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Germination from the soil seed bank (SSB) is an important determinant of species
composition in tropical forest gaps, with seed persistence in the SSB allowing trees
to recruit even decades after dispersal. The capacity to form a persistent SSB is often
associated with physical dormancy, where seed coats are impermeable at the time
of dispersal. Germination literature often speculates, without empirical evidence, that
dormancy-break in physically dormant seeds is the result of microbial action and/or abrasion
by soil particles. We tested the microbial/soil abrasion hypothesis in four widely distributed
neotropical pioneer tree species (Apeiba membranacea, Luehea seemannii, Ochroma
pyramidale, and Cochlospermum vitifolium). Seeds were buried in five common gardens
in a lowland tropical forest in Panama, and recovered at 1, 3, 6, and 12 months after
burial. Seed permeability, microbial infection, seed coat thickness, and germination were
measured. Parallel experiments compared the germination fraction of fresh and aged
seeds without soil contact, and in seeds as a function of seed permeability. Contrary
to the microbial/soil abrasion hypothesis the proportion of permeable seeds, and of seeds
infected by cultivable microbes, decreased as a function of burial duration. Furthermore,
seeds stored in dark and dry conditions for 2 years showed a higher proportion of seed
germination than fresh seeds in identical germination conditions. We determined that
permeable seeds of A. membranacea and O. pyramidale had cracks in the chalazal area
or lacked the chalazal plug, whereas all surfaces of impermeable seeds were intact. Our
results are inconsistent with the microbial/soil abrasion hypothesis of dormancy loss and
instead suggest the existence of multiple dormancy phenotypes, where a fraction of
each seed cohort is dispersed in a permeable state and germinates immediately, while
the impermeable seed fraction accounts for the persistent SSB. Thus, we conclude that
fluctuations in the soil temperature in the absence of soil abrasion and microbial infection
are sufficient to break physical dormancy on seeds of tropical pioneer trees.

Keywords: Barro Colorado Island, germination cue, physical dormancy, pioneer plants, seed dormancy loss, seed

persistence, soil seed bank

INTRODUCTION
Dispersal and site-specific seed survival play an important role
in structuring plant communities by determining where seedlings
can recruit (Hubbell et al., 1999; Harms et al., 2000). For pioneer
species, germination from the soil seed bank (SSB) is an impor-
tant determinant of species composition in gaps (Dalling et al.,
1997, 2002), with seed persistence in the SSB allowing individu-
als to recruit in gaps that form up to several decades after seed
dispersal (Dalling and Brown, 2009; Long et al., 2014). Seed per-
sistence allows plants to germinate in favorable conditions (Ooi,
2012) while at the same time spreading the risk of reproduc-
tive failure through time (Long et al., 2014). Seeds can persist in
soil as a result of dormancy, wherein seeds maintain physical or
physiological barriers to germination, or as a result of quiescence,

wherein seeds have no such barriers and germinate when condi-
tions are favorable (Baskin and Baskin, 1989; Thompson, 2000;
Dalling et al., 2011). Here, we use seeds of four physically dor-
mant species of neotropical trees to understand factors that govern
the breaking of physical dormancy in seeds in a seasonally moist
tropical forest in Panama.

Physically dormant seeds are important components of the
SSB in different ecosystems around the globe (Baskin and Baskin,
2000; Bradshaw et al., 2011; Moreira and Pausas, 2012; Benítez-
Rodríguez et al., 2014; Ooi et al., 2014; Peguero and Espelta, 2014).
These seeds possess a seed- or fruit-coat that is impermeable
to water at the time of dispersal and prevents seed germination
(Baskin and Baskin, 2000). Investment in physical defenses, such
as thick seed coats in physically dormant seeds, may be the most
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effective means of prolonging seed persistence for seeds of pio-
neer trees in seasonal tropical forests (Dalling et al., 2011), and
for weed species in temperate agricultural systems (Davis et al.,
2008). In addition, physically dormant seeds, in which embryos
are maintained in a dry state, are responsible for some of the most
extreme examples of longevity recorded both in dry storage and
in the soil (Thompson, 2000).

Strong evidence indicates that seeds with physical dormancy
can break dormancy in response to environmental conditions
in temperate (Thompson and Grime, 1983) and tropical regions
(Pearson et al., 2002). Nonetheless, the germination ecology litera-
ture often speculates that physically dormant seeds lose dormancy
as a consequence of microbial action and/or abrasion by soil par-
ticles (e.g., Went, 1955; Vazquez-Yanes and Orozco-Segovia, 1993;
Lambers et al., 1998; Raven et al., 1999; Soriano et al., 2014; for
a detailed list of references see Baskin and Baskin, 2000). For
instance, five tropical species with impermeable seeds showed stag-
gered germination (Soriano et al., 2014), leading the authors to
suggest that the gradual loss of physical dormancy in these seeds
could be a consequence of the action of soil microbes on the seed
coat.

In turn, although physically dormant seeds cannot cycle
between dormancy and non-dormancy, physically dormant seeds
of some species of Fabaceae and Convolvulaceae can cycle between
states of insensitivity and sensitivity to dormancy-breaking factors
in the environment (Jayasuriya et al., 2009). Sensitivity cycling
may be a common mechanism in temperate or tropical regions
for short-lived seed banks that germinate seasonally, but seems
improbable for pioneers that rely on temporally unpredictable
recruitment sites (Baskin and Baskin, 2000).

If seeds that only possess physical dormancy are incapable of
persisting in the soil once dormancy is broken, then it seems
unlikely that microbial action or soil abrasion would determine
the time course along which dormancy breaks. Although disper-
sal can be temporally decoupled from gap formation for tropical
pioneer species, the timing of seed germination must be strongly
coupled to gap occurrence for successful recruitment. In forests
where canopy gaps recur unpredictably over decadal time scales,
a dependency on microbial degradation would likely result in
mostly fatal germination in the forest understory, with negative
fitness consequences (Baskin and Baskin, 2000). In some species,
however, seeds have a combinational dormancy type (i.e., physi-
cal in addition to physiological dormancy): the seed coat is water
impermeable, and the embryo is physiologically dormant (Baskin
and Baskin, 2007). If physical dormancy breakage is microbially
induced in these cases, seeds could persist in a dormant state in

the SSB after breaking physical dormancy. However, this raises the
question of why seeds would express physical dormancy in the
first place. Paulsen et al. (2013) suggested that physical dormancy
is not only an adaptation to control germination, but might also
protect seeds against predators by reducing olfactory cues.

When temperature and moisture conditions are favorable for
seedling establishment in tropical forests, light quality and tem-
perature fluctuations provide proximate cues for seed germination
(Vazquez-Yanes and Orozco-Segovia, 1993; Pearson et al., 2002;
Daws et al., 2006; Peguero and Espelta, 2014). However, for phys-
ically dormant seeds, microbial degradation of the seed coat
and/or abrasion by soil particles has been widely proposed to be
necessary to weaken seed protecting structures prior to responding
to such cues. These suggestions arise because high temperatures
characteristic of forest gaps are sometimes insufficient to induce
germination (Vazquez-Yanes and Orozco-Segovia, 1993). Indeed
under laboratory conditions, seeds with physical dormancy can
require hot water treatments of 70–100◦C to induce germination
(Acuña and Garwood, 1987; Vazquez-Yanes and Orozco-Segovia,
1993, but see Daws et al., 2006), raising the possibility that the
process of artificial dormancy-break differs from that which occurs
under natural conditions where, at least in tropical forests gaps, the
soil can reach a maximum of ∼50◦C (Pearson et al., 2002). Thus
an explicit experimental test is needed to distinguish proposals
that either microbial action or physical abrasion by soil particles
play a key role in seed coat rupture and subsequent germination
of seeds with physical dormancy.

Here we measured germination responses, seed coat integrity
and microbial colonization using fresh seeds of four widely dis-
tributed neotropical pioneer species (Table 1) in a seed burial
experiment in the field, and in seeds that were stored in the labora-
tory. We tested the following hypotheses regarding loss of physical
dormancy in tropical pioneer trees. (1) If seed coat abrasion and
microbial degradation in the soil facilitates seed germination, then
seed coats should become progressively more eroded with time in
the soil, and penetration of seeds by bacteria and fungi should
increase with time in the soil. (2) If seed germination in response
to environmental cues is contingent on an initial loss of phys-
ical dormancy followed by seed quiescence (i.e., persistence of
seeds in a non-dormant state), then the fraction of seeds that per-
sist in the soil in a permeable state should increase with time
in the soil. (3) If seeds germinate immediately from a previ-
ously physically dormant state, then seeds that are impermeable
should be capable of germinating when provided with tempera-
tures similar to those found in treefall gaps where they naturally
recruit.

Table 1 | Characteristics of focal species, including family, geographic distribution, number of maternal sources used in the burial experiment,

fruiting period, and mass of fresh seeds at Barro Colorado Island, Panama.

Species Family Geographic distribution Maternal sources Fruiting period Seed mass (mg)

Apeiba membranacea Aubl. Malvaceae Mexico–Brazil 6 February–March 18.9 ± 1.9

Luehea seemannii Triana and Planch. Malvaceae Mexico–Venezuela 5 February–April 1.9 ± 0.002

Ochroma pyramidale Urb. Malvaceae Mexico–Brazil 6 March–May 5.9 ± 0.7

Cochlospermum vitifolium Willd. Bixaceae Mexico–Brazil 8 February–April 25.6 ± 3.8
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MATERIALS AND METHODS
STUDY SITE AND SPECIES
The study was carried out in seasonally moist tropical forest at
Barro Colorado Island, Panama (BCI: 9◦10′N, 79◦51′W). Rainfall
on BCI averages 2,600 mm year−1, with a pronounced dry season
from January to April (Windsor, 1990). The flora and vegetation
of BCI have been described by Croat (1978) and by Foster and
Brokaw (1982). Here, we used four species of pioneer trees whose
seeds have physical dormancy (Figure 1). Three of them (Luehea
seemannii, Ochroma pyramidale, and Cochlospermum vitifolium)

are wind dispersed; the other (Apeiba membranacea) is dispersed
by mammals (Table 1). All are common and widely distributed
throughout the neotropics, and occur naturally at BCI (Croat,
1978; Table 1).

COMMON GARDEN EXPERIMENT
From mid-February to mid-April 2012, ripe fruits were collected
from the canopy of, or the ground beneath, at least five maternal
trees of each of the four species at BCI or Gamboa (15 km southeast
of BCI). Seeds were removed from fruits and cleaned manually to

FIGURE 1 | Scanning electron microscopy images of the surfaces of fresh seeds (A, Apeiba; C, Luehea; E, Ochroma; G, Cochlospermum) and

longitudinal sections of seeds (B, Apeiba; D, Luehea; F, Ochroma; H, Cochlospermum). Scale bar = 1 mm. An asterisk highlights the chalazal area when
visible.
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remove fruit pulp or cottony filaments. Clean seeds were air-dried
at room temperature (∼22◦C) in the dark for several days prior
to use in burial experiments. To remove especially persistent pulp
residues, seeds of A. membranacea were rinsed with 0.7% sodium
hypochlorite for 2 min before burial.

From March to April 2012 we buried seeds in small mesh bags
beneath the mature forest canopy in five 9 × 15 m common
gardens on BCI. We used a randomized complete block design,
with gardens spanning multiple soil types (Baillie et al., 2006; BCI
soil map: http://strimaps.si.edu/webmaps/bcnm/). Gardens were
located in the understory in sites that contained no adults of the
study species within ≤20 m of garden edges. Prior to burial, seeds
from all maternal sources of a single species were pooled, thor-
oughly mixed, and separated into burial units (BU) consisting of
45 seeds. Each BU was mixed with 10 g of sterile forest soil (i.e.,
previously autoclaved at 121◦C for 2 h), enclosed in a nylon mesh
bag (pore size = 0.2 mm), and covered with an aluminum mesh
(pore size = 2 mm) to exclude seed predators. Four replicates con-
sisting of four BUs per species were buried 40 cm apart at a depth
of 2 cm below the soil surface, for a total of 16 BUs per species per
garden.

SEED PROCESSING AFTER RETRIEVAL FROM BU
Overall, 300 BUs (i.e., 94%) were successfully retrieved at 1, 3, 6, or
12 months after burial. After collection, seeds from each BU were
rinsed with tap water and partitioned for tests of (i) germination
(10 seeds per BU), (ii) microbial infection (10 seeds per BU), (iii)
permeability (eight seeds per BU), and (iv) seed coat thickness
(two seeds per BU). If we recovered fewer than 30 seeds per BU,
seeds were partitioned as evenly as possible, prioritizing from most
to least important: (i) germination, (ii) microbial culture, (iii) per-
meability, and (iv) seed coat thickness. To determine initial values
for each trait, we used 600 fresh seeds per species from the origi-
nal seed collection for germination (200 seeds), microbial culture
(200 seeds), permeability (160 seeds), and seed coat thickness (40
seeds). Data on fresh seeds were collected from March to April
2012 and are presented in figures but not included in statistical
analyses, which focus on how seeds lose dormancy after dispersal
to the SSB.

For germination tests, seeds were placed in Petri dishes lined
with paper towel, moistened with sterile distilled water, sealed with
two layers of Parafilm®, and incubated for 6 weeks in a shadehouse
in BCI under 30% full sun, high red: far-red irradiance (ca. 1.4),
and ambient temperature (Pearson et al., 2002). The maximum
temperature recorded on the germination bench was ∼38◦C, sim-
ilar to the temperature near the soil surface in large treefall gaps on
BCI (Marthews et al., 2008), but lower than the maximum temper-
ature recorded by Pearson et al. (2002) in large gaps (i.e., 52◦C).
Germination was defined as radicle protrusion and was recorded
weekly. Permeable seeds or seeds that lost dormancy during the
germination experiment swelled when imbibed, whereas dormant
seeds did not. Thus hard seeds that did not germinate after 6 weeks
were assessed for viability using the tetrazolium test (TZ; 2, 3, 5-
triphenyl tetrazolium chloride; Peters, 2000). Ungerminated seeds
scored as viable after TZ testing were considered dormant.

The proposed mechanism by which soil microbes break
physical dormancy is through penetration of the seed coat

(Vazquez-Yanes and Orozco-Segovia, 1993). We assessed whether
microbes had penetrated seeds by evaluating microbial infection
within seeds while eliminating microbes that were restricted to the
seed surface. Seeds were surface-sterilized with successive immer-
sion in 95% ethanol (10 s), 0.7% sodium hypochlorite (2 min) and
70% ethanol (2 min), allowed to surface-dry, and cut in half under
sterile conditions (Gallery et al., 2007). For microbial isolation,
one-half of each seed was placed in a unique 1.5 mL microcen-
trifuge tube containing 2% malt extract agar (MEA). After at least
4 months of incubation, microbial growth was macroscopically
scored as zero (no growth) or one (growth); if microbial growth
was detected, it was identified as fungal or bacterial based on
culture morphology using a stereomicroscope.

To determine the extent of seed coat permeability, seeds were
incubated in 0.1% (w/v) aqueous solution of Lucifer yellow CH
potassium salt (hereafter LY; Biotium, Inc., CA, USA) for 48 h
in the dark at room temperature (22◦C). LY has a low molecu-
lar weight compared to other water-soluble fluorophores, making
it especially useful for measuring seed permeability (Tieu and
Egerton-Warburton, 2000). LY was removed by pipette after incu-
bation, and seeds were rinsed twice in distilled water prior to
being cut in half with a razor blade. Seed halves were examined
using a Nikon Eclipse 600 microscope attached to a XX-V mer-
cury lamp, with a Nikon B-2A fluorescent filter set (450–490 nm
excitation/515 nm emission) and permeability was scored as zero
(no LY on the endosperm) or one (LY on the endosperm).

For species in the Malvales with physically dormant seeds
(including our four focal taxa), the palisade layer (hereafter
called the seed coat) is the most important barrier to seed per-
meability. Dormancy-break in these species is associated with
imbibition through the chalazal area of the seed (Baskin and
Baskin, 1998). In physically dormant seeds of A. tibourbou, it has
been shown that manual removal of the chalazal plug facilitated
water uptake and seed germination (Daws et al., 2006). Thus, we
used seed permeability as a measure of chalazal integrity, and
measured seed coat thickness to determine whether seeds were
subject microbial decay and/or physical abrasion. To measure
seed coat thickness, seeds were cut in half under a dissecting
scope and scanned using a Zeiss – Evo 40 vp scanning electron
microscope (Figure 1). Mean seed coat thickness was determined
from measurements at four random points for each seed image
using ImageJ (http://rsbweb.nih.gov/ij/) and averaged for each
seed.

SEED AGING
To determine if changes in the fraction of germinable seeds
over time was a response to conditions in the soil or simply a
consequence of seed age, we set up an additional germination
experiment. Seeds from the same seed lot used in the common
garden experiment were stored in dry and dark conditions in an
air-conditioned laboratory at 22◦C for 2 years (i.e., until Febru-
ary 2014). Two hundred seeds per species were placed in Petri
dishes lined with moist paper towel and sealed with Parafilm®,
and incubated for 6 weeks in a shadehouse on BCI, using identical
conditions as those used after burial. Germination was recorded
every week for 6 weeks. Cochlospermum was not evaluated because
seeds were not available from the original seed lot.
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TIME COURSE OF DORMANCY BREAKAGE
An additional germination experiment was used to determine the
time course of dormancy-break under natural conditions for seeds
shown previously to be impermeable. In April–May 2013, fresh
seeds of Apeiba and Ochroma were collected from fruit and cleaned
as described above prior to storage in dry and dark conditions
at 22◦C for up to 9 months. At the beginning of the experi-
ment, seed permeability was assessed by individually weighing
each seed, soaking each seed in 8 mL of distilled water for 24 h,
and then measuring the conductivity of the soak water using an
automatic seed conductivity analyzer (SAD-9000-S, Version 4.1.0,
Soluciones Tecnológicas Globales, Argentina). Immediately after
measuring conductivity, seeds were surface-dried with blotting
paper and weighed again. Seeds were classified as permeable when
electrical conductivity of the soak water was >10 μS and soaking
yielded an increase of at least 30% in seed mass. Impermeable seeds
showed no increase in mass or change in conductivity. Seeds were
then sorted into three groups (25 seeds per species per group):
(i) permeable seeds, (ii) impermeable seeds, and (iii) imperme-
able seeds treated with hot water (60◦C for Apeiba and at 100◦C
for Ochroma) for 30 s to break dormancy (Acuña and Garwood,
1987).

Seeds were placed in Petri dishes lined with moist paper towel
and sealed with Parafilm®. Petri dishes were placed on the upper
bench of a greenhouse on the roof of the Smithsonian Tropical
Research Institute’s Tupper Center in Panama City, Panama (100%
full sun). The temperature of the paper towel inside each Petri dish
was recorded using an infrared thermometer before harvesting
seeds and after each harvest. We harvested a single seed per species,
per treatment, two or three times a day over 5 days for a total
of 36 Apeiba seeds (i.e., 12 permeable, 12 impermeable, and 12
impermeable – hot water treated) and 24 Ochroma seeds (i.e.,
eight permeable, eight impermeable, and eight impermeable – hot
water treated). Individual seeds were evaluated immediately after
collection for microscale responses to treatment (i.e., presence or
absence of the chalazal plug, or cracks on the chalazal area) by
examining the chalazal area with scanning electron microscopy
(cold stage because seeds were processed while wet; Zeiss – Evo 40
vp scanning electron microscope; 125–175X).

STATISTICAL ANALYSES
Using generalized linear mixed-effects models for each species, we
analyzed changes in the proportions of (i) seeds that germinated
and were dormant, (ii) seeds infected and non-infected by cul-
tivable fungi, (iii) seeds infected and non-infected by cultivable
bacteria, (iv) seeds that were permeable and impermeable, and
(v) seed coat thickness, as a function of burial duration. Analy-
ses were implemented in R version 2.15.3 (R Development Core
Team, 2013) using the package lme4 (version 1.0-5). For each
combination of species and response variable, we coded each
common-garden and its nested replicates as random effects and
removal time as a fixed effect. If the response variable repre-
sented a proportion (e.g., permeable, impermeable seeds) over
time, we used binomial error distributions to fit the generalized
linear mixed-effect models. We tested whether there is an effect of
removal time on the various responses by comparing models with
and without removal time as explanatory variable using χ2 tests.

We used restricted maximum likelihood estimation in the mixed-
effect models, and two-tailed tests with a significance level set to
0.05. Although removal time is treated as a continuous variable
in the statistical models it is presented as a categorical variable in
figures to illustrate its effects on seed state and microbial infection
using stacked bar charts.

RESULTS
SEED RECOVERY AT DIFFERENT TIME INTERVALS
Here, we defined seed loss due to decay and/or fatal germination
as the number of seeds initially buried, minus the number of seeds
that was recovered intact at each retrieval time. After 12 months of
burial, the seed recovery rate had declined to <30% in Cochlosper-
mum and <50% in Apeiba, but remained >65% in Ochroma and
Luehea (Figure 2). It is also important to highlight that for all
the species included in this study, (i) the initial seed viability (i.e.,
fresh seeds) was high and ranged from 78% in Apeiba to 96% in
Cochlospermum, (ii) after burial inviable seeds decayed rapidly and
the majority of retrieved seeds were viable (viability ranged from
88% in Apeiba to 99% in Ochroma), and (iii) we found either ger-
minated seedlings or fragments of seed coats inside the bags, at all
retrieval times.

SEED DORMANCY AND GERMINATION AS A FUNCTION OF BURIAL
DURATION
Seeds that had been stored in dry, dark, and cool conditions in
the laboratory germinated more frequently than did fresh seeds
(Figure 3). Germination in laboratory-stored seeds was 4.6, 2.3,
and 2.7 times higher than in fresh seeds for Apeiba, Luehea, and
Ochroma, respectively. For seeds retrieved from the soil, the frac-
tion of seeds that germinated increased significantly over time for
three species (Figure 3; Table 2). In Cochlospermum, the propor-
tion of germinating seeds did not change over time (Figure 3;
Table 2).

FIGURE 2 | Percentage of seeds retrieved at different time intervals.

Seed decay is equivalent to the total number of seeds buried (i.e., 100%),
minus the number of seeds recovered successfully at each time. Error bars
correspond to SD.
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FIGURE 3 | Percentage of dormant seeds (black) and germinable

seeds (gray) for fresh seeds; 2 years old, laboratory-stored seeds;

and seeds successfully recovered at different time intervals after

burial. Numbers at the top of each bar represent the number of

seeds examined for fresh (never buried), laboratory-stored (never
buried), and buried seeds (i.e., the number of seeds retrieved from
the common garden experiment and used for the germination
experiment).

MICROBIAL INFECTION
Fresh (unburied) seeds generally had infection rates that were
3.5–13 times lower than those of seeds that had been in soil for
1 month (Figures 4 and 5). However, the proportion of seeds

infected by cultivable fungi decreased significantly with increasing
burial duration for Luehea, Ochroma, and Cochlospermum, with a
similar but non-significant trend observed for Apeiba (Figure 4;
Table 2). Similarly, the proportion of buried seeds infected by

Table 2 | Results of generalized linear mixed-effects models for each species.

Apeiba Luehea Ochroma Cochlospermum

Factor χ2 p χ2 p χ2 p χ2 p

Germination: dormancy 95.04 <0.001 35.48 <0.001 4.73 0.029 0.23 0.632

Fungal: no fungal 3.25 0.071 8.71 <0.010 5 0.025 12.27 <0.001

Bacterial: no bacterial 9.48 <0.010 132.47 <0.001 141.54 <0.001 7.77 <0.010

Permeable: impermeable 29.6 <0.001 6.11 0.013 24.09 <0.001 3.57 0.059

Seed coat thickness 1.36 0.242 0.72 0.396 1.78 0.182 1.19 0.274

Factors include the proportion of (i) seeds that germinated and were dormant, (ii) seeds infected and not infected by cultivable fungi, (iii) seeds infected and not
infected by cultivable bacteria, (iv) seeds that were permeable and impermeable, and (v) seed coat thickness.
For all models df = 1. Please refer to the main text for more details on the models.
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FIGURE 4 | Percentage of seeds infected by cultivable fungi (gray)

and seeds without detectable infection (black) for fresh

(unburied) seeds, and seeds successfully recovered at different

time intervals following burial. Numbers at the top of each bar

represent the number of seeds examined for fresh seeds (never
buried), and buried seeds (i.e., the number of seeds retrieved from
the common garden experiment and used for assessing microbial
growth).

cultivable bacteria decreased over time for all species (Figure 5;
Table 2).

SEED COAT INTEGRITY
After recovery from the soil, we found a significant decrease in
the proportion of permeable seeds over time in Apeiba, Luehea,
and Ochroma, but not in Cochlospermum (Figure 6; Table 2).
No change in seed coat thickness was observed in any species
over the burial period (Table 2). Average seed coat thickness is
122.7 ± 1.1 μm (average ± SE) for Apeiba, 47.7 ± 0.4 μm for
Luehea, 125.6 ± 0.6 μm for Ochroma, and 178.4 ± 1.3 μm for
Cochlospermum.

TIME COURSE OF DORMANCY BREAKAGE
Seeds of two species (Apeiba and Ochroma) that were sorted into
lots of permeable seeds, impermeable seeds, and impermeable
seeds treated with hot water, and that were exposed to full sun,
were assessed for evidence of chalazal plug lifting or cracks on the
chalazal area using scanning electron microscopy.

At the onset of the experiment, all the permeable seeds of
Apeiba and Ochroma either lacked a chalazal plug or showed cracks
in the chalazal area (Figures 7D,H), whereas the surfaces of all
impermeable seeds were intact. After treating impermeable seeds

with hot water, 90% of Apeiba seeds and 50% of Ochroma seeds
either lacked a chalazal plug, or had the chalazal plug lifted away
from the seed coat (Figures 7C,G). Among impermeable seeds
that were not treated with hot water, 33% of Apeiba seeds and
14% of Ochroma seeds showed a gradual release of dormancy over
5 days. This release of dormancy coincided with either (i) a lack
of a chalazal plug or (ii) cracks in the chalazal area.

DISCUSSION
Physical dormancy represents one important way in which plants
from a wide variety of ecosystems can decouple the timing of
seed dispersal from the availability of conditions conducive to suc-
cessful germination and recruitment (Baskin and Baskin, 1998).
Although the literature often alludes to the potential importance
of microbial infection of seeds or abrasion of seed coats by soil
particles in the loss of physical dormancy, other studies have
found that physical dormancy in tropical pioneers can be broken
by treatment with hot water (e.g., Vazquez-Yanes, 1974; Acuña
and Garwood, 1987; Daws et al., 2006), mimicking one impor-
tant cue consistent with presence in the forest gaps or edges
needed for successful recruitment. The aim of our work was to
test hypotheses regarding dormancy-break for physically dormant
seeds.
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FIGURE 5 | Percentage of seeds infected by cultivable bacteria

(gray) and seeds without detectable infection (black) for fresh

(unburied) seeds, and seeds successfully recovered at different

time intervals following burial. Numbers at the top of each bar

represent the number of seeds examined for fresh seeds (never
buried), and buried seeds (i.e., the number of seeds retrieved from
the common garden experiment and used for assessing microbial
growth).

Using seeds of four widely distributed neotropical pioneer
species in a seed burial experiment, and in a germination
experiment coupled with imaging of seeds by scanning elec-
tron microscopy, we found no evidence for an important role
of infection by fungi or bacteria, or soil abrasion of seed coats, in
influencing germination or dormancy-break. The proportion of
permeable seeds generally decreased as a function of burial dura-
tion in soil, rather than increasing. Seeds that were confirmed to
be impermeable were capable of germinating when provided with
temperature fluctuations similar to those found in treefall gaps,
reflecting release or dislocation of the chalazal plug (Daws et al.,
2006).

TEMPORAL CHANGES IN SEED GERMINABILITY AND PERMEABILITY
With the exception of Cochlospermum, we found that the propor-
tion of buried seeds that were germinable increased through time,
consistent with earlier observations in the literature that prompted
speculation that soil abrasion or microbial action weakens seed
coats. However, we also observed that the proportion of seeds
that were permeable decreased, either when comparing seeds that
had been buried for increasing periods of time, or when com-
paring fresh and buried seeds. The existence of a large fraction

(30–60%) of seeds that are dispersed in a permeable state suggests
the existence of multiple phenotypes among apparently identical
fresh seeds. The decrease in the fraction of permeable seeds after
burial is likely explained either by the decay of permeable seeds or
by fatal germination, where seedlings died inside the mesh bag. In
either case, seed loss reduced the number of remaining seeds, and
enriched the proportion of impermeable seeds.

Results from the comparison of fresh and lab-stored seeds were
also inconsistent with the hypothesis of microbial release from
dormancy. Seeds stored in the lab for 2 years remained mostly
impermeable, indicating that dry storage alone did not break
dormancy; however, lab-stored seeds showed two- to fourfold
higher germination than fresh seeds. These results indicate that
it becomes easier for impermeable seeds to break dormancy as
they age. This result is consistent with studies of physically dor-
mant seeds in temperate and subtropical systems. For instance,
Galíndez et al. (2010) found that after 4 years of dry storage, a
high proportion of Collaea argentina and Abutilon pauciflorum
seeds were more sensitive to dormancy-breaking treatments. Seed
aging is widely described as the physiological process in which
seeds lose vigor and may eventually die (Long et al., 2014); how-
ever, Mohamed-Yasseen et al. (1994) suggested that aging does not
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FIGURE 6 | Percentage of permeable seeds (gray) and impermeable

seeds (black) for fresh (unburied) seeds, and seeds successfully

recovered at different time intervals after burial. Numbers at the top of

each bar represent the number of seeds examined for fresh seeds (never
buried), and buried seeds (i.e., the number of seeds retrieved from the
common garden experiment and used to measure permeability).

in itself necessarily cause death, but decreases resistance to stress.
In the case of Malvaceae, the water gap is described as the chalazal
oculus, an area occluded by a plug-like structure formed by water-
impermeable sclerenchyma cells (Gama-Arachchige et al., 2013).
Our findings suggest that the cells surrounding the chalazal plug
are aging, making seeds more sensitive to temperature fluctuations
that open the water gap and break dormancy.

At the time of dispersal, a large fraction of seeds in a given
maternal seed cohort are already permeable, revealing the exis-
tence of multiple seed phenotypes (Figure 6). We found that high
initial rates of seed permeability resulted in high initial germina-
tion in fresh seeds. Seed polymorphisms in species with physically
dormant seeds have been previously reported on the basis of
color, weight, or size (Kelly et al., 1992; Wei et al., 2007; Baskin
et al., 2008). In addition, it has been recently shown that appar-
ently identical fresh seeds can differ in permeability (Paulsen et al.,
2013). Paulsen et al. (2013) showed that impermeable and perme-
able seeds of Robinia pseudoacacia and Vicia sativa were readily
found by rodents when shed from the plant onto the soil surface
and that the probability of predator escape during re-caching was
higher for impermeable than for permeable seeds. They argued
that the production of permeable seeds represents a payment for

dispersal services provided by scatter-hoarding rodents, suggesting
that physical dormancy has evolved to hide seeds from mammalian
predators. In lowland and montane forest in Panama, however,
Fornara and Dalling (2005) found that most of post-dispersal seed
removal in six pioneer species (including two species used in this
study) is attributed to litter ants, with no evidence of vertebrate
seed removal. As an alternative hypothesis for the existence of mul-
tiple seed phenotypes in pioneer species, we propose that initial
permeability is advantageous in allowing immediate germination
of seeds dispersed directly into gaps, while impermeable seeds dis-
persed to the understory persist in the SSB (Brokaw, 1987; Pearson
et al., 2003).

SEED MICROBIAL INTERACTIONS AND ABRASION BY SOIL PARTICLES
If microbial infection causes a gradual loss of physical dormancy,
we would expect an increase in microbial infection of seeds as
a function of burial duration. However, our results show the
opposite: an increase in the fraction of seeds capable of breaking
physical dormancy was associated with a smaller fraction of seeds
yielding cultivable microbes. In addition, the fraction of fresh
seeds yielding microbes was consistently lower than that of buried
seeds, indicating that microbial colonization occurred in the soil
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FIGURE 7 | Scanning electron microscopy images revealing the time

course of chalazal plug breakage over 5 days for Apeiba seeds (A–D) and

Ochroma seeds (E–H). At the onset of the experiment, seeds of Apeiba (A)

and Ochroma (E) previously determined as impermeable had no evidence of

cracks on the chalazal area, and the chalazal plug was attached to the seed
surface. When seeds were exposed to full sun over 5 days, a gradual release
of dormancy was observed as a progressive lifting of the chalazal plug in
seeds of Apeiba (B–D) and Ochroma (F–H). Scale bar = 1 mm.
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rather than during seed development. Collectively, these obser-
vations suggest that soil microbes are not the cause of physical
dormancy loss. However, it is important to highlight that seeds of
tropical pioneer species are frequently infected by fungi (Dalling
et al., 1998; Gallery et al., 2007, 2010; Olvera-Carrillo et al., 2009),
and microbial interactions in the soil are important in shaping
recruitment patterns in tropical forests (e.g., Augspurger, 1984;
Dalling et al., 1998; Gallery et al., 2010; Bagchi et al., 2014). In
addition, it is also possible that fungal infection may trigger
or enhance germination of physiologically dormant seeds (e.g.,
Opuntia spp. or dust seeds of myco-heterotrophic orchids that
do not need forest gaps for recruitment; Bidartondo and Read,
2008; Olvera-Carrillo et al., 2009; Delgado-Sánchez et al., 2010,
2013).

We predicted that an extended length of time in soil would
erode the seed coat, therefore making the seeds permeable. In
turn, if soil abrasion triggers physical dormancy-break, we would
expect an increase in permeability coupled with a decrease in seed
coat thickness as a function of burial duration. Our results indicate
instead that the proportion of permeable seeds decreases over time
while seed coat thickness does not vary. Since all the permeable
seeds imaged in this study either lacked a chalazal plug or showed
cracks in the chalazal area, the increase in the fraction of imper-
meable seeds with time in soil suggests that all the recovered seeds
that were impermeable had the chalazal area intact. Given that loss
of dormancy in physically dormant seeds is irreversible (Jayasuriya
et al., 2009), dormancy-break and subsequent germination should
be linked tightly with suitable conditions for plant establishment
(i.e., gap formation). Thus, species that need forest gaps to recruit
are not expected to show sensitivity cycling in physical dormancy
(sensu Jayasuriya et al., 2009) because gap formation is an unpre-
dictable event in the forest, lacking strong seasonality (Brokaw,
1985).

VISUALIZING DORMANCY-BREAK UNDER NATURAL TEMPERATURE
CONDITIONS
Elevated soil temperature in gaps, associated with high direct solar
radiation inputs, act as a mechanism triggering germination in
tropical pioneer species with large seeds (i.e., seed mass > 2 mg),
including the species in this study (Vázquez-Yanes and Orozco-
Segovia, 1982; Pearson et al., 2002). Daws et al. (2006) found
that hot water treatment of A. tibourbou seeds breaks physical
dormancy by removing the chalazal plug, thus facilitating water
uptake. Furthermore, Vazquez-Yanes and Orozco-Segovia (1993)
suggested that many plant species, including O. pyramidale, have
seeds with a suberized layer and impermeable seed coats that can
be broken by heat, allowing water to penetrate the seed and thus
breaking physical dormancy. They also suggested that some seeds
need temperatures no higher than 45◦C to become permeable
to water. However, no direct observations exist of the process
of dormancy-break under natural conditions for seeds shown
previously to be impermeable.

Seeds of all four species included in this study have a cha-
lazal plug (see Figures 1 and 7). When seeds were exposed
to full sun in a greenhouse, we saw a gradual release of dor-
mancy in seeds of Apeiba and Ochroma that were previously
determined to be impermeable. As has been shown using a hot

water treatment (Daws et al., 2006), these natural fluctuations in
temperature resulted in a progressive lifting of the chalazal plug
(Figure 7). The maximum temperature recorded in the germina-
tion experiment was 44.6◦C, consistent with the suggestion that
dormancy can be broken with temperatures ∼45◦C (see Daws
et al., 2006). Taken together, our results – along with those of
Pearson et al. (2002) and Daws et al. (2006) – suggest that syn-
chronous germination in forest gaps might best be explained by
high temperature fluctuations between day and night, which pro-
mote the lifting of the chalazal plug in previously impermeable
seeds.

DORMANCY-BREAK AS AN AXIS OF NICHE DIFFERENTIATION IN
TROPICAL PIONEERS
Although our results are consistent with previous reports show-
ing that the species included in this study have seeds that persist
for >1 year in the SSB (Dalling et al., 1997; Pearson et al., 2002;
Soriano et al., 2014), we found that the proportion of decay-
ing seeds, or the proportion of seeds remaining dormant after
being subjected to germination cues, varied among species. The
rate at which the proportion of dormant seeds decreases over
time is likely linked to availability of recruitment sites for each
species and may reflect differentiation in gap size requirements
among pioneer species (Brokaw, 1987; Pearson et al., 2003). We
also found that Ochroma displayed a very low rate of dormancy
loss over time (i.e., a consistently small proportion of seeds ger-
minating after exposure to favorable germination conditions)
compared to Apeiba and Luehea. These results suggest that there
may be a trade-off between the ability to break dormancy and
the ability to persist in the SSB. Ochroma seeds are known to
persist for long periods in the SSB and only recruit in very infre-
quent, large canopy gaps or at forest edges (Vazquez-Yanes and
Orozco-Segovia, 1993).

Seed persistence and dormancy traits also may reflect variation
in habitat conditions across the wider geographic range of species.
For instance, Soriano et al. (2014) found that the germinable frac-
tion of seeds in Cochlospermum increases after burial for some
months in the soil of the Chamela dry forest in Mexico (although
the amount of time the seeds spent in the soil is not specified
by the authors, it is presumably more than a year), but in this
study we did not find differences in the fraction of germinable
seeds in Cochlospermum over 12 months of burial. Cochlosper-
mum is often found in disturbed and early successional tropical
dry forests from Mexico to northern South America (Bawa and
Frankie, 1983). It is rare in the seasonally moist forest in Barro
Colorado National Monument, occurring only in forest edges
(Croat, 1978). Cochlospermum does not occur in wet forest and
when present in seasonally moist forest, it is often associated
with areas impacted by human disturbance, rather than natural
forest gaps (Dalling and Zalamea, personal observation). Most
dry forest species are deciduous for a few months during the dry
season; it is possible that in these forests, Cochlospermum seeds
do not need gaps for recruitment but instead recruit annually
beneath leafless forest canopies at the onset of the wet season.
It is also possible that seeds of Cochlospermum are adapted to
colonize dry areas in which soils are often burned by fires and
characterized by low soil moisture, high light availability, and high
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FIGURE 8 | Conceptual model summarizing seed persistence and germination in tropical forest species with physically dormant seeds dispersed to

(A) the understory or (B) gaps.

temperature, as suggested for Ochroma seeds (see Vazquez-Yanes,
1974).

CONCLUSION
Germination requirements are likely to be under strong selective
pressure because plant recruitment depends on successful emer-
gence under conditions favorable for subsequent survival and
growth. Based on our results, we conclude that fluctuations in
the soil temperature in the absence of soil abrasion and microbial
infection are sufficient to break physical dormancy (Figure 8). In
this conceptual model we also propose that, at the time of dispersal,
a large fraction of seeds of all species are permeable, resulting in a
high initial germination rate. This suggests the existence of a seed
dormancy polymorphism, whereby permeable seeds dispersed to
gaps can germinate and recruit immediately, while impermeable
seeds dispersed to the understory can persist in the SSB (Figure 8).
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