between 1996 and 2004 (McCarthy
et al., 2010). We used the mean NPP over this period to estimate
the amount of Si taken up by the Duke forest for the control
and elevated CO2 treatments. We focused on the CO2 treatment
because we do not have BSi concentrations for the P. taeda under
N fertilization or the combined elevated CO2 and N fertilization
treatments. Additionally, biomass at this site is dominated by P.
taeda, which comprises ∼98% of the tree basal area (Finzi et al.,
2001). We calculated foliar Si:C ratios by dividing the treatment
specific median %Si value of either P. taeda alone or all the species
together by 0.47, as C concentrations in biomass are well con-
strained between 45 and 50%. We then multiplied this Si:C ratio
by the known amount of C in each treatment to get a treatment
specific Si foliar uptake value (Conley, 2002; Carey and Fulweiler,
2012b). We estimated woody biomass Si uptake using the mean
temperate woody biomass %Si of 0.08 (Fulweiler and Nixon, 2005)
and again divided by 0.47. We then prorated the amount of Si
by the proportion of leaves (30%) versus woody biomass (70%)
in a typical forest to determine a total Si uptake rate (Figure 2;
Litton et al., 2007). Although we observed a decline in Si con-
centrations under elevated CO2, the total amount of Si taken up
by P. taeda was 26% higher at elevated CO2 where NPP was sig-
nificantly higher compared to ambient CO2 (control: 194 kmol
Si km−2, elevated CO2: 251 kmol Si km−2). Together with the
hardwood species, Si uptake rate was 20% higher in the elevated
compared to ambient CO2 treatment, although absolute rates of
uptake were higher than P. taeda alone (elevated CO2 = 313 kmol
km−2 y−1; ambient CO2 = 266 kmol Si km−2, Figure 2). These
values are on the high end of those reported for forested sys-
tems but well within the reported range. For example, Gérard
et al. (2008) reported 157 kmol Si km−2 for a Douglas fir forest
in France, while Meunier et al. (1999) reported an uptake of over
3400 kmol Si km−2 in a bamboo forest.

A review of FACE experiments found that irrespective of
ecosystem type, aboveground production increased in the
presence of higher CO2 and trees were more responsive than
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FIGURE 2 | A comparison between the control and elevated CO2

treatment of forest Si accumulation for the loblolly pine alone (light

gray) and for all the species together (dark gray).

herbaceous vegetation (Ward et al., 2013). Other studies have
found similar increases in global terrestrial production (Melillo
et al., 1993; Nemani et al., 2003). In addition, Pan et al. (2013)
found that global forest biomass has increased in established
forests. Such changes in primary productivity will also alter Si
cycling. In fact, Si accumulating vegetation accounts for 55%
of terrestrial NPP (33 Gton C y−1) an amount similar to the C
sequestered by marine diatoms (Carey and Fulweiler, 2012b). This
terrestrial Si pump has important implications for global climate,
as Si cycling helps to control atmospheric CO2 concentrations
through a variety of mechanisms, including chemical weathering
of mineral silicates and C occlusion in soil phytoliths (Berner and
Berner, 1997; Parr and Sullivan, 2005). In addition, this vegetation
also plays a critical role in modulating the amount and timing of
Si export from watersheds to downstream receiving waters (Carey
and Fulweiler, 2012a, 2013b), which has direct implications for
marine C dynamics. Here, we show that anthropogenically driven
enhanced NPP may result in an increase in the terrestrial Si pump
as forests take up more Si. In turn, the increased terrestrial Si sink
may alter Si availability in aquatic systems. Diatoms require N and
Si on a one to one molar basis (Redfield, 1963). Thus, the ratio of
N to phosphorus to Si (N:P:Si) helps to control the composition
and abundance of phytoplankton species assemblages. Human
activities, such as fertilizer use and land use change have increased
N and P loading to coastal systems worldwide. Phytoplankton
respond to these elevated nutrients by increased productivity. At
first, diatoms will bloom until all the Si is consumed at which point
other non-Si requiring species will flourish (Anderson et al., 2002).
The enhanced Si uptake by forests under elevated CO2 may be
another way in which humans are altering nutrient stoichiometry
in coastal receiving waters.

Missing from this discussion is the mechanism driving our
findings that CO2 and/or N additions have no significant impact
on Si accumulation in aboveground biomass. Of course, with
more data and different study sites we might observe a signifi-
cant impact of these factors on Si accumulation rates in forest

or other terrestrial vegetation types. In fact, a recent study found
higher Si concentrations in the porewater, sediment, roots, and
occasionally the aboveground biomass of a heavily N enriched
salt marsh (Carey and Fulweiler, 2013a). Certainly other factors
such as changes in water availability and growing season length,
as well as warming temperatures, are all factors that might influ-
ence foliar BSi accumulation. Here we propose an alternative idea
for exploration: we hypothesize that in ecosystems with altered
transpiration rates, corresponding changes to leaf Si concentra-
tions will also be observed because Si is delivered to vegetation
via water. Higher transpiration rates should, if passive or active
accumulation is occurring, result in higher Si concentration in
leaves, as Si is typically concentrated at transpiration termini. Con-
versely, if transpiration rates decline, then less Si will be deposited.
Experimental work on Douglas fir saplings found higher Si con-
centrations that were attributed to greater transpiration in those
seedlings (Cornelis et al., 2010b). However, at the Duke FACE
experimental site no changes in transpiration were observed and
maybe this is why we observed no significant changes in Si con-
centration (Ward et al., 2013). Complicating these simple ideas is
the original hypothesis that motivated this work – enhanced CO2

lowers elemental composition of leaves such as N, phosphorus,
and potassium. Thus, quantifying the interplay between struc-
tural changes in vegetation and transpiration rates, as well as water
availability under future climate change scenarios, will be a criti-
cal next step in our understanding of climate change impacts on
terrestrial Si cycling.

CONCLUSION
Our data of BSi concentrations in 6 species from the Duke FACE
Experiment does not support our initial hypothesis that elevated
CO2 concentrations would decrease foliar Si content. In fact, we
observed no consistent or significant impact of any of the treat-
ments on foliar Si content. However, according to the simplest
definition based on aboveground tissue Si concentrations, we
did find evidence that four out of the six tree species we stud-
ied may be active Si accumulators. These tree species had Si
concentrations higher than some of the most well-known Si accu-
mulators (e.g., grasses and sedges). Further, the higher NPP values
observed under elevated CO2 resulted in higher Si uptake rates
under elevated CO2 conditions in the Duke forest. Based on this
analysis we hypothesize that anthropogenic change, specifically
elevated atmospheric CO2 concentrations, may increase biological
Si pumping in forests, increasing the magnitude of the terrestrial
Si pump.
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